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Abstract

Non-negative data are commonly encountered in numerous fields, making non-
negative least squares regression (NNLS) a frequently used tool. At least rela-
tive to its simplicity, it often performs rather well in practice. Serious doubts
about its usefulness arise for modern high-dimensional linear models. Even in
this setting − unlike first intuition may suggest − we show that for a broad class
of designs, NNLS is resistant to overfitting and works excellently for sparse re-
covery when combined with thresholding, experimentally even outperforming `1-
regularization. Since NNLS also circumvents the delicate choice of a regulariza-
tion parameter, our findings suggest that NNLS may be the method of choice.

1 Introduction

Consider the linear regression model
y = Xβ∗ + ε, (1)

where y is a vector of observations, X ∈ Rn×p a design matrix, ε a vector of noise and β∗ a vector
of coefficients to be estimated. Throughout this paper, we are concerned with a high-dimensional
setting in which the number of unknowns p is at least of the same order of magnitude as the number
of observations n, i.e. p = O(n) or even p � n, in which case one cannot hope to recover the
target β∗ if it does not satisfy one of various kinds of sparsity constraints, the simplest being that
β∗ is supported on S = {j : β∗j 6= 0}, |S| = s < n. In this paper, we additionally assume that
β∗ is non-negative, i.e. β∗ ∈ Rp+. This constraint is particularly relevant, since non-negative data
occur frequently, e.g. in the form pixel intensity values of an image, time measurements, histograms
or count data, economical quantities such as prices, incomes and growth rates. Non-negativity
constraints emerge in numerous deconvolution and unmixing problems in diverse fields such as
acoustics [1], astronomical imaging [2], computer vision [3], genomics [4], proteomics [5] and
spectroscopy [6]; see [7] for a survey. Sparse recovery of non-negative signals in a noiseless setting
(ε = 0) has been studied in a series of recent papers [8, 9, 10, 11]. One important finding of this body
of work is that non-negativity constraints alone may suffice for sparse recovery, without the need to
employ sparsity-promoting `1-regularization as usually. The main contribution of the present paper
is a transfer of this intriguing result to a more realistic noisy setup, contradicting the well-established
paradigm that regularized estimation is necessary to cope with high dimensionality and to prevent
over-adaptation to noise. More specifically, we study non-negative least squares (NNLS)

min
β�0

1
n
‖y −Xβ‖22 (2)

with minimizer β̂ and its counterpart after hard thresholding β̂(λ),

β̂j(λ) =

{
β̂j , β̂j > λ,

0, otherwise, j = 1, . . . , p,
(3)
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where λ ≥ 0 is a threshold, and state conditions under which it is possible to infer the support
S by Ŝ(λ) = {j : β̂j(λ) > 0}. Classical work on the problem [12] gives a positive answer for
fixed p, while in case one follows the modern statistical trend, one would add a regularizer to (2) in
order to encourage sparsity: the most popular approach is `1-regularized least squares (lasso, [13]),
which is easy to implement and comes with strong theoretical guarantees with regard to prediction
and estimation of β∗ in the `2-norm over a broad range of designs (see [14] for a review). On the
other hand, the rather restrictive ’irrepresentable condition’ on the design is essentially necessary in
order to infer the support S from the sparsity pattern of the lasso [15, 16]. In view of its tendency
to assign non-zero weights to elements of the off-support Sc = {1, . . . , p} \ S, several researchers,
e.g. [17, 18, 19], suggest to apply hard thresholding to the lasso solution to achieve support recovery.
In light of this, thresholding a non-negative least squares solution, provided it is close to the target
w.r.t. the `∞-norm, is more attractive for at least two reasons: first, there is no need to carefully
tune the amount of `1-regularization prior to thresholding; second, one may hope to detect relatively
small non-zero coefficients whose recovery is negatively affected by the bias of `1-regularization.

Outline. We first prove a bound on the mean square prediction error of the NNLS estimator,
demonstrating that it may be resistant to overfitting. Section 3 contains our main results on sparse
recovery with noise. Experiments providing strong support of our theoretical findings are presented
in Section 4. Most of the proofs as well as technical definitions are relegated to the supplement.

