Supplementary Material

Here we recall how to calculate the moment-generating function $\Lambda(n)$ via zeta-function [24] and periodic orbits [3, 1]. Let $\lambda[A]$ be the maximal eigenvalue of matrix A with non-negative elements [13]. Since AB and BA have identical eigenvalues, we get $\lambda[A^d] = (\lambda[A])^d$, $\lambda[AB] = \lambda[BA]$ (d is an integer).

Recall the content of section 4. Eqs. (15, 3, 4) lead to

$$\Lambda^{m}(n,m) = \sum_{x_{1},...,x_{m}} \phi[x_{1},...,x_{m}],$$
(42)

$$\phi[x_1, \dots, x_m] \equiv \lambda \left[\prod_{k=1}^m T_{x_k} \right] \lambda^n \left[\prod_{k=1}^m \hat{T}_{x_k} \right]$$
(43)

where we have introduced a notation $T_x = T(x)$ for better readability. We obtain

$$\phi[\mathbf{x}',\mathbf{x}''] = \phi[\mathbf{x}'',\mathbf{x}'], \qquad \phi[\mathbf{x}',\mathbf{x}'] = \phi^2[\mathbf{x}'], \tag{44}$$

where x' and x'' are arbitrary sequences of symbols x_i . One can prove for $\Lambda^m(n,m)$ [24]:

$$\Lambda^{m}(n,m) = \sum_{k|m} \sum_{(\gamma_{1},\ldots,\gamma_{k})\in \operatorname{Per}(k)} k \left[\phi[\gamma_{1},\ldots,\gamma_{k}] \right]^{\frac{m}{k}},$$

where $\gamma_i = 1, ..., M$ are the indices referring to realizations of the HMM, and where $\sum_{k|m}$ means that the summation goes over all k that divide m, e.g., k = 1, 2, 4 for m = 4. Here Per(k)contains sequences $\Gamma = (\gamma_1, ..., \gamma_k)$ selected according to the following rules: i) Γ turns to itself after k successive cyclic permutations, but does not turn to itself after any smaller (than k) number of successive cyclic permutations; ii) if Γ is in Per(k), then Per(k) contains none of those k - 1sequences obtained from Γ under k - 1 successive cyclic permutations. Starting from (45) and introducing notations $p = k, q = \frac{m}{k}$, we transform $\xi(z, n)$ as

$$\xi(z,n) = \exp\left[-\sum_{p=1}^{\infty}\sum_{\Gamma \in \operatorname{Per}(p)}\sum_{q=1}^{\infty}\frac{z^{pq}}{q}\phi^{q}[\gamma_{1},\ldots,\gamma_{p}]\right].$$

The summation over q, $\sum_{q=1}^{\infty} \frac{z^{pq}}{q} \phi^q[\gamma_1, \dots, \gamma_p] = -\ln[1 - z^p \phi[\gamma_1, \dots, \gamma_p]]$, yields

$$\xi(z,n) = \prod_{p=1}^{\infty} \prod_{\Gamma \in \operatorname{Per}(p)} \left[1 - z^p \phi[\gamma_1, \dots, \gamma_p] \right]$$
$$= 1 - z \sum_{l=1}^{M} \lambda_l \hat{\lambda}_l^n + \sum_{k=2}^{\infty} \varphi_k z^k, \tag{45}$$

where $\lambda_{\alpha...\beta} \equiv \lambda[T_{x_{\alpha}}...T_{x_{\beta}}], \lambda_{\alpha+\beta} \equiv \lambda[T_{x_{\alpha}}]\lambda[T_{x_{\beta}}]$ (all the notations introduced generalize—via introducing a hat—to functions with trial values of the parameters, e.g., \hat{T}_2). φ_k are obtained from (45). We write them down assuming that M = 2 (two realizations of the observed process)

$$\varphi_2 = -\lambda_{12}\hat{\lambda}_{12}^n + \lambda_{1+2}\hat{\lambda}_{1+2}^n, \tag{46}$$

