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Abstract

Focusing on short term trend prediction in a financial context, we consider the
problem of selective prediction whereby the predictor can abstain from prediction
in order to improve performance. We examine two types of selective mechanisms
for HMM predictors. The first is a rejection in the spirit of Chow’s well-known
ambiguity principle. The second is a specialized mechanismfor HMMs that iden-
tifies low quality HMM states and abstain from prediction in those states. We
call this modelselective HMM (sHMM). In both approaches we can trade-off pre-
diction coverage to gain better accuracy in a controlled manner. We compare
performance of the ambiguity-based rejection technique with that of the sHMM
approach. Our results indicate that both methods are effective, and that the sHMM
model is superior.

1 Introduction

Selective predictionis the study of predictive models that can automatically qualify their own pre-
dictions and output “don’t know” when they are not sufficiently confident. Currently, manifestations
of selective prediction within machine learning mainly exist in the realm of inductive classification,
where this notion is often termed ‘classification with a reject option.’ In the study of a reject option,
which was initiated more than 40 years ago by Chow [5], the goal is to enhance accuracy (or reduce
‘risk’) by compromising the coverage. For a classifier or predictor equipped with a rejection mech-
anism we can quantify its performance profile by evaluating its risk-coverage (RC) curve, giving
the functional relation between error and coverage. The RC curve represents a trade-off: the more
coverage we compromise, the more accurate we can expect to be, up to the point where we reject
everything and (trivially) never err. The essence of selective classification is to construct classifiers
achieving useful (and optimal) RC trade-offs, thus providing the user withcontrol over the choice
of desired risk (with its associated coverage compromise).

Our longer term goal is to study selective prediction modelsfor general sequential prediction tasks.
While this topic has only been sparsely considered in the literature, we believe that it has great po-
tential in dealing with difficult problems. As a starting point, however, in this paper we focus on the
restricted objective of predicting next-day trends in financial sequences. While limited in scope, this
problem serves as a good representative of difficult sequential data [17]. A very convenient and quite
versatile modeling technique for analyzing sequences is the Hidden Markov Model (HMM). There-
fore, the goal we set had been to introduce selection mechanisms for HMMs, capable of achieving
useful risk-coverage trade-off in predicting next-day trends.

To this end we examined two approaches. The first is a straightforward application of Chow’s
ambiguity principle implemented with HMMs. The second is a novel and specialized technique
utilizing the HMM state structure. In this approach we identify latent states whose prediction quality
is systematically inferior, and abstain from predictions while the underlying source is likely to be in
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those states. We call this modelselective HMM (sHMM). While this natural approach can work in
principle, if the HMM does not contain sufficiently many “finegrained” states, whose probabilistic
volume (or “visit rate”) is small, the resulting risk-coverage trade-off curve will be a coarse step
function that will prevent fine control and usability. One ofour contributions is a solution to this
coarseness problem by introducing algorithms for refining sHMMs. The resulting refined sHMMs
give rise to smooth RC trade-off curves.

We present the results of quite extensive empirical study showing the effectiveness of our methods,
which can increase the edge in predicting next-day trends. We also show the advantage of sHMMs
over the classical Chow approach.

2 Preliminaries

2.1 Hidden Markov Models in brief

A Hidden Markov Model (HMM) is a generative probabilistic state machine with latent states, in
which state transitions and observations emissions represent first-order Markov processes. Given an
observation sequence,O = O1, . . . , OT , hypothesized to be generated by such a model, we would
like to “reverse engineer” the most likely (in a Bayesian sense) state machine giving rise toO, with
associated latent state sequenceS = S1, . . . , ST . An HMM is defined asλ , 〈Q,M, π,A,B〉,
whereQ is a set of states,M is the number of observations,π is the initial states distribution,πi ,

P [S1 = qi], A = (aij) is the transition matrix,aij , P [St+1 = qj | St = qi], andB = (bj(k)) is
the observation emission matrix,bj(k) , P [Ot = vk | St = qj ].