Notation. Let J,K be index sets. For a matrix A ∈ Rn×m, AJ denotes the matrix one obtains by
extracting the columns corresponding to J . For j = 1, . . . ,m, Aj denotes the j-th column of A.
The matrix AJK is the sub-matrix of A by extracting rows in J and columns in K. For v ∈ Rm, vJ
is the sub-vector corresponding to J . The identity matrix is denoted by I and vectors of ones by 1.
The symbols � (≺), � (�) denote entry-wise (strict) inequalities. Lower and uppercase c’s denote
positive universal constants (not depending on n, p, s) whose values may differ from line to line.

Assumptions. We here fix what is assumed throughout the paper unless stated otherwise. Model
(1) is assumed to hold. The matrix X is assumed to be non-random and scaled s.t. ‖Xj‖22 = n ∀j.
We assume that ε has i.i.d. zero-mean sub-Gaussian entries with parameter σ > 0, cf. supplement.

2 Prediction error and uniqueness of the solution

In the following, the quantity of interest is the mean squared prediction error (MSE) 1
n‖Xβ

∗−Xβ̂‖22.

NNLS does not necessarily overfit. It is well-known that the MSE of ordinary least squares (OLS)
as well as that of ridge regression in general does not vanish unless p/n→ 0. Can one do better with
non-negativity constraints ? Obviously, the answer is negative for general X . To make this clear,
let a design matrix X̃ be given and set X = [X̃ − X̃] by concatenating X̃ and −X̃ columnwise.
The non-negativity constraint is then vacuous in the sense that Xβ̂ = Xβ̂ols, where β̂ols is any OLS
solution. However, non-negativity constraints on β can be strong when coupled with the following
condition imposed on the Gram matrix Σ = 1

nX
>X .

Self-regularizing property. We call a design self-regularizing with universal constant κ ∈ (0, 1] if

β>Σβ ≥ κ(1>β)2 ∀β � 0. (4)

The term ’self-regularizing’ refers to the fact that the quadratic form in Σ restricted to the non-
negative orthant acts like a regularizer arising from the design itself. Let us consider two examples:
(1) If Σ � κ0 > 0, i.e. all entries of the Gram matrix are at least κ0, then (4) holds with κ = κ0.
(2) If the Gram matrix is entry-wise non-negative and if the set of predictors indexed by {1, . . . , p}

can be partitioned into subsets B1, . . . , BB such that min1≤b≤B
1
nX
>
Bb
XBb

� κ0, then

min
β�0

β>Σβ ≥
B∑
b=1

β>Bb

1
n
X>Bb

XBb
βBb
≥ κ0

B∑
b=1

(1>βBb
)2 ≥ κ0

B
(1>β)2.

In particular, this applies to design matrices whose entries Xij = φj(ui) contain the function eval-
uations of non-negative functions {φj}pj=1 traditionally used for data smoothing such as splines,
Gaussians and related ’localized’ functions at points {ui}ni=1 in some fixed interval, see Figure 1.
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For self-regularizing designs, the MSE of NNLS can be controlled as follows.
Theorem 1. Let Σ fulfill the self-regularizing property with constant κ. Then, with probability no
less than 1 - 2/p, the NNLS estimator obeys

1
n
‖Xβ∗ −Xβ̂‖22 ≤

8σ
κ

√
2 log p
n
‖β∗‖1 +

8σ2

κ

log p
n

.

The statement implies that for self-regularizing designs, NNLS is consistent in the sense that its
MSE, which is of the order O(

√
log(p)/n ‖β∗‖1), may vanish as n → ∞ even if the number of

predictors p scales up to sub-exponentially in n. It is important to note that exact sparsity of β∗ is
not needed for Theorem 1 to hold. The rate is the same as for the lasso if no further assumptions on
the design are made, a result that is essentially obtained in the pioneering work [20].

