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Abstract

Focusing on short term trend prediction in a financial cantese consider the
problem of selective prediction whereby the predictor dastain from prediction
in order to improve performance. We examine two types oftsiglemechanisms
for HMM predictors. The first is a rejection in the spirit of Gl's well-known
ambiguity principle. The second is a specialized mechafistHMMSs that iden-
tifies low quality HMM states and abstain from prediction hose states. We
call this modekelective HMM (sHMM)In both approaches we can trade-off pre-
diction coverage to gain better accuracy in a controlled mean We compare
performance of the ambiguity-based rejection techniqub thiat of the SHMM
approach. Our results indicate that both methods are ®ifeeind that the sHMM
model is superior.

1 Introduction

Selective predictiofis the study of predictive models that can automaticallyifgutheir own pre-
dictions and output “don’t know” when they are not sufficlgronfident. Currently, manifestations
of selective prediction within machine learning mainlyssin the realm of inductive classification,
where this notion is often termed ‘classification with a cgjgption.’ In the study of a reject option,
which was initiated more than 40 years ago by Chow [5], the igda enhance accuracy (or reduce
‘risk’) by compromising the coverage. For a classifier ordittor equipped with a rejection mech-
anism we can quantify its performance profile by evaluattegisk-coverage (RC) curvegiving
the functional relation between error and coverage. The R@ecrepresents a trade-off: the more
coverage we compromise, the more accurate we can expect tp lbe the point where we reject
everything and (trivially) never err. The essence of seleatlassification is to construct classifiers
achieving useful (and optimal) RC trade-offs, thus prawigihe user wittcontrol over the choice
of desired risk (with its associated coverage compromise).

Our longer term goal is to study selective prediction moflmigeneral sequential prediction tasks.
While this topic has only been sparsely considered in thealitiee, we believe that it has great po-
tential in dealing with difficult problems. As a starting ptihowever, in this paper we focus on the
restricted objective of predicting next-day trends in ficiahsequences. While limited in scope, this
problem serves as a good representative of difficult seclelatta [17]. A very convenient and quite
versatile modeling technique for analyzing sequencesisitdden Markov Model (HMM). There-
fore, the goal we set had been to introduce selection mesimarfior HMMs, capable of achieving
useful risk-coverage trade-off in predicting next-daytts.

To this end we examined two approaches. The first is a stfaigfdrd application of Chow's

ambiguity principle implemented with HMMs. The second isavel and specialized technique
utilizing the HMM state structure. In this approach we idigriaitent states whose prediction quality
is systematically inferior, and abstain from predictiortslesthe underlying source is likely to be in



those states. We call this modslective HMM (sHMM)While this natural approach can work in
principle, if the HMM does not contain sufficiently many “figeained” states, whose probabilistic
volume (or “visit rate”) is small, the resulting risk-coegre trade-off curve will be a coarse step
function that will prevent fine control and usability. Oneafr contributions is a solution to this
coarseness problem by introducing algorithms for refinidyIMs. The resulting refined sHMMs
give rise to smooth RC trade-off curves.

We present the results of quite extensive empirical studyaiy the effectiveness of our methods,
which can increase the edge in predicting next-day trendsalb show the advantage of SHMMs
over the classical Chow approach.

2 Preliminaries

2.1 Hidden Markov Models in brief

A Hidden Markov Model (HMM) is a generative probabilisti@at machine with latent states, in
which state transitions and observations emissions reptrésst-order Markov processes. Given an
observation sequenc®, = O, ..., Or, hypothesized to be generated by such a model, we would
like to “reverse engineer” the most likely (in a Bayesianssrstate machine giving rise @@, with
associated latent state sequessce= S;,...,Sr. An HMM is defined as\ £ (Q, M, w, A, B),
whereQ is a set of states\/ is the number of observations,is the initial states distribution;; =
P[S1 = ¢i], A = (a;;) is the transition matrixa;; = P [S;+1 = g; | S: = ¢;], andB = (b;(k)) is
the observation emission matrix,(k) £ P [O; = vy | S = g;].

Given an HMM X and observation sequenck an efficient algorithm for calculating [O | ] is
the forward-backward procedurésee details in, e.g., Rabiner [16]). The estimation of tih&MH
parameters (training) is traditionally performed usingradalized expectation-maximization (EM)
algorithm called th®aum-Welch algorithrf2]. For a large variety of problems it is also essential to
identify the “most likely” state sequence associated witfivan observation sequence. This is com-
monly accomplished using théterbi algorithm[22], which computesrg maxg P[S | O, A]. Sim-
ilarly, one can identify the most likely “individual” staterg max, P [S; = ¢ | O, A], corresponding
to timet.