Given an HMMλ and observation sequenceO, an efficient algorithm for calculatingP [O |λ] is
the forward-backward procedure(see details in, e.g., Rabiner [16]). The estimation of the HMM
parameters (training) is traditionally performed using a specialized expectation-maximization (EM)
algorithm called theBaum-Welch algorithm[2]. For a large variety of problems it is also essential to
identify the “most likely” state sequence associated with agiven observation sequence. This is com-
monly accomplished using theViterbi algorithm[22], which computesargmaxS P [S |O, λ]. Sim-
ilarly, one can identify the most likely “individual” state, argmaxq P [St = q |O, λ], corresponding
to timet.

2.2 Selective Prediction and the RC Trade-off

To define the performance parameters in selective prediction we utilize the following definitions for
selective classifiers from [6, 7]. A selective (binary) classifier is represented as a pair of functions
〈f, g〉, wheref is a binary classifier andg : X → {0, 1} is a binary qualifier forf : wheneverg(x) =
1, the predictionf(x) is accepted, and otherwise it is ignored. The performance ofa selective
classifier is measured by itscoverageand risk. Coverage is the expected volume of non-rejected
data instances,C , E [g(X)], (where expectation is w.r.t. the unknown underlying distribution)
and the risk is the error rate over non-rejected instances,R , E [I(f(X) 6= Y )g(X)]

/

C, whereY
represents the true classification.

The purpose of a selective prediction model is to provide “sufficiently low” risk with “sufficiently
high” coverage. The functional relation between risk and coverage is called therisk coverage (RC)
trade-off. Generally, the user of a selective model would like to boundone measure (either risk or
coverage) and then obtain the best model in terms of the othermeasure. TheRC curveof a given
model characterizes this trade-off on a risk/coverage plane thus describing its full spectrum.

A selective predictor is useful if its RC curve is “non trivial” in the sense that progressively smaller
risk can be obtained with progressively smaller coverage. Thus, when constructing a selective classi-
fication or a prediction model it is imperative to examine itsRC curve. One can consider theoretical
bounds of the RC curve (as in [6]) or empirical ones as we do here. Interpolated RC curve can be
obtained by selecting a number of coverage bounds at certaingrid points of choice, and learning
(and testing) a selective model aiming at achieving the bestpossible risk for each coverage level.
Obviously, each such model should respect the corresponding coverage bound.
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3 Selective Prediction with HMMs

3.1 Ambiguity Model

The first approach we consider is an implementation of the classical ambiguity idea. We construct an
HMM-based classifier, similar to the one used in [3], and endow it with a rejection mechanism in the
spirit of Chow [5]. This approach is limited to binary labeled observation sequences. The training
set, consisting of labeled sequences, is partitioned into its positive and negative instances, and two
HMM’s, λ+ andλ−, are trained using those sets, respectively. Thus,λ+ is trained to identify
positively labeled sequences, andλ− – negatively labeled sequences. Then, each new observation
sequenceO is classified assign(P [O |λ+]− P [O |λ−]).

For applying Chow’s ambiguity idea using the model(λ+, λ−), we need to define a measureC(O)
of prediction confidence for any observation sequenceO. A natural choice in this context is to
measure the log-likelihood difference between the positive and negative models, normalized by the
length of the sequence. Thus, we defineC(O) , | 1

T
(logP [O |λ+] − logP [O |λ−])|, whereT is

the length ofO. The greaterC(O) is, the more confident are we in the classification ofO. Now,
given the classification confidences of all sequences in the training data set, and given a required
lower bound on the coverage, an empirical threshold can be found such that a designated number of
instances with the smallest confidence measures will be rejected. If our data is non-stationary (e.g.
financial sequences), this threshold can be re-estimated atthe arrival of every new data instance.

3.2 State-Based Selectivity

We propose a different approach for implementing selectiveprediction with HMMs. The idea is to
designate an appropriate subset of the states as “rejective.” The proposed approach is suitable for
prediction problems whose observation sequences are labeled. Specifically, for each observation,
Ot, we assume that there is a corresponding labellt. The goal is to predictlt at timet− 1.