φ1 φ15

B1 B2 B3 B4 B5

Figure 1: Block partitioning of 15 Gaussians
into B = 5 blocks. The right part shows the
corresponding pattern of the Gram matrix.

y

y'

w

Figure 2: A polyhedral cone in R3 and
its intersection with the simplex (right).
The point y is contained in a face (bold)
with normal vector w, whereas y′ is not.

Uniqueness of the solution. Considerable insight can be gained by looking at the NNLS problem
(2) from the perspective of convex geometry. Denote by C = XRp+ the polyhedral cone generated
by the columns {Xj}pj=1 of X , which are henceforth assumed to be in general position in Rn. As
visualized in Figure 2, sparse recovery by non-negativity constraints can be analyzed by studying the
face lattice of C [9, 10, 11]. For F ⊆ {1, . . . , p}, we say that XFR|F |+ is a face of C if there exists a
separating hyperplane with normal vector w passing through the origin such that 〈Xj , w〉 > 0, j /∈
F , 〈Xj , w〉 = 0, j ∈ F . Sparse recovery in a noiseless setting (ε = 0) can then be characterized
concisely by the following statement which can essentially be found in prior work [9, 10, 11, 21].
Proposition 1. Let y = Xβ∗, where β∗ � 0 has support S, |S| = s. If XSRs+ is a face of C and the
columns ofX are in general position in Rn, then the constrained linear systemXβ = y sb.t. β � 0,
has β∗ as its unique solution.
Proof. By definition, since XSRs+ is a face of C, there exists a w ∈ Rn s.t. 〈Xj , w〉 = 0, j ∈
S, 〈Xj , w〉 > 0, j ∈ Sc. Assume that there is a second solution β∗ + δ, δ 6= 0. Expand
XS(β∗S + δS) + XScδSc = y. Multiplying both sides by w> yields

∑
j∈Sc 〈Xj , w〉 δj = 0. Since

β∗Sc = 0, feasibility requires δj ≥ 0, j ∈ Sc. All inner products within the sum are positive,
concluding that δSc = 0. General position implies δS = 0.

Given Theorem 1 and Proposition 1, we turn to uniqueness in the noisy case.

Corollary 1. In the setting of Theorem 1, if ‖β∗‖1 = o(
√
n/ log(p)), then the NNLS solution β̂ is

unique with high probability.
Proof. Suppose first that y /∈ C = XRp+, then Xβ̂, the projection of y on C, is contained in its
boundary, i.e. in a lower-dimensional face. Using general position of the columns of X , Proposition
1 implies that β̂ is unique. If y were already contained in C, one would have y = Xβ̂ and hence

1
n
‖Xβ∗ −Xβ̂‖22 =

1
n
‖Xβ∗ − y‖22 =

1
n
‖ε‖22 = O(1), with high probability, (5)

using concentration of measure of the norm of the sub-Gaussian random vector ε. With the assumed
scaling for ‖β∗‖1, 1

n‖Xβ
∗ −Xβ̂‖22 = o(1) in view of Theorem 1, which contradicts (5).
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3 Sparse recovery in the presence of noise

Proposition 1 states that support recovery requires XSRs+ to be a face of XRp+, which is equivalent
to the existence of a hyperplane separating XSRs+ from the rest of C. For the noisy case, mere
separation is not enough − a quantification is needed, which is provided by the following two inco-
herence constants that are of central importance for our main result. Both are specific to NNLS and
have not been used previously in the literature on sparse recovery.
Definition 1. For some fixed S ⊂ {1, . . . , p}, the separating hyperplane constant is defined as

τ̂(S) = max
τ,w

τ

sb.t.
1√
n
X>S w = 0,

1√
n
X>Scw � τ1, ‖w‖2 ≤ 1, (6)

duality
= min

θ∈Rs, λ∈Tp−s−1

1√
n
‖XSθ −XScλ‖2 , (7)

where Tm−1 = {v ∈ Rm : v � 0,1>v = 1} denotes the simplex in Rm, i.e. τ̂(S) equals the
distance of the subspace spanned by {Xj}j∈S and the convex hull of {Xj}j∈Sc .
We denote by ΠS and Π⊥S the orthogonal projections on the subspace spanned by {Xj}j∈S and its
orthogonal complement, respectively, and set Z = Π⊥SXSc . One can equivalently express (7) as

