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Abstract

We investigate a discriminatively trained model of person-object interactions for
recognizing common human actions in still images. We build on the locally
order-less spatial pyramid bag-of-features model, which was shown to perform
extremely well on a range of object, scene and human action recognition tasks.
We introduce three principal contributions. First, we replace the standard quan-
tized local HOG/SIFT features with stronger discriminatively trained body part
and object detectors. Second, we introduce new person-object interaction features
based on spatial co-occurrences of individual body parts and objects. Third, we
address the combinatorial problem of a large number of possible interaction pairs
and propose a discriminative selection procedure using a linear support vector
machine (SVM) with a sparsity inducing regularizer. Learning of action-specific
body part and object interactions bypasses the difficult problem of estimating the
complete human body pose configuration. Benefits of the proposed model are
shown on human action recognition in consumer photographs, outperforming the
strong bag-of-features baseline.

1 Introduction

Human actions are ubiquitous and represent essential information for understanding the content
of many still images such as consumer photographs, news images, sparsely sampled surveillance
videos, and street-side imagery. Automatic recognition of human actions and interactions, however,
remains a very challenging problem. The key difficulty stems from the fact that the imaged appear-
ance of a person performing a particular action can vary significantly due to many factors such as
camera viewpoint, person’s clothing, occlusions, variation of body pose, object appearance and the
layout of the scene. In addition, motion cues often used to disambiguate actions in video [6, 27, 31]
are not available in still images.

In this work, we seek to recognize common human actions, such as ”walking”, ”running” or ”read-
ing a book” in challenging realistic images. As opposed to action recognition in video [6, 27, 31],
action recognition in still images has received relatively little attention. A number of previous
works [21, 24, 37] focus on exploiting body pose as a cue for action recognition. In particular,
several methods address joint modeling of human poses, objects and relations among them [21, 40].
Reliable estimation of body configurations for people in arbitrary poses, however, remains a very
challenging research problem. Less structured representations, e.g. [11, 39] have recently emerged
as a promising alternative demonstrating state-of-the-art results for action recognition in static im-
ages.

In this work, we investigate discriminatively trained models of interactions between objects and
human body parts. We build on the locally orderless statistical representations based on spatial
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pyramids [28] and bag-of-features models [9, 16, 34], which have demonstrated excellent perfor-
mance on a range of scene [28], object [22, 36, 41] and action [11] recognition tasks. Rather than
relying on accurate estimation of body part configurations or accurate object detection in the image,
we represent human actions as locally orderless distributions over body parts and objects together
with their interactions. By opportunistically learning class-specific object and body part interactions
(e.g. relative configuration of leg and horse detections for the riding horse action, see Figure 1), we
avoid the extremely challenging task of estimating the full body configuration. Towards this goal,
we consider the following challenges: (i) what should be the representation of object and body part
appearance; (ii) how to model object and human body part interactions; and (iii) how to choose
suitable interaction pairs in the huge space of all possible combinations and relative configurations
of objects and body parts.

To address these challenges, we introduce the following three contributions. First, we replace the
quantized HOG/SIFT features, typically used in bag-of-features models [11, 28, 36] with powerful,
discriminatively trained, local object and human body part detectors [7, 25]. This significantly
enhances generalization over appearance variation, due to e.g. clothing or viewpoint while providing
a reliable signal on part locations. Second, we develop a part interaction representation, capturing
pair-wise relative position and scale between object/body parts, and include this representation in a
scale-space spatial pyramid model. Third, rather than choosing interacting parts manually, we select
them in a discriminative fashion. Suitable pair-wise interactions are first chosen from a large pool of
hundreds of thousands of candidate interactions using a linear support vector machine (SVM) with
a sparsity inducing regularizer. The selected interaction features are then input into a final, more
computationally expensive, non-linear SVM classifier based on the locally orderless spatial pyramid
representation.

2 Related work

Modeling person-object interactions for action recognition has recently attracted significant atten-
tion. Gupta et al. [21], Wang et al. [37], and Yao and Fei Fei [40] develop joint models of body
pose configuration and object location within the image. While great progress has been made on
estimating body pose configurations [5, 19, 25, 33], inferring accurate human body pose in images
of common actions in consumer photographs remains an extremely challenging problem due to a
significant amount of occlusions, partial truncation by image boundaries or objects in the scene,
non-upright poses, and large variability in camera viewpoint.

