Sparse Estimation with Structured Dictionaries

David Wipf Microsoft Research Asia

Sparse estimation problem:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{0} \quad \text{s.t.} \quad \mathbf{y} = \Phi \mathbf{x}$$
overcomplete dictionary
of basis vectors

- Non-convex, combinatorial problem in general.
- Convex relaxation using the *l*₁ norm produces an equivalent solution if Φ is sufficiently *unstructured*.

Dictionary Correlation Structure

Unstructured

$\Phi^T \Phi$

Examples:

$$\Phi_{(unstr)}$$
 ~ iid $N(0,1)$ entries
 $\Phi_{(unstr)}$ ~ random rows of DFT

Structured

Example:

New Strategy

Apply a Φ-dependent projection that maps x to a new space

$$\mathbf{z} = \mathbf{P}_{\Phi}(\mathbf{x})$$

• Use a standard sparsity penalty g in this new space and solve: $y = \Phi x$

$$\min_{\mathbf{x}} \quad \sum_{i} g(z_{i}) \quad \text{s.t.} \quad \mathbf{z} = \mathbf{P}_{\Phi}(\mathbf{x})$$

The projection operator:

- 1. Must compensate for dictionary structure.
- 2. Preserve sparsity, meaning if z is maximally sparse, x is also maximally sparse.

Analysis

- Convenient optimization via reweighted l₁ minimization
- Provable performance improvement in certain situations

- Toy Example:

- Generate 50-by-100 dictionaries:

$$\Phi_{(\text{unstr})} \sim N(0,1), \ \Phi_{(\text{str})} = \Phi_{(\text{unstr})} \cdot \Gamma$$

- Generate a sparse x
- Estimate x from observations

$$\mathbf{y}_{(\text{unstr})} = \mathbf{\Phi}_{(\text{unstr})} \cdot \mathbf{x} , \quad \mathbf{y}_{(\text{str})} = \mathbf{\Phi}_{(\text{str})} \cdot \mathbf{x}$$