τ̂2(S) = min
λ∈Tp−s−1

λ>
1
n
Z>Zλ. (8)

The second incoherence constant we need can be traced back to the KKT optimality conditions of
the NNLS problem. The role of the following quantity is best understood from (13) below.
Definition 2. For some fixed S ⊂ {1, . . . , p} and Z = Π⊥SXSc , ω̂(S) is defined as

ω̂(S) = min
∅6=F⊆{1,...,p−s}

min
v∈V(F )

∥∥∥ 1

n
Z>F ZF v

∥∥∥
∞
, V(F ) = {v ∈ R|F | : ‖v‖∞ = 1, v � 0}. (9)

In the supplement, we show that i) ω̂(S) > 0 ⇔ τ̂(S) > 0 ⇔ XSRs+ is a face of C, and ii)
ω̂(S) ≤ 1, with equality if {Xj}j∈S and {Xj}j∈Sc are orthogonal and 1

nX
>
ScXSc is entry-wise non-

negative. Denoting the entries of Σ = 1
nX
>X by σjk, 1 ≤ j, k ≤ p, our main result additionally

involves the constants
µ(S) = maxj∈S maxk∈Sc |σjk|, µ+(S) = maxj∈S

∑
k∈Sc |σjk|, βmin(S) = minj∈S β∗j ,

K(S) = maxv: ‖v‖∞=1

∥∥Σ−1
SSv

∥∥
∞ , φmin(S) = minv: ‖v‖2=1 ‖ΣSSv‖2 .

(10)

Theorem 2. Consider the thresholded NNLS estimator β̂(λ) defined in (3) with support Ŝ(λ).

(i) If λ > 2σbτ2(S)

√
2 log p
n and

βmin(S) > λ̃, λ̃ = λ(1 +K(S)µ(S)) +
2σ

{φmin(S)}1/2

√
2 log p
n

,

(ii) or if λ > 2σbω(S)

√
2 log p
n and

βmin(S) > λ̃, λ̃ = λ(1 +K(S)µ+(S)) +
2σ

{φmin(S)}1/2

√
2 log p
n

,

then ‖β̂(λ)− β∗‖∞ ≤ λ̃ and Ŝ(λ) = S with probability no less than 1− 10/p.

Remark. The concept of a separating functional as in (6) is also used to show support recovery for
the lasso [15, 16] as well as for orthogonal matching pursuit [22, 23]. The ’irrepresentable condition’
employed in these works requires the existence of a separation constant γ(S) > 0 such that

max
j∈Sc

|X>j XS(X>S XS)−1 sign(β∗S)| ≤ 1−γ(S), while |X>j XS(X>S XS)−1 sign(β∗S)| = 1, j ∈ S,

hence {Xj}j∈S and {Xj}j∈Sc are separated by the functional |
〈
·, XS(X>S XS)−1 sign(β∗S)

〉
|.

In order to prove Theorem 2, we need two lemmas first. The first one is immediate from the
KKT optimality conditions of the NNLS problem.
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Lemma 1. β̂ is a minimizer of (2) if and only if there exists F ⊆ {1, . . . , p} such that

1
n
X>j (y −Xβ̂) = 0, and β̂j > 0, j ∈ F, 1

n
X>j (y −Xβ̂) ≤ 0, and β̂j = 0, j ∈ F c.

The next lemma is crucial, since it permits us to decouple β̂S from β̂Sc .
Lemma 2. Consider the two non-negative least squares problems

(P1) : min
β(P1)�0

1
n
‖Π⊥S (ε−XScβ(P1))‖22 (P2) : min

β(P2)�0

1
n
‖ΠSy −XSβ

(P2) −ΠSXSc β̂(P1)‖22

with minimizers β̂(P1) of (P1) and β̂(P2) of (P2), respectively. If β̂(P2) � 0, then setting β̂S =
β̂(P2) and β̂Sc = β̂(P1) yields a minimizer β̂ of the non-negative least squares problem (2).