While we build on the recent body pose estimation work by using strong pose-specific body part
models [7, 25], we explicitly avoid inferring the complete body configuration. In a similar spirit,
Desai et al. [13] avoid inferring body configuration by representing a small set of body postures using
single HOG templates and represent relative position of the entire person and an object using simple
relations (e.g. above, to the left). They do not explicitly model body parts and their interactions with
objects as we do in this work. Yang et al. [38] model the body pose as a latent variable for action
recognition. Differently to our method, however, they do not attempt to model interactions between
people (their body parts) and objects. In a recent work, Maji et al. [30] also represent people by
activation responses of body part detectors (rather than inferring the actual body pose), however,
they model only interactions between person and object bounding boxes, not considering individual
body parts, as we do in this work.

Learning spatial groupings of low-level (SIFT) features for recognizing person-object interactions
has been explored by Yao and Fei Fei [39]. While we also learn spatial interactions, we build on
powerful body part and object detectors pre-learnt on separate training data, providing a degree of
generalization over appearance (e.g. clothing), viewpoint and illumination variation. Differently
to [39], we deploy dicriminative selection of interactions using SVM with sparsity inducing regular-
izer.

Spatial-pyramid based bag-of-features models have demonstrated excellent performance on action
recognition in still images [1, 11] outperforming body pose based methods [21] or grouplet mod-
els [40] on their datasets [11]. We build on these locally orderless representations but replace the
low-level features (HOG) with strong pre-trained detectors. Similarly, the object-bank representa-
tion [29], where natural scenes are represented by response vectors of densely applied pre-trained
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Figure 1: Representing person-object interactions by pairs of body part (cyan) and object (blue)
detectors. To get a strong interaction response, the pair of detectors (here visualized at positions pi

and pj) must fire in a particular relative 3D scale-space displacement (given by the vector v) with a
scale-space displacement uncertainty (deformation cost) given by diagonal 3×3 covariance matrix
C (the spatial part of C is visualized as a yellow dotted ellipse). Our image representation is defined
by the max-pooling of interaction responses over the whole image, solved efficiently by the distance
transform.

object detectors, has shown a great promise for scene recognition. The work in [29], however, does
not attempt to model people, body parts and their interactions with objects.

Related work also includes models of contextual spatial and co-occurrence relationships between
objects [12, 32] as well as objects and the scene [22, 23, 35]. Object part detectors trained from
labelled data also form a key ingredient of attribute-based object representations [15, 26]. While we
build on this body of work, these approaches do not model interactions of people and their body
parts with objects and focus on object/scene recognition rather than recognition of human actions.

3 Representing person-object interactions

This section describes our image representation in terms of body parts, objects and interactions
among them.

3.1 Representing body parts and objects

We assume to have a set of n available detectors d1, . . . , dn which have been pre-trained for different
body parts and object classes. Each detector i produces a map of dense 3D responses di(I,p) over
locations and scales of a given image I. We express the positions of detections p in terms of scale-
space coordinates p = (x, y, σ) where (x, y) corresponds to the spatial location and σ = log σ̃ is an
additive scale parameter log-related to the image scale factor σ̃ making the addition in the position
vector space meaningful.

In this paper we use two types of detectors. For objects we use LSVM detector [17] trained on
PASCAL VOC images for ten object classes1. For body parts we implement the method of [25]
and train ten body part detectors2 for each of sixteen pose clusters giving 160 body part detectors
in total (see [25] for further details). Both of our detectors use Histograms of Oriented Gradients
(HOG) [10] as an underlying low-level image representation.