Each state is assignedrisk andvisit rate estimates. For each stateq, its risk estimate is used as
a proxy to the probability of making erroneous predictions from q, and its visit rate quantifies the
probability of outputting any symbol fromq. A subset of the highest risk states is selected so that
their total expected visit rate does not exceed the user specified rejection bound. These states are
called rejectiveand predictions from them are ignored. The following two definitions formulate
these notions. We associate with each stateq a labelLq representing the HMM prediction while at
this state (see Section 3.4). Denoteγt(i) , P [St = qi |O, λ], and note thatγt(i) can be efficiently
calculated using the standard forward-backward procedure(see Rabiner [16]).

Definition 3.1 (emprirical visit rate). Given an observation sequence, the empiricalvisit rate, v(i),
of a stateqi, is the fraction of time the HMM spends in stateqi, that isv(i) , 1

T

∑T

t=1 γt(i).

Definition 3.2 (empirical state risk). Given an observation sequence, the empiricalrisk, r(i), of a
stateqi, is the rate of erroneous visits toqi, that isr(i) , 1

v(i)T

∑T
t=1

Lqi
6=lt

γt(i).

Suppose we are required to meet a user specified rejection bound 0 ≤ B ≤ 1. This means that we
are required to emit predictions (rather than “don’t know”s) in at least1−B fraction of the time. To
achieve this we apply the following greedy selection procedure of rejective states whereby highest
risk states are sequentially selected as long as their overall visit rate does not exceedB. We call the
resulting modelNaive-sHMM. Formally, letqi1 , qi2 , . . . , qiN be an ordering of all states, such that
for eachj < k, r(ij) ≥ r(ik). Then, the rejective state subset is,

RS ,







qi1 , . . . , qiK

∣

∣

∣

∣

∣

∣

K
∑

j=1

v(ij) ≤ B,

K+1
∑

j=1

v(ij) > B







. (3.1)

3.3 Overcoming Coarseness

The above simple approach suffers from the followingcoarsenessproblem. If our model does not
include a large number of states, or includes states with very high visit rates (as it is often the case
in applications), the total visit rate of the rejective states might be far from the requested bound
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B, entailing that selectivity cannot be fully exploited. Forexample, consider a model that has
three states such thatr(q1) > r(q2) > r(q3), v(q1) = ε, andv(q2) = B + ε. In this case only
the negligibly visitedq1 will be rejected. We propose two methods to overcome this coarseness
problem. These methods are presented in the two subsequent sections.

3.3.1 Randomized Linear Interpolation (RLI)

In the randomized linear interpolation (RLI)method, predictions from rejective states are always
rejected, but predictions from the non-rejective state with the highest risk rate are rejected with
appropriate probability, such that the total expected rejection rate equals the rejection boundB. Let
q be the non-rejective state with the highest risk rate. The probability to reject predictions emerging

from this state is taken to bepq , 1
v(q)

(

B −
∑

q′∈RS v(q′)
)

. Clearly, withpq thus defined, the

totalexpectedrejection rate is preciselyB, when expectation is taken over random choices.

3.3.2 Recursive Refinement (RR)

Given an initial HMM model, the idea in therecursive refinementapproach is to construct an ap-
proximate HMM whose states have finer granularity of visit rates. This smaller granularity enables
a selection of rejective states whose total visit rate is closer to the required bound. The refinement is
achieved by replacing every highly visited state with a complete HMM.