Proof of Theorem 2. The proofs of parts (i) and (ii) overlap to a large extent. Steps specific to one of
the two parts are preceded by ’(i)’ or ’(ii)’. Consider problem (P1) of Lemma 2.
Step 1: Controlling ‖β̂(P1)‖1 via τ̂2(S), controlling ‖β̂(P1)‖∞ via ω̂(S).
(i) With ξ = Π⊥S ε, since β̂(P1) is a minimizer, it satisfies

1
n
‖ξ − Zβ̂(P1)‖22 ≤

1
n
‖ξ‖22 ⇒ (β̂(P1))>

1
n
Z>Zβ̂(P1) ≤ ‖β̂(P1)‖1M, M = max

1≤j≤(p−s)

2
n
|Z>j ξ|.

(11)
As observed in (8), τ̂2(S) = minλ∈Tp−s−1 λ> 1

nZ
>Zλ, s.t. the l.h.s. can be lower bounded via

(β̂(P1))>
1
n
Z>Zβ̂(P1) ≥

{
min

λ∈Tp−s−1
λ>

1
n
Z>Zλ

}
‖β̂(P1)‖21 = τ̂2(S)‖β̂(P1)‖21. (12)

Combining (11) and (12), we have ‖β̂(P1)‖1 ≤ 1bτ2(S)M .
(ii) In view of Lemma 1, there exists a set F ⊆ {1, . . . , p − s} (we may assume F 6= ∅, otherwise
β̂(P1) = 0) such that β̂(P1)

F c = 0 and such that

1
n
Z>F ZF β̂

(P1)
F =

2
n
Z>F ξ, ⇒

∥∥∥ 1

n
Z>F ZF β̂

(P1)
F

∥∥∥
∞

=
∥∥∥ 2

n
Z>F ξ

∥∥∥
∞

⇒ min
v∈V(F )

∥∥∥ 1

n
Z>F ZF v

∥∥∥
∞
‖β̂(P1)‖∞ ≤

∥∥∥ 2

n
Z>ξ

∥∥∥
∞
, V(F ) = {v ∈ R|F | : ‖v‖∞ = 1, v � 0}

⇒ ω̂(S)‖β̂(P1)‖∞ = min
∅6=F⊆{1,...,p−s}

min
v∈V(F )

∥∥∥ 1

n
ZFZF v

∥∥∥
∞
‖β̂(P1)‖∞ ≤

∥∥∥ 2

n
Z>ξ

∥∥∥
∞

= M,

(13)

where we have used Definition 2. We conclude that ‖β̂(P1)‖∞ ≤ Mbω(S) .

Step 2: Back-substitution into (P2). Equipped with the bounds just derived, we insert β̂(P1) into
problem (P2) of Lemma 2, and show that in conjunction with the assumptions made for the mini-
mum support coefficient βmin(S), the ordinary least squares estimator corresponding to (P2)

β̄(P2) = argmin
β(P2)

1
n
‖ΠSy −XSβ

(P2) −ΠSXSc β̂(P1)‖22

has only positive components. Lemma 2 then yields β̄(P2) = β̂(P2) = β̂S . Using the closed form
expression for the ordinary least squares estimator, one obtains

β̄(P2) =
1
n

Σ−1
SSX

>
S (XSβ

∗
S + ΠSε−ΠSXSc β̂(P1)) = β∗S +

1
n

Σ−1
SSX

>
S ε− Σ−1

SSΣSSc β̂(P1).

It remains to control the deviation terms M = ‖ 1
n

Σ−1
SSX

>
S ε‖∞ and ‖Σ−1

SSΣSSc β̂(P1)‖∞. We have

‖Σ−1
SSΣSSc β̂(P1)‖∞ ≤ max

v: ‖v‖∞=1
‖Σ−1

SSv‖∞‖ΣSSc β̂(P1)‖∞
(10)
≤ K(S)·

{
µ(S)‖β̂(P1)‖1 for (i),
µ+(S)‖β̂(P1)‖∞ for (ii).