1The ten object detectors correspond to object classes bicycle, car, chair, cow, dining table, horse, motorbike,
person, sofa, tv/monitor

2The ten body part detectors correspond to head, torso, {left, right} × {forearm, upper arm, lower leg,
thigh}
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3.2 Representing pairwise interactions

We define interactions by the pairs of detectors (di, dj) as well as by the spatial and scale relations
among them. Each pair of detectors constitutes a two-node tree where the position and the scale of
the leaf are related to the root by scale-space offset and a spatial deformation cost. More precisely,
an interaction pair is defined by a quadruplet q = (i, j,v,C) ∈ N× N× R3 ×M3,3 where i and j
are the indices of the detectors at the root and leaf, v is the offset of the leaf relatively to the root and
C is a 3 × 3 diagonal matrix defining the displacement cost of the leaf with respect to its expected
position. Figure 1 illustrates an example of an interaction between a horse and the left thigh for the
horse riding action.

We measure the response of the interaction q located at the root position p1 by:

r(I,q,p1) = max
p2

(
di(I,p1) + dj(I,p2)− uTCu

)
(1)

where u = p2− (p1+v) is the displacement vector corresponding to the drift of the leaf node with
respect to its expected position (p1 + v). Maximizing over p2 in (1) provides localization of the
leaf node with the optimal trade-off between the detector score and the displacement cost. For any
interaction q we compute its responses for all pairs of node positions p1,p2. We do this efficiently
in linear time with respect to p using distance transform [18].

3.3 Representing images by response vectors of pair-wise interactions

Given a set of M interaction pairs q1, · · · ,qM , we wish to aggregate their responses (1), over an
image region A. Here A can be (i) an (extended) person bounding box, as used for selecting dis-
criminative interaction features (Section 4.2) or (ii) a cell of the scale-space pyramid representation,
as used in the final non-linear classifier (Section 4.3). We define score s(I,q,A) of an interaction
pair q within A of an image I by max-pooling, i.e. as the maximum response of the interaction pair
within A:

s(I,q,A) = max
p∈A

r(I,q,p). (2)

An image region A is then represented by a M -vector of interaction pair scores

z = (s1, · · · , sM ) with si = s(I,qi,A). (3)

4 Learning person-object interactions

Given object and body part interaction pairs q introduced in the previous section, we wish to use
them for action classification in still images. A brute-force approach of analyzing all possible inter-
actions, however, is computationally prohibitive since the space of all possible interactions is combi-
natorial in the number of detectors and scale-space relations among them. To address this problem,
we aim in this paper to select a set ofM action-specific interaction pairs q1, . . . ,qM , which are both
representative and discriminative for a given action class. Our learning procedure consists of the
three main steps as follows. First, for each action we generate a large pool of candidate interactions,
each comprising a pair of (body part / object) detectors and their relative scale-space displacement.
This step is data-driven and selects candidate detection pairs which frequently occur for a particular
action in a consistent relative scale-space configuration. Next, from this initial pool of candidate in-
teractions we select a set of M discriminative interactions which best separate the particular action
class from other classes in our training set. This is achieved using a linear Support Vector Machine
(SVM) classifier with a sparsity inducing regularizer. Finally, the discriminative interactions are
combined across classes and used as interaction features in our final non-linear spatial-pyramid like
SVM classifier. The three steps are detailed below.

4.1 Generating a candidate pool of interaction pairs

To initialize our model, we first generate a large pool of candidate interactions in a data-driven
manner. Following the suggestion in [17] that the accurate selection of the deformation cost C may
not be that important, we set C to a reasonable fixed value for all pairs, and focus on finding clusters
of frequently co-occurring detectors (di, dj) in specific relative configurations.

For each detector i and an image I, we first collect a set of positions of all positive detector responses
PI

i = {p | di(I,p) > 0}, where di(I,p) is the response of detector i at position p in image I. We
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then apply a standard non-maxima suppression (NMS) step to eliminate multiple responses of a
detector in local image neighbourhoods and then limit PI

i to the L top-scoring detections. The
intuition behind this step is that a part/object interaction is not likely to occur many times in an
image.