2.2 Selective Prediction and the RC Trade-off

To define the performance parameters in selective prediateutilize the following definitions for
selective classifiers from [6, 7]. A selective (binary) cifier is represented as a pair of functions
(f, g}, wheref is a binary classifier angd: X — {0, 1} is a binary qualifier forf: whenevey(z) =

1, the predictionf(z) is accepted, and otherwise it is ignored. The performanca sélective
classifier is measured by itoverageandrisk. Coverage is the expected volume of non-rejected
data instances; = E [g(X)], (where expectation is w.r.t. the unknown underlying distion)
and the risk is the error rate over non-rejected instange$, E [I( f(X) # Y)g(X)] /C, whereY
represents the true classification.

The purpose of a selective prediction model is to providdfitgantly low” risk with “sufficiently
high” coverage. The functional relation between risk angecage is called thask coverage (RC)
trade-off Generally, the user of a selective model would like to boond measure (either risk or
coverage) and then obtain the best model in terms of the atkasure. Th&C curveof a given
model characterizes this trade-off on a risk/coveragegians describing its full spectrum.

A selective predictor is useful if its RC curve is “non triVitn the sense that progressively smaller
risk can be obtained with progressively smaller coveragpeisTwhen constructing a selective classi-
fication or a prediction model it is imperative to examineRES curve. One can consider theoretical
bounds of the RC curve (as in [6]) or empirical ones as we de.hietterpolated RC curve can be
obtained by selecting a number of coverage bounds at cagtairpoints of choice, and learning
(and testing) a selective model aiming at achieving the pessible risk for each coverage level.
Obviously, each such model should respect the correspgrdiverage bound.



3 Selective Prediction with HMMs

3.1 Ambiguity Model

The first approach we consider is an implementation of thesatal ambiguity idea. We construct an
HMM-based classifier, similar to the one used in [3], and endlevith a rejection mechanism in the
spirit of Chow [5]. This approach is limited to binary labelebservation sequences. The training
set, consisting of labeled sequences, is partitioned iatpdsitive and negative instances, and two
HMM'’s, AT and A\~, are trained using those sets, respectively. Ths,s trained to identify
positively labeled sequences, akd — negatively labeled sequences. Then, each new observation
sequenc® is classified asign(P [O | A\T] =P[O | A7]).

For applying Chow’s ambiguity idea using the mo¢iet, A ~), we need to define a measuré¢O)

of prediction confidence for any observation sequeficeA natural choice in this context is to
measure the log-likelihood difference between the pasiind negative models, normalized by the
length of the sequence. Thus, we defii@)) £ |+ (logP[O | AT] —logP[O | A7])|, whereT is
the length ofO. The greatelC'(O) is, the more confident are we in the classificatiorOof Now,
given the classification confidences of all sequences inrdieitig data set, and given a required
lower bound on the coverage, an empirical threshold candredfgsuch that a designated number of
instances with the smallest confidence measures will betegje If our data is non-stationary (e.g.
financial sequences), this threshold can be re-estimatee atrival of every new data instance.

3.2 State-Based Selectivity

We propose a different approach for implementing selegreeliction with HMMs. The idea is to
designate an appropriate subset of the statesefective” The proposed approach is suitable for
prediction problems whose observation sequences aresthb8pecifically, for each observation,
O, we assume that there is a corresponding 1§bdlhe goal is to predid}; at timet — 1.

Each state is assignetbk and visit rate estimates. For each stajeits risk estimate is used as

a proxy to the probability of making erroneous predictiormf ¢, and its visit rate quantifies the
probability of outputting any symbol fromp. A subset of the highest risk states is selected so that
their total expected visit rate does not exceed the useifmabeejection bound. These states are
calledrejectiveand predictions from them are ignored. The following two migbns formulate
these notions. We associate with each sjadabel L, representing the HMM prediction while at
this state (see Section 3.4). Denot¢i) = P [S; = ¢; | O, \], and note that, (i) can be efficiently
calculated using the standard forward-backward proce@eeRabiner [16]).