(14)
Step 3: Putting together the pieces. The two random terms M and M are maxima of a finite collec-
tion of sub-Gaussian random variables, which can be controlled using standard techniques. Since
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‖Zj‖2 ≤ ‖Xj‖2 and ‖e>j Σ−1
SSX

>
S /
√
n‖2 ≤ {φmin(S)}−1/2 for all j, the sub-Gaussian parameters

of these collections are upper bounded by σ/
√
n and σ/({φmin(S)}1/2

√
n), respectively. It follows

that the two events {M ≤ 2σ
√

2 log p
n } and {M ≤ 2σ

{φmin(S)}1/2

√
2 log p
n } both hold with probability

no less than 1− 10/p, cf. supplement. Subsequently, we work conditional on these two events. For
the choice of λ made for (i) and (ii), respectively, it follows that

‖β∗ − β̄(P2)‖∞ ≤
2σ

{φmin(S)}1/2

√
2 log p
n

+ λK(S) ·
{
µ(S) for (i),
µ+(S) for (ii),

and hence, using the lower bound on βmin(S), that β̄(P2) = β̂S � 0 and thus also that β̂(P1) = β̂Sc .
Subsequent thresholding with the respective choices made for λ yields the assertion. 2

In the sequel, we apply Theorem 2 to specific classes of designs commonly studied in the
literature, for which thresholded NNLS achieves an `∞-error of the optimal order O(

√
log(p)/n).

We here only provide sketches, detailed derivations are relegated to the supplement.

Example 1: Power decay. Let the entries of the Gram matrix Σ be given by σjk = ρ|j−k|, 1 ≤
j, k ≤ p, 0 ≤ ρ < 1, so that the {Xj}pj=1 form a Markov random field in which Xj is conditionally
independent of {Xk}k/∈{j−1,j,j+1} given {Xj−1, Xj+1}, cf. [24]. The conditional independence
structure implies that all entries of Z>Z are non-negative, such that, using the definition of ω̂(S),

ω̂(S) ≥ min
1≤j≤p−s

min
v�0,‖v‖∞=1

∣∣∣ 1
n
Z>j Zv

∣∣∣ = min
1≤j≤(p−s)

1
n

(Z>Z)jj +
1
n

∑
k 6=j

min{(Z>Z)jk, 0},

the sum on the r.h.s. vanishes, thus one computes ω̂(S) ≥ min1≤j≤(p−s)
1
n (Z>Z)jj ≥ 1 − 2ρ2

1+ρ2

for all S. For the remaining constants in (10), one can show that Σ−1
SS is a band matrix of bandwidth

no more than 3 for all choices of S such that φmin(S) and K(S) are uniformly lower and upper
bounded, respectively, by constants depending on ρ only. By the geometric series formula, µ+(S) ≤
ρ

1−ρ . In total, for a constant Cρ > 0 depending on ρ only, one obtains an `∞-error of the form

‖β̂(λ)− β∗‖∞ ≤ Cρσ
√

2 log(p)/n. (15)

Example 2: Equi-correlation. Suppose that σjk = ρ, 0 < ρ < 1, for all j 6= k, and σjj = 1 for
all j. For any S, one computes that the matrix 1

nZ
>Z is of the same regular structure with diagonal

entries all equal to 1− δ and off-diagonal entries all equal to ρ− δ, where δ = ρ2s/(1 + (s− 1)ρ).
Therefore, using (8), the separating hyperplane constant (7) can be computed in closed form:

τ̂2(S) =
(1− ρ)ρ

(s− 1)ρ+ 1
+

1− ρ
p− s

= O(s−1). (16)

Arguing as in (12) in the proof of Theorem 2, this allows one to show that with high probability,

‖β̂Sc‖1 ≤
2σ
√

2 log(p)/n
τ̂2(S)

≤
((s− 1)ρ+ 1)2σ

√
2 log(p)/n

(1− ρ)ρ
. (17)

On the other hand, using the same reasoning as in Example 1, ω̂(S) ≥ 1 − δ = cρ > 0, say.