For each pair of detectors (di, dj) we then gather relative displacements between their detections
from all the training images Ik: Dij =

⋃
k{pj − pi | pi ∈ PIk

i and pj ∈ PIk
j }. To discover poten-

tially interesting interaction pairs, we perform a mean-shift clustering over Dij using a window of
radius R ∈ R3 (2D-image space and scale) equal to the inverse of the square root of the deformation
cost: R = diag(C−

1
2 ). We also discard clusters which contribute to less than η percent of the train-

ing images. The set of m resulting candidate pairs (i, j,v1,C), · · · , (i, j,vm,C) is built from the
centers v1, · · · ,vm of the remaining clusters. By applying this procedure to all pairs of detectors,
we generate a large pool (hundreds of thousands) of potentially interesting candidate interactions.

4.2 Discriminative selection of interaction pairs

The initialization described above produces a large number of candidate interactions. Many of
them, however, may not be informative resulting in unnecessary computational load at the training
and classification times. For this reason we wish to select a smaller number of M discriminative
interactions.

Given a set of N training images, each represented by an interaction response vector zi, described
in eq. (3) where A is the extended person bounding box given for each image, and a binary label
yi (in a 1-vs-all setup for each class), the learning problem for each action class can be formulated
using the binary SVM cost function:

J(w, b) = λ

N∑
i=1

max{0, 1− yi(w>zi + b)}+ ‖w‖1, (4)

where w, b are parameters of the classifier and λ is the weighting factor between the (hinge) loss on
the training examples and the L1 regularizer of the classifier.

By minimizing (4) in a one-versus-all setting for each action class we search (by binary search) for
the value of the regularization parameter λ resulting in the sparse weight vector w with M non-
zero elements. Selection of M interaction pairs corresponding to non-zero elements of w gives M
most discriminative (according to (4)) interaction pairs per action class. Note that other discrimi-
native feature selection strategies such as boosting [20] can be also used. However, the proposed
approach is able to jointly search the entire set of candidate feature pairs by minimizing a convex
cost given in (4), whereas boosting implements a greedy feature selection procedure, which may be
sub-optimal.

4.3 Using interaction pairs for classification

Given a set of M discriminative interactions for each action class obtained as described above, we
wish to train a final non-linear action classifier. We use spatial pyramid-like representation [28],
aggregating responses in each cell of the pyramid using max-pooling as described by eq. (2), where
A is one cell of the spatial pyramid. We extend the standard 2D pyramid representation to scale-
space resulting in a 3D pyramid with D = 1 + 23 + 43 = 73 cells. Using the scale-space pyramid
with D cells, we represent each image by concatenating M features from each of the K classes
into a MKD-dimensional vector. We train a non-linear SVM with RBF kernel and L2 regularizer
for each action class using a 5-fold cross-validation for the regularization and kernel band-width
parameters. We found that using this final non-linear classifier consistently improves classification
performance over the linear SVM given by equation (4). Note that feature selection (section 4.2) is
necessary in this case as applying the non-linear spatial pyramid classifier on the entire pool of all
candidate interactions would be computationally infeasible.

5 Experiments

We test our model on the Willow-action dataset downloaded from [4] and the PASCAL VOC 2010
action classification dataset [14]. The Willow-action dataset contains more than 900 images with
more than 1100 labelled person detections from 7 human action classes: Interaction with Computer,
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Photographing, Playing Music, Riding Bike, Riding Horse, Running and Walking. The training set
contains 70 examples of each action class and the rest (at least 39 examples per class) is left for
testing. The PASCAL VOC 2010 dataset contains the 7 above classes together with 2 other actions:
Phoning and Reading. It contains a similar number of images. Each training and testing image
in both datasets is annotated with the smallest bounding box containing each person and by the
performed action(s). We follow the same experimental setup for both datasets.

Implementation details: We use our implementation of body part detectors described in [25] with
16 pose clusters trained on the publicly available 2000 image database [3], and 10 pre-trained PAS-
CAL 2007 Latent SVM object detectors [2]: bicycle, car, chair, cow, dining table, horse, motorbike,
person, sofa, tvmonitor. In the human action training/test data, we extend each given person bound-
ing box by 50% and resize the image so that the bounding box has a maximum size of 300 pixels.
We run the detectors over the transformed bounding boxes and consider the image scales sk = 2k/10

for k ∈ {−10, · · · , 10}. At each scale we extract the detector response every 4 pixels and 8 pixels
for the body part and object detectors, respectively. The outputs of each detector are then normal-
ized by subtracting the mean of maximum responses within the training bounding boxes and then
normalizing the variance to 1. We generate the candidate interaction pairs by taking the mean-shift
radius R = (30, 30, log(2)/2), L = 3 and η = 8%. The covariance of the pair deformation cost C
is fixed in all experiments to R−2. We select M = 310 discriminative interaction pairs to compute
the final spatial pyramid representation of each image.