Definition 3.1 (emprirical visit rate). Given an observation sequence, the empinesit rate, v(4),

of a statey;, is the fraction of time the HMM spends in state that isv(i) 2 & 27 ~,(4).
Definition 3.2 (empirical state risk). Given an observation sequence, the empiriisii, r(7), of a
stateg;, is the rate of erroneous visits 4g, that isr (i) £ ;557 Zi =1 (i),

Suppose we are required to meet a user specified rejectiordifost B < 1. This means that we
are required to emit predictions (rather than “don’t knowifsat leastl — B fraction of the time. To
achieve this we apply the following greedy selection pracedf rejective states whereby highest
risk states are sequentially selected as long as theirlbvisiairate does not exceel. We call the

resulting modeNaive-sHMM Formally, letg;, , ¢i,,- - ., i, be an ordering of all states, such that
for eachj < k, r(i;) > r(ix). Then, the rejective state subset is,

K+1
RS2 g, i | Y v(i;) <B,Y w(i;)>B 3. (3.1)
j=1 j=1

3.3 Overcoming Coarseness

The above simple approach suffers from the followtogrsenesgroblem. If our model does not
include a large number of states, or includes states with Ivighh visit rates (as it is often the case
in applications), the total visit rate of the rejective sgtnight be far from the requested bound



B, entailing that selectivity cannot be fully exploited. Fexample, consider a model that has
three states such thatg;) > r(g2) > 7(g3), v(¢1) = €, andv(gz2) = B + €. In this case only
the negligibly visitedgq; will be rejected. We propose two methods to overcome thisseveess
problem. These methods are presented in the two subse@otions.

3.3.1 Randomized Linear Interpolation (RLI)

In therandomized linear interpolation (RLinethod, predictions from rejective states are always
rejected, but predictions from the non-rejective statenwlite highest risk rate are rejected with
appropriate probability, such that the total expectedctaja rate equals the rejection bouBd Let

q be the non-rejective state with the highest risk rate. Tobdglboility to reject predictions emerging

from this state is taken to be, = ﬁ (B - Zq'eRsU(q/))- Clearly, withp, thus defined, the
total expectedejection rate is precisel§g, when expectation is taken over random choices.

3.3.2 Recursive Refinement (RR)

Given an initial HMM model, the idea in theecursive refinemerdpproach is to construct an ap-

proximate HMM whose states have finer granularity of visiésa This smaller granularity enables

a selection of rejective states whose total visit rate iseido the required bound. The refinement is
achieved by replacing every highly visited state with a ctatgpHMM.

The process starts with a root HMMj, trained in a standard way using the Baum-Welch algorithm.
In )\, states that have visit rate greater than a certain bounifl@néified. For each such staje
(called aheavystate), a new HMM\; (called arefining HMM) is trained and combined with, as
follows: every transition from other states intpin A\ entails a transition into (initial) state ik; in
accordance with the initial state distribution f, every self transition tg; in Ay results in a state
transition in\; according to its state transition matrix; finally, everynsdion fromg; to another
state entails transition from a stateipwhose probability is the original transition probabilitgpm

q;- States of\; are assigned the label gf. This refinement continues in a recursive manner and
terminates when all the heavy states have refinements. Theefined states are calléshf states.
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Figure 1: Recursively Refined HMM

Figure 1 depicts a recursively refined HMM having two refinaievels. In this model, states 1,2,4
are heavy (and refined) states, and states 3,5,6,7,8 an@iedfing) states. The model consisting
of states 3 and 4 refines state 1, the model consisting osdiadad 6 refines state 2, etc.

An aggregate statef the complete hierarchical model corresponds to a setradriRlMM states,
each of which is a state on a path from the root through refiriltMs, to a leaf state. Only leaf
states actually emit symbols. Refined states are non-amatid their role in this construction is to
preserve the structure (and transitions) of the HMMs thépee

At every time instance, the model is at some aggregate state. Transition to theagegxegate state
always starts ak,, and recursively progresses to the leaf states, as showr foltowing example.
Suppose that the model in Figure 1 is at aggregate §lade7} at timet. The aggregate state at time
t + 1 is calculated as follows) is in state 1, so its next state (say 1 again) is chosen aceptdi
the distribution{a11, a12}. We then consider the model that refines state 1, which wetsiia 4 at



time¢. Here again the next state (say 3) is chosen according tastrébdtion {a43, as4}. State 3
is a leaf state that emits observations, and the aggregateatttimet + 1, is {1,3}. On the other
hand, if state 2 is chosen at the root, a new state (say 6)iiefiting model is chosen according to
the initial distribution{ 7, 7} (transition into the heavy state from another state). Tluseh state
6 is a leaf state so the new aggregate state bec¢#és