Choosing the threshold λ = 2σbω(S)

√
2 log p
n as in part (ii) of Theorem 2 and combining the strong

`1-bound (17) on the off-support coefficients with a slight modification of the bound (14) together
with φmin(S) = 1− ρ yields again the desired optimal bound of the form (15).

Random designs. So far, the design matrix X has been assumed to be fixed. Consider the follow-
ing ensemble of random matrices

Ens+ = {X = (xij), {xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p} i.i.d. from a sub-Gaussian distribution on R+}.

Among others, the class of sub-Gaussian distributions on R+ encompasses all distributions on a
bounded set on R+, e.g. the family of beta distributions (with the uniform distribution as spe-
cial case) on [0, 1], Bernoulli distributions on {0, 1} or more generally distributions on counts
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{0, 1, . . . ,K}, for some positive integer K. The ensemble Ens+ is well amenable to analysis,
since after suitable re-scaling the corresponding population Gram matrix Σ∗ = E[ 1

n
X>X] has

equi-correlation structure (Example 2): denoting the mean of the entries and their squares by µ and
µ2, respectively, we have Σ∗ = (µ2 − µ2)I + µ211> such that re-scaling by 1/

√
µ2 leads to equi-

correlation with ρ = µ2/µ2. As shown above, the incoherence constant τ̂2(S), which gives rise to a
strong bound on ‖β̂Sc‖1, scales favourably and can be computed in closed form. For random designs
from Ens+, one additionally has to take into account the deviation between Σ and Σ∗. Using tools
from random matrix theory, we show that the deviation is moderate, of the order O(

√
log(p)/n).

Theorem 3. Let X be a random matrix from Ens+, scaled s.t. E
[

1
n
X>X

]
= ρI + (1− ρ)11> for

some ρ ∈ (0, 1). Fix an S ⊂ {1, . . . , p}, |S| ≤ s. Then there exists constants c, c1, c2, c3, C, C ′ > 0
such that for all n ≥ C log(p)s2,

τ̂2(S) ≥ cs−1 − C ′
√

log(p)/n

with probability no less than 1− 3/p− exp(−c1n)− 2 exp(−c2 log p)− exp(−c3 log1/2(p)s).

4 Experiments

Setup. We randomly generate data y = Xβ∗+ ε, where ε has i.i.d. standard Gaussian entries. We
consider two choices for the design X . For one set of experiments, the rows of X are drawn i.i.d.
from a Gaussian distribution whose covariance matrix has the power decay structure of Example 1
with parameter ρ = 0.7. For the second set, we pick a representative of the class Ens+ by drawing
each entry of X uniformly from [0, 1] and re-scaling s.t. the population Gram matrix Σ∗ has equi-
correlation structure with ρ = 3/4. The target β∗ is generated by selecting its support S uniformly
at random and then setting β∗j = b · βmin(S)(1 + Uj), j ∈ S, where βmin(S) = Cρσ

√
2 log(p)/n,

using upper bounds for the constant Cρ as used for Examples 1 and 2; the {Uj}j∈S are drawn i.i.d.
uniformly from [0, 1], and b is a parameter controlling the signal strength. The experiments can be
divided into two parts. In the first part, the parameter b is kept fixed while the aspect ratio p/n of X
and the fraction of sparsity s/n vary. In the second part, s/n is fixed to 0.2, while p/n and b vary.
When not fixed, s/n ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The grid used for b is chosen specific to
the designs, calibrated such that the sparse recovery problems are sufficiently challenging. For the
design from Ens+, p/n ∈ {2, 3, 5, 10}, whereas for power decay p/n ∈ {1.5, 2, 2.5, 3, 3.5, 4}, for
reasons that become clear from the results. Each configuration is replicated 100 times for n = 500.