$$\varphi_3 = \lambda_{2+21} \hat{\lambda}_{2+21}^n - \lambda_{221} \hat{\lambda}_{221}^n + \lambda_{1+12} \hat{\lambda}_{1+12}^n - \lambda_{112} \hat{\lambda}_{112}^n, \tag{47}$$

$$\varphi_{4} = -\lambda_{1222}\lambda_{1222}^{n} + \lambda_{2+122}\lambda_{2+122}^{n} + \lambda_{1+122}\lambda_{1+122}^{n} - \lambda_{1122}\lambda_{1122}^{n} + \lambda_{2+211}\hat{\lambda}_{2+211}^{n} - \lambda_{1+2+12}\hat{\lambda}_{1+2+12}^{n} + \lambda_{1+211}\hat{\lambda}_{1+211}^{n} - \lambda_{1112}\hat{\lambda}_{1112}^{n}.$$
(48)

The algorithm for calculating $\varphi_{k\geq 5}$ is straighforward [1]. Eqs. (46–48) for $\varphi_{k\geq 4}$ suffice for approximate calculation of (45), where the infinite sum $\sum_{k=2}^{\infty}$ is approximated by its first few terms.

We now calculate $\xi(z, n)$ for the specific model considered in Section 5.1. For this model, only the first row of T_1 consists of non-zero elements, so we have

$$\lambda_{1\chi 1\sigma} = \lambda_{1\chi+1\sigma}, \qquad \hat{\lambda}_{1\chi 1\sigma} = \hat{\lambda}_{1\chi+1\sigma}, \tag{49}$$

where χ and σ are arbitrary sequences of 1's and 2's. The origin of (49) is that the transfer-matrices $T(1)T(\chi_1)T(\chi_2)\ldots$ and $T(1)T(\sigma_1)T(\sigma_2)\ldots$ that correspond to 1χ and 1σ , respectively, have the

same structure as T(1), where only the first row differs from zero. For φ_k in (45) the feature (49) implies

$$\varphi_{k} = -\lambda^{n} [\hat{T}_{1} \hat{T}_{2}^{k-1}] \lambda [T_{1} T_{2}^{k-1}]
+ \lambda^{n} [\hat{T}_{1} \hat{T}_{2}^{k-2}] \lambda [T_{1} T_{2}^{k-2}] \lambda^{n} [\hat{T}_{2}] \lambda [T_{2}].$$
(50)

To calculate $\lambda [T_1 T_2^p]$ for an integer p one diagonalizes T_2 [13] (the eigenvalues of T_2 are generically not degenerate, hence it is diagonalizable),

$$T_2 = \sum_{\alpha=1}^{L} \tau_{\alpha} |R_{\alpha}\rangle \langle L_{\alpha}|, \qquad (51)$$

where τ_{α} are the eigenvalues of T_2 , and where $|R_{\alpha}\rangle$ and $|L_{\alpha}\rangle$ are, respectively, the right and left eigenvectors:

$$T_2|R_{\alpha}\rangle = \tau_{\alpha}|R_{\alpha}\rangle, \ \langle L_{\alpha}|T_2 = \tau_{\alpha}\langle L_{\alpha}|, \ \langle L_{\alpha}|R_{\beta}\rangle = \delta_{\alpha\beta}.$$

Here $\delta_{\alpha\beta}$ is the Kronecker delta. Note that generically $\langle L_{\alpha}|L_{\beta}\rangle \neq \delta_{\alpha\beta}$ and $\langle R_{\alpha}|R_{\beta}\rangle \neq \delta_{\alpha\beta}$. Here $\langle L_{\alpha}|$ is the transpose of $|L_{\alpha}\rangle$, while $|R_{\alpha}\rangle\langle L_{\alpha}|$ is the outer product.

Now $\lambda [T_1 T_2^p]$ reads from (22):

$$\lambda \left[T_1 T_2^p \right] = \sum_{\alpha=1}^{L} \tau_{\alpha}^p \psi_{\alpha}, \quad \psi_{\alpha} \equiv \langle 1 | T_1 | R_{\alpha} \rangle \langle L_{\alpha} | 1 \rangle, \tag{52}$$

where $\langle 1 | = (1, 0, ..., 0)$. Combining (52, 50) and (45) we arrive at (23).