Algorithm 1 TrainRefiningHMM

Input: HMM X = ({¢; }’=7, M, m, A, B), heavy statg;, O

J=1 , - o - .
1: Draw random HMM,\; = <{Qj }i;Zif[’ M, {Wj }g;Zif{, {ajk}jzllz;:;iiv’ {bjm};';?iijl\fg:l]u>

2: For eachl < j < n,j # 1, replace transitiory;g; With g;¢n+1 ... ¢j¢n+n, andg;q; with
dn+195 - - - An+N4j

3: Remove stat@; with the correspondingbim}§§{‘4 from )\, and record it as a state refined by
Ai. SetL,, = Ly, foreachn +1<j <n+ N

: while not convergedio

Foreachl < j <n,j # i, updatea;,+r) = ajiTntk, aNda(,qr); = a;j, 1 <k < N.

Foreachm +1 < j <n+ N, updater; = m;m;

Foreachm +1 < j,k <n+ N, updaten;;, = a;;a

Re-estimatgm; }1 =Y {aj ;.:’,jjiif[’ {bjm YiZn =M, using Eq.(3.2)
9: end while

10: Perform steps 5-7

Output: HMM X

@ Noak

Algorithm 1 is a pseudocode of the training algorithm formigfg HMM );, for a heavy state;.
This algorithm is an extension of the Baum-Welch algoritt#h [In steps 1-3, a random; is
generated and connected to the HMMnstead ofg;. Steps 5-8 iteratively update the parameters
of A; until the Baum-Welch convergence criterion is met, andép $t0,) is updated with the final

A; parameters. Finally, in step@ is stored as a state refined By, to preserve the hierarchical
structure of the resulting model (essential for the sedaathiechanism). The algorithm is applied on
heavy states until all states in the HMM have visit rates loiian a required bound.

T
T—1 -
. 1 t; ft(],k) ot:Z_:l 'Yt(])
T = Z 71(j) + th(km?) y ik = W; bjm = ;7 (3-2)
=1 52 > 2 &) > ()
I=n+1 t=1 t=1

In Eq. (3.2), re-estimation formulas for the parametersavfly added states (Step 8) are presented,
whereg. (4, k) = Plg: = j,q:.+1 = k| O, A]. Itis easy to see that, similarly to original Baum-Welch
formulas, constraints for the parameters to be valid dhistions are preserved (is a normalization
factor in therr; equation). The main difference from the original formulkani the re-estimation of
;. in the refinement process, transitions from other stateshieavy statg; also affect the initial
distribution of its refining states.

The most likely aggregate state at timegiven sequencé, is found in a top-down manner using
the hierarchical structure of the model. Starting with thetrmodel,\q, the most likely individual
state in it, sayy;, is identified. If this state has no refinement, then we ared@therwise, the most
likely individual state inx; (HMM that refinesg;), sayg;, is identified, and the aggregate state is
updated to bdg;, ¢;}. The process continues until the last discovered statedesfinement.

The above procedure requires calculation of the quamtih) not only for the leaf states (where it is
calculated using a standard forward-backward procedbum)lso for the refined states. For those
statesy, (i) = 3N g= (7) is calculated recursively over the hierarchical structure

5 4
The rejection subset is found using the Eq. (3.1), appliede@ggregate states of the refined model.
Visit and risk estimates for the aggregate sfate . . . ¢;, } are calculated using (i), of a leaf state
gi,, that identifies this aggregate state.



The outcome of the RR procedure is a tree of HMMs whose maipqgséris to redistribute visit rates
among states. This re-distribution is the key element thaiva for achieving smooth RC curves.
Various other hierarchical HMM schemes have been propaseidei literature [4, 8, 10, 18, 20].
While some of these schemes may appear similar to ours atléirstey they do not address the visit
rate re-distribution objective. In fact, those models waeeeloped to serve other purposes such as
better modeling of sequences that have special structigre $equences hypothesized to be emerged
from a hierarchical generative model).