The process starts with a root HMM,λ0, trained in a standard way using the Baum-Welch algorithm.
In λ0, states that have visit rate greater than a certain bound areidentified. For each such stateqi
(called aheavystate), a new HMMλi (called arefining HMM) is trained and combined withλ0 as
follows: every transition from other states intoqi in λ0 entails a transition into (initial) state inλi in
accordance with the initial state distribution ofλi; every self transition toqi in λ0 results in a state
transition inλi according to its state transition matrix; finally, every transition fromqi to another
state entails transition from a state inλi whose probability is the original transition probability from
qi. States ofλi are assigned the label ofqi. This refinement continues in a recursive manner and
terminates when all the heavy states have refinements. The non refined states are calledleaf states.
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Figure 1: Recursively Refined HMM

Figure 1 depicts a recursively refined HMM having two refinement levels. In this model, states 1,2,4
are heavy (and refined) states, and states 3,5,6,7,8 are leaf(emitting) states. The model consisting
of states 3 and 4 refines state 1, the model consisting of states 5 and 6 refines state 2, etc.

An aggregate stateof the complete hierarchical model corresponds to a set of inner HMM states,
each of which is a state on a path from the root through refiningHMMs, to a leaf state. Only leaf
states actually emit symbols. Refined states are non-emitting and their role in this construction is to
preserve the structure (and transitions) of the HMMs they refine.

At every time instancet, the model is at some aggregate state. Transition to the nextaggregate state
always starts atλ0, and recursively progresses to the leaf states, as shown in the following example.
Suppose that the model in Figure 1 is at aggregate state{1,4,7} at timet. The aggregate state at time
t + 1 is calculated as follows.λ0 is in state 1, so its next state (say 1 again) is chosen according to
the distribution{a11, a12}. We then consider the model that refines state 1, which was in state 4 at
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time t. Here again the next state (say 3) is chosen according to the distribution{a43, a44}. State 3
is a leaf state that emits observations, and the aggregate state at timet + 1, is {1,3}. On the other
hand, if state 2 is chosen at the root, a new state (say 6) in itsrefining model is chosen according to
the initial distribution{π5, π6} (transition into the heavy state from another state). The chosen state
6 is a leaf state so the new aggregate state becomes{2,6}.

Algorithm 1 TrainRefiningHMM

Input: HMM λ = 〈{qj}
j=n
j=1 ,M, π,A,B〉, heavy stateqi, O

1: Draw random HMM,λi = 〈{qj}
j=n+N
j=n+1 ,M, {πj}

j=n+N
j=n+1 , {ajk}

j,k=n+N
j,k=n+1 , {bjm}j=n+N,m=M

j=n+1,m=1 〉
2: For each1 ≤ j ≤ n, j 6= i, replace transitionqjqi with qjqn+1 . . . qjqn+N , andqiqj with

qn+1qj . . . qn+Nqj
3: Remove stateqi with the corresponding{bim}i=M

i=1 from λ, and record it as a state refined by
λi. SetLqj = Lqi for eachn+ 1 ≤ j ≤ n+N

4: while not convergeddo
5: For each1 ≤ j ≤ n, j 6= i, updateaj(n+k) = ajiπn+k, anda(n+k)j = aij , 1 ≤ k ≤ N .
6: For eachn+ 1 ≤ j ≤ n+N , updateπj = πiπj

7: For eachn+ 1 ≤ j, k ≤ n+N , updateajk = aiiajk

8: Re-estimate{πj}
j=n+N
j=n+1 , {ajk}

j,k=n+N
j,k=n+1 , {bjm}j=n+N,m=M

j=n+1,m=1 , using Eq.(3.2)
9: end while

10: Perform steps 5-7
Output: HMM λ

Algorithm 1 is a pseudocode of the training algorithm for refining HMM λi, for a heavy stateqi.
This algorithm is an extension of the Baum-Welch algorithm [2]. In steps 1-3, a randomλi is
generated and connected to the HMMλ instead ofqi. Steps 5-8 iteratively update the parameters
of λi until the Baum-Welch convergence criterion is met, and in step 10,λ is updated with the final
λi parameters. Finally, in step 3qi is stored as a state refined byλi, to preserve the hierarchical
structure of the resulting model (essential for the selection mechanism). The algorithm is applied on
heavy states until all states in the HMM have visit rates lower than a required bound.