Comparison. Across these runs, we compare the probability of ’success’ of thresholded NNLS
(tNNLS), non-negative lasso (NN`1), thresholded non-negative lasso (tNN`1) and orthogonal match-
ing pursuit (OMP, [22, 23]). For a regularization parameter µ ≥ 0, NN`1 is defined as a minimizer
β̂(µ) of minβ�0

1
n ‖y −Xβ‖

2
2 +µ1>β. We also compare against the ordinary lasso (replacing 1>β

by ‖β‖1 and removing the non-negativity constraint); since its performance is mostly nearly equal,
partially considerably worse than that of its non-negative counterpart (see the bottom right panel of
Figure 4 for an example), the results are not shown in the remaining plots for the sake of better read-
ability. ’Success’ is defined as follows. For tNNLS, we have ’success’ if minj∈S β̂j > maxj∈Sc β̂j ,
i.e. there exists a threshold that permits support recovery. For NN`1, we set µ̂ = 2‖X>ε/n‖∞,
which is the empirical counterpart to µ0 = 2

√
2 log(p)/n, the choice for the regularization param-

eter advocated in [14] to achieve the optimal rate for estimating β∗ in the `2-norm, and compute
the whole set of solutions {β̂(µ), µ ≥ µ̂} using the non-negative lasso modification of LARS [26]
and check whether the sparsity pattern of one of these solutions recovers S. For tNN`1, we inspect
{β̂(µ) : µ ∈ [µ0 ∧ µ̂, µ0 ∨ µ̂]} and check whether minj∈S β̂j(µ) > maxj∈Sc β̂j(µ) holds for one
of these solutions. For OMP, we check whether the support S is recovered in the first s steps. Note
that, when comparing tNNLS and tNN`1, the lasso is given an advantage, since we optimize over a
range of solutions.
Remark: We have circumvented the choice of the threshold λ, which is crucial in practice. In a
specific application [5] the threshold is chosen in a signal-dependent way allowing domain experts
to interpret λ as signal-to-noise ratio. Alternatively, one can exploit that under the conditions of
Theorem 2, the s largest coefficients of β̂ are those of the support. Given a suitable data-driven
estimate for s e.g. that proposed in [25], λ can be chosen automatically.
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Figure 3: Comparison of thresholded NNLS (red) and thresholded non-negative lasso (blue) for the
experiments with constant s/n, while b (abscissa) and p/n (symbols) vary.
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Figure 4: Top: Comparison of thresholded NNLS (red) and the thresholded non-negative lasso
(blue) for the experiments with constant b, while s/n (abscissa) and p/n (symbols) vary. Bottom
left: Non-negative lasso without thresholding (blue) and orthogonal matching pursuit (magenta).
Bottom right: Thresholded non-negative lasso (blue) and thresholded ordinary lasso (green).

Results. The approaches NN`1 and OMP are not competitive − both work only with rather mod-
erate levels of sparsity, with a breakdown at s/n = 0.15 for power decay as displayed in the bottom
left panel of Figure 4. For the second design, the results are even worse. This is in accordance with
the literature where thresholding is proposed as remedy [17, 18, 19]. Yet, for a wide range of con-
figurations, tNNLS visibly outperforms tNN`1, a notable exception being power decay with larger
values for p/n. This is in contrast to the design from Ens+, where even p/n = 10 can be handled.
This difference requires further research.

Conclusion. To deal with higher levels of sparsity, thresholding seems to be inevitable. Threshold-
ing the biased solution obtained by `1-regularization requires a proper choice of the regularization
parameter and is likely to be inferior to thresholded NNLS with regard to the detection of small sig-
nals. The experimental results provide strong support for the central message of the paper: even in
high-dimensional, noisy settings, non-negativity constraints can be unexpectedly powerful when in-
teracting with ’self-regularizing ’properties of the design. While this has previously been observed
empirically, our results provide a solid theoretical understanding of this phenomenon. A natural
question is whether this finding can be transferred to other kinds of ’simple constraints’ (e.g. box
constraints) that are commonly imposed.
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