3.4 State Labeling

It remains to address the assignment of labels to the states state-based selection models. Labels
can be assigned to states a-priori, and then a supervised &kbthcan be used for training (this
model is known as Class HMM), as in [15]. Alternatively, stédbels can be calculated from the
statistics of the states, if an unsupervised training ntethaised. In our setting, we are following
the latter approach. For a state and given observation labglwe calculate the average humber of
visits (atg;) whose corresponding labellisasE [S; = g; [l = 1,0, A\| = >, <, <p,—; (7). Thus,

L,, is chosen to be ahthat maximized this quantity. o

4 Experimental Results

We compared empirically the four selection mechanismsgmtesl in Section 3, namely, the ambi-
guity model and the Naive, RLI, and RR sHMMs. All methods wevenpared on a next-day trend
prediction of the S&P500 index. This problem is known to bengéfficult, and recent experimental

work by Rao and Hong [17] assessed that although HMM sucdeealshieve some positive edge,
the accuracy is near fifty-fifty (51.72%) when a pure priceadatused.

For our prediction task, we took as observation sequeneetiins of the S&P500 price changes.
Specifically, the directiod,, at timet, is d; £ sign(p;1 — p:), wherep, are close prices. The state-
based models were fed with the series of partial sequencesd; ;. 1,...,d;. For the ambiguity
model, the partial sequencés ¢ 1, ..., d: were used as a pool of observation sequences.

In a preliminary small experiment we observed the advantddiee state-based approach over the
ambiguity model. In order to validate this, we tried to fildhis hypothesis by optimizing the
hyper-parameters of the ambiguity model in hindsight.

For the state-based models we used a 5-state HMM, and poediatere made using the label of
the most likely individual state. Such HMMs are hypothedittebe sufficiently expressive to model
a small number of basic market conditions such as strondg/tveads (up and down) and sideways
markets [17, 23]. We have not tried to optimize this basitigecture and better results with more
expressive models can be possibly achieved. For the antypiguidel we constructed two 8-state
HMMs, where the length of a single observation sequefris 6. This architecture was optimized
in hindsight among all possibilities of up to 10 states, apdailength 8, for a single observation
sequence. Every refining model in the RR procedure had the samrcture, and the upper bound
on the visit rate was fixed at 0.1. For sHMMs, the hyper-patanfewas arbitrarily set to 3 (there
is possibly room for further improvement by optimizing thede! w.r.t. this hyper-parameter).

RC curves were computed for each technique by taking tharigied of rejection rate bounds from
0 to 0.9 in steps of 0.1. For each bound, every model was ttane tested using 30-fold cross-
validation, with each fold consisting of 10 random restarf&st performance was measured by
mean error rate, taken over the 30 folds, and standard efrtbe anean (SEM) statistics were also
calculated to monitor statistical significance.

Since the price sequences we deal with are highly non-statyp we employed avalk-forward
scheme in which the model is trained over the window of péstreturns and then tested on the
subsequent window di; “future” returns. Then, we “walk forwardWV; steps (days) in the return
sequence (so that the next training segment ends wherestitesasegment ended) and the process
repeats until we consume the entire data sequence. In theziegnts we setV,, = 2000 and

Wy = 50 (that is, in each step we learn to predict the next busineageniday by day). The data
sequence in this experiment consisted of the 3000 S&P50énsefrom 1/27/1999 to 12/31/2010.
With our walk forward procedure, the first 2000 points wertyarsed for training the first model.
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Figure 2: S&P500 RC-curves

Figure 2a shows that all four methods exhibited meaningfdtdRrves; namely, the error rates
decreased monotonically with decreasing coverage boutmsRLI and RR models (curves 3 and 4,
respectively) outperformed the Naive one (curve 2), byaoettploiting the allotted coverage bound,
as is evident from Table 2b. In addition, the RR model outprangd the RLI model, and moreover,
its effective coverage is higher for every required coveragund. This validates the effectiveness
of the RR approach that implements a smarter selection psdban the RLI model. Specifically,
when RR refines a state and the resulting sub-states hageediffrisk rates, the selection procedure
will tend to reject riskier states first. Comparing the stadésed models (curves 2-4) to the ambiguity
model (curve 1), we see that all the state-based modelsraipeed the ambiguity model through
the entire coverage range (despite the advantage we pdotcidbe ambiguity model).

We also compared our models to two alternative HMM learnireghods that were recently pro-
posed: the spectral algorithm of Hsu et al. [13], and the YXGK'S algorithm of Siddiqi et al. [20].
As can be seen in Figure 2a, the selective techniques cannaisove the accuracy obtained by
these methods (with full coverage).