πj =
1

Z






γ1(j) +

T−1
∑

t=1

n
∑

k=1

k 6=i

ξt(k, j)






, ajk =

T−1
∑

t=1
ξt(j, k)

n+N
∑

l=n+1

T−1
∑

t=1
ξt(j, l)

, bjm =

T
∑

t=1

Ot=m

γt(j)

T
∑

t=1
γt(j)

(3.2)

In Eq. (3.2), re-estimation formulas for the parameters of newly added states (Step 8) are presented,
whereξt(j, k) = P [qt = j, qt+1 = k |O, λ]. It is easy to see that, similarly to original Baum-Welch
formulas, constraints for the parameters to be valid distributions are preserved (Z is a normalization
factor in theπj equation). The main difference from the original formulas is in the re-estimation of
πj : in the refinement process, transitions from other states into heavy stateqi also affect the initial
distribution of its refining states.

The most likely aggregate state at timet, given sequenceO, is found in a top-down manner using
the hierarchical structure of the model. Starting with the root model,λ0, the most likely individual
state in it, sayqi, is identified. If this state has no refinement, then we are done. Otherwise, the most
likely individual state inλi (HMM that refinesqi), sayqj , is identified, and the aggregate state is
updated to be{qi, qj}. The process continues until the last discovered state has no refinement.

The above procedure requires calculation of the quantityγt(i) not only for the leaf states (where it is
calculated using a standard forward-backward procedure),but also for the refined states. For those
states,γt(i) =

∑N
j=1

qj refinesqi
γt(j) is calculated recursively over the hierarchical structure.

The rejection subset is found using the Eq. (3.1), applied tothe aggregate states of the refined model.
Visit and risk estimates for the aggregate state{qi1 . . . qik} are calculated usingγt(ik), of a leaf state
qik that identifies this aggregate state.
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The outcome of the RR procedure is a tree of HMMs whose main purpose is to redistribute visit rates
among states. This re-distribution is the key element that allows for achieving smooth RC curves.
Various other hierarchical HMM schemes have been proposed in the literature [4, 8, 10, 18, 20].
While some of these schemes may appear similar to ours at first glance, they do not address the visit
rate re-distribution objective. In fact, those models weredeveloped to serve other purposes such as
better modeling of sequences that have special structure (e.g., sequences hypothesized to be emerged
from a hierarchical generative model).

3.4 State Labeling

It remains to address the assignment of labels to the states in our state-based selection models. Labels
can be assigned to states a-priori, and then a supervised EM method can be used for training (this
model is known as Class HMM), as in [15]. Alternatively, state labels can be calculated from the
statistics of the states, if an unsupervised training method is used. In our setting, we are following
the latter approach. For a stateqi, and given observation labell, we calculate the average number of
visits (atqi) whose corresponding label isl, asE [St = qi | lt = l, O, λ] =

∑

1≤t≤T,lt=l γt(i). Thus,
Lqi is chosen to be anl that maximized this quantity.

4 Experimental Results

We compared empirically the four selection mechanisms presented in Section 3, namely, the ambi-
guity model and the Naive, RLI, and RR sHMMs. All methods werecompared on a next-day trend
prediction of the S&P500 index. This problem is known to be very difficult, and recent experimental
work by Rao and Hong [17] assessed that although HMM succeedsto achieve some positive edge,
the accuracy is near fifty-fifty (51.72%) when a pure price data is used.

For our prediction task, we took as observation sequence directions of the S&P500 price changes.
Specifically, the directiondt, at timet, isdt , sign(pt+1−pt), wherept are close prices. The state-
based models were fed with the series of partial sequencesot , dt−`+1, . . . , dt. For the ambiguity
model, the partial sequencesdt−`+1, . . . , dt were used as a pool of observation sequences.

In a preliminary small experiment we observed the advantageof the state-based approach over the
ambiguity model. In order to validate this, we tried to falsify this hypothesis by optimizing the
hyper-parameters of the ambiguity model in hindsight.

For the state-based models we used a 5-state HMM, and predictions were made using the label of
the most likely individual state. Such HMMs are hypothesized to be sufficiently expressive to model
a small number of basic market conditions such as strong/weak trends (up and down) and sideways
markets [17, 23]. We have not tried to optimize this basic architecture and better results with more
expressive models can be possibly achieved. For the ambiguity model we constructed two 8-state
HMMs, where the length of a single observation sequence (`) is 5. This architecture was optimized
in hindsight among all possibilities of up to 10 states, and up to length 8, for a single observation
sequence. Every refining model in the RR procedure had the same structure, and the upper bound
on the visit rate was fixed at 0.1. For sHMMs, the hyper-parameter ` was arbitrarily set to 3 (there
is possibly room for further improvement by optimizing the model w.r.t. this hyper-parameter).

RC curves were computed for each technique by taking the linear grid of rejection rate bounds from
0 to 0.9 in steps of 0.1. For each bound, every model was trained and tested using 30-fold cross-
validation, with each fold consisting of 10 random restarts. Test performance was measured by
mean error rate, taken over the 30 folds, and standard error of the mean (SEM) statistics were also
calculated to monitor statistical significance.

Since the price sequences we deal with are highly non-stationary, we employed awalk-forward
scheme in which the model is trained over the window of pastWp returns and then tested on the
subsequent window ofWf “future” returns. Then, we “walk forward”Wf steps (days) in the return
sequence (so that the next training segment ends where the last test segment ended) and the process
repeats until we consume the entire data sequence. In the experiments we setWp = 2000 and
Wf = 50 (that is, in each step we learn to predict the next business quarter, day by day). The data
sequence in this experiment consisted of the 3000 S&P500 returns from 1/27/1999 to 12/31/2010.
With our walk forward procedure, the first 2000 points were only used for training the first model.
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Bound Amb. Naive RLI RR
0.9 0.889 0.999 0.899 0.942
0.8 0.796 0.939 0.798 0.842
0.7 0.709 0.778 0.696 0.735
0.6 0.616 0.719 0.593 0.628
0.5 0.516 0.633 0.491 0.526
0.4 0.440 0.507 0.391 0.423
0.3 0.337 0.385 0.291 0.324
0.2 0.256 0.305 0.192 0.224
0.1 0.168 0.199 0.094 0.131

(b) Coverage rate vs coverage bound

Figure 2: S&P500 RC-curves

Figure 2a shows that all four methods exhibited meaningful RC-curves; namely, the error rates
decreased monotonically with decreasing coverage bounds.The RLI and RR models (curves 3 and 4,
respectively) outperformed the Naive one (curve 2), by better exploiting the allotted coverage bound,
as is evident from Table 2b. In addition, the RR model outperformed the RLI model, and moreover,
its effective coverage is higher for every required coverage bound. This validates the effectiveness
of the RR approach that implements a smarter selection process than the RLI model. Specifically,
when RR refines a state and the resulting sub-states have different risk rates, the selection procedure
will tend to reject riskier states first. Comparing the state-based models (curves 2-4) to the ambiguity
model (curve 1), we see that all the state-based models outperformed the ambiguity model through
the entire coverage range (despite the advantage we provided to the ambiguity model).

We also compared our models to two alternative HMM learning methods that were recently pro-
posed: the spectral algorithm of Hsu et al. [13], and the V-STACKS algorithm of Siddiqi et al. [20].
As can be seen in Figure 2a, the selective techniques can alsoimprove the accuracy obtained by
these methods (with full coverage).