Quantitatively very similar results were also obtained inuenber of other experiments (not pre-
sented, due to lack of space) with continuous data (withizatretization) of the S&P500 index and
of Gold, represented by its GLD exchange traded fund (ETjp)az
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Figure 3: Distributions of visit and risk train/test difarces

Figure 3a depicts the distribution of differences betweapidcal visit rates, measured on the train-
ing set, and those rates on the test set. It is evident thatdibiribution is symmetric and con-

centrated around zero. This means that our empirical vésitn@tes are quite robust and useful.
Figure 3b depicts a similar distribution, but now for stagks. Unfortunately, here the distribution

is much less concentrated, which means that our naive erapiisk estimates are rather noisy.
While the distribution is symmetric about zero (and undémeses are often compensated by over-
estimates) it indicates that these noisy measurementsaagoa bottleneck in achieving better error
rates. Therefore, it would be very interesting to considerexsophisticated risk estimation methods.



5 Related Work

Selective classification was introduced by Chow [5], whdtadBayesian route to infer the optimal
rejection rule and analyze the risk-coverage trade-ofeumdmplete knowledge of the underlying
probabilistic source. Chow’s Bayes-optimal policy is tgeot instances whenever none of the pos-
teriori probabilities are sufficiently predominant. Whikég policy cannot be explicitly applied in
agnostic settings, it marked a geneaahbiguity-basedpproach for rejection strategies. There is
a substantial volume of research contributions on sekediigssification where the main theme is
the implementation of reject mechanisms for particulasgifger learning algorithms like support
vector machines, see, e.g., [21]. Most of these mechaniambe&viewed as variations of the Chow
ambiguity-based policy. The general consensus is thattsadeclassification can often provide
substantial error reductions and therefore rejectionrtiggles have found good use in numerous
applications, see, e.g., [12]. Rejection mechanisms wisreuilized in [14] as a post-processing
output verifier for HMM-based recognition systems Thereehlbgen also a few theoretical studies
providing worst case high probability bounds on the riskerage trade-off; see, .e.g., [1, 6, 7, 9].

HMMs have been extensively studied and used both theoligtéoad in numerous application areas.
In particular, financial modeling with HMMs has been consédesince their introduction by Baum
et al. While a complete survey is clearly beyond our scope, megemention a few related results.
Hamilton [11] introduced aegime-switchingmodel, in which the sequence is hypothesized to be
generated by a number of hidden sourcesegimeswhose switching process is modeled by a (first-
order) Markov chain. Later, in [19] a hidden Markov model efinal network “experts” was used for
prediction of half-hour and daily price changes of the S&Pblex. Zhang [23] applied this model
for predicting S&P500 next day trends, employing mixturé&afussians in the states. The latter two
works reported on prominent results in terms of cumulatiedip The recent experimental work by
Rao and Hong [17] evaluated HMMs for a next-day trend preatidisk and measured performance
in terms of accuracy. They reported on a slight but consistesitive prediction edge.

In [3], an HMM-based classifier was proposed for “reliablntis,” defined to be specialized 15 day
return sequences that end with either five consecutiveiyp®sit consecutive negative returns. A
classifier was constructed using two HMMs, one trained tatifleupward (reliable) trends and the
other, for downward (reliable) trends. Non-reliable sewss are always rejected. Therefore, this
technique falls within selective prediction but the setatfunction has been manually predefined.

6 Concluding Remarks

The structure and modularity of HMMs make them particuladyvenient for incorporating selec-
tive prediction mechanisms. Indeed, the proposed statecbmethod can result in a smooth and
monotonically decreasing risk-coverage trade-off cuhag allows for some control on the desired
level of selectivity. We focused on selective predictiortrehds in financial sequences. For these
difficult prediction tasks our models can provide non-aiyprediction improvements. We expect
that the relative advantage of these selective predicohrtiques will be higher in easier tasks, or
even in the same task by utilizing more elaborate HMM modglperhaps including other sources
of specialized information including prices of other ctaited indices.

We believe that a major bottleneck in attaining smallergesirs is the noisy risk estimates we obtain
for the hidden states (see Figure 3b). This noise is parttytduhe noisy nature of our prediction
problem, but may also be attributed to the simplistic appinose took in estimating empirical risk.
A challenging problem would be to incorporate more robusitreges in our mechanism, which
is likely to enable better risk-coverage trade-offs. Hipat will be very interesting to examine
selective prediction mechanisms in the more general conféayesian networks and other types
of graphical models.
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