Quantitatively very similar results were also obtained in anumber of other experiments (not pre-
sented, due to lack of space) with continuous data (without discretization) of the S&P500 index and
of Gold, represented by its GLD exchange traded fund (ETF) replica.
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Figure 3: Distributions of visit and risk train/test differences

Figure 3a depicts the distribution of differences between empirical visit rates, measured on the train-
ing set, and those rates on the test set. It is evident that this distribution is symmetric and con-
centrated around zero. This means that our empirical visit estimates are quite robust and useful.
Figure 3b depicts a similar distribution, but now for state risks. Unfortunately, here the distribution
is much less concentrated, which means that our naive empirical risk estimates are rather noisy.
While the distribution is symmetric about zero (and underestimates are often compensated by over-
estimates) it indicates that these noisy measurements are amajor bottleneck in achieving better error
rates. Therefore, it would be very interesting to consider more sophisticated risk estimation methods.
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5 Related Work

Selective classification was introduced by Chow [5], who took a Bayesian route to infer the optimal
rejection rule and analyze the risk-coverage trade-off under complete knowledge of the underlying
probabilistic source. Chow’s Bayes-optimal policy is to reject instances whenever none of the pos-
teriori probabilities are sufficiently predominant. While this policy cannot be explicitly applied in
agnostic settings, it marked a generalambiguity-basedapproach for rejection strategies. There is
a substantial volume of research contributions on selective classification where the main theme is
the implementation of reject mechanisms for particular classifier learning algorithms like support
vector machines, see, e.g., [21]. Most of these mechanisms can be viewed as variations of the Chow
ambiguity-based policy. The general consensus is that selective classification can often provide
substantial error reductions and therefore rejection techniques have found good use in numerous
applications, see, e.g., [12]. Rejection mechanisms were also utilized in [14] as a post-processing
output verifier for HMM-based recognition systems There have been also a few theoretical studies
providing worst case high probability bounds on the risk-coverage trade-off; see, .e.g., [1, 6, 7, 9].

HMMs have been extensively studied and used both theoretically and in numerous application areas.
In particular, financial modeling with HMMs has been considered since their introduction by Baum
et al. While a complete survey is clearly beyond our scope here, we mention a few related results.
Hamilton [11] introduced aregime-switchingmodel, in which the sequence is hypothesized to be
generated by a number of hidden sources, orregimes, whose switching process is modeled by a (first-
order) Markov chain. Later, in [19] a hidden Markov model of neural network “experts” was used for
prediction of half-hour and daily price changes of the S&P500 index. Zhang [23] applied this model
for predicting S&P500 next day trends, employing mixture ofGaussians in the states. The latter two
works reported on prominent results in terms of cumulative profit. The recent experimental work by
Rao and Hong [17] evaluated HMMs for a next-day trend prediction task and measured performance
in terms of accuracy. They reported on a slight but consistent positive prediction edge.

In [3], an HMM-based classifier was proposed for “reliable trends,” defined to be specialized 15 day
return sequences that end with either five consecutive positive or consecutive negative returns. A
classifier was constructed using two HMMs, one trained to identify upward (reliable) trends and the
other, for downward (reliable) trends. Non-reliable sequences are always rejected. Therefore, this
technique falls within selective prediction but the selection function has been manually predefined.

6 Concluding Remarks

The structure and modularity of HMMs make them particularlyconvenient for incorporating selec-
tive prediction mechanisms. Indeed, the proposed state-based method can result in a smooth and
monotonically decreasing risk-coverage trade-off curve that allows for some control on the desired
level of selectivity. We focused on selective prediction oftrends in financial sequences. For these
difficult prediction tasks our models can provide non-trivial prediction improvements. We expect
that the relative advantage of these selective prediction techniques will be higher in easier tasks, or
even in the same task by utilizing more elaborate HMM modeling, perhaps including other sources
of specialized information including prices of other correlated indices.

We believe that a major bottleneck in attaining smaller testerrors is the noisy risk estimates we obtain
for the hidden states (see Figure 3b). This noise is partly due to the noisy nature of our prediction
problem, but may also be attributed to the simplistic approach we took in estimating empirical risk.
A challenging problem would be to incorporate more robust estimates in our mechanism, which
is likely to enable better risk-coverage trade-offs. Finally, it will be very interesting to examine
selective prediction mechanisms in the more general context of Bayesian networks and other types
of graphical models.
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