Results: Table 1 summarizes per-class action classification results (reported using average preci-
sion for each class) for the proposed method (d. Interactions), and three baselines. The first baseline
(a. BOF) is the bag-of-features classifier [11], aggregating quantized responses of densely sampled
HOG features in spatial pyramid representation, using a (non-linear) intersection kernel. Note that
this is a strong baseline, which was shown [11] to outperform the recent person-object interaction
models of [39] and [21] on their own datasets. The second baseline (b. LSVM) is the latent SVM
classifier [17] trained in a 1-vs-all fashion for each class. To obtain a single classification score for
each person bounding box, we take the maximum LSVM detection score from the detections over-
lapping the extended bounding box with the standard overlap score [14] higher than 0.5. The final
baseline (c. Detectors) is a SVM classifier with an RBF kernel trained on max-pooled responses of
the entire bank of body part and object detectors in a spatial pyramid representation but without in-
teractions. This baseline is similar in spirit to the object bank representation [29], but here targeted
to action classification by including a bank of pose-specific body part detectors as well as object
detectors. On average, the proposed method (d.) outperforms all baselines, obtaining the best result
on 4 out of 7 classes. The largest improvements are obtained on Riding Bike and Horse actions,
for which reliable object detectors are available. The improvement of the proposed method d. with
respect to using the plain bank of object and body part detectors c. directly demonstrates the benefit
of modeling interactions. Example detections of interaction pairs are shown in figure 2.

Table 2 shows the performance of the proposed interaction model (d. Interactions) and its combi-
nation with the baselines (e. BOF+LSVM+Inter.) on the Pascal VOC 2010 data. Interestingly, the
proposed approach is complementary to both the BOF (51.25 mAP) and LSVM (44.08 mAP) meth-
ods and by combining all three approaches (following [11]) the overall performance improves to
60.66 mAP. We also report results of the ”Poselet” method [30], which, similar to our method, is
trained from external non-Pascal data. Our combined approach achieves better overall performance
and also outperforms the ”Poselet” approach on 6 out of 9 classes. Finally, our combined approach
also obtains competitive performance compared to the overall best reported result on the Pascal VOC
2010 data – ”SURREY MK KDA” [1] – and outperforms this method on the ”Riding Horse” and
”Walking” classes.

6 Conclusion

We have developed person-object interaction features based on non-rigid relative scale-space dis-
placement of pairs of body part and object detectors. Further, we have shown that such features can
be learnt in a discriminative fashion and can improve action classification performance over a strong
bag-of-features baseline in challenging realistic images of common human actions. In addition, the
learnt interaction features in some cases correspond to visually meaningful configurations of body
parts, and body parts with objects.
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Inter. w/ Comp.
Blue: Screen
Cyan: L. Leg

Photographing
Blue: Head
Cyan: L. Thigh

Playing Instr.
Blue: L. Forearm
Cyan: L. Forearm

Riding Bike
Blue: R. Forearm
Cyan: Motorbike

Riding Horse
Blue: Horse
Cyan: L. Thigh

Running
Blue: L. Arm
Cyan: R. Leg

Walking
Blue: L. Arm
Cyan: Head

Figure 2: Example detections of discriminative interaction pairs. These body part interaction
pairs are chosen as discriminative (high positive weight wi) for action classes indicated on the left.
In each row, the first three images show detections on the correct action class. The last image
shows a high scoring detection on an incorrect action class. In the examples shown, the interaction
features capture either a body part and an object, or two body part interactions. Note that while these
interaction pairs are found to be discriminative, due to the detection noise, they do not necessary
localize the correct body parts in all images. However, they may still fire at consistent locations
across many images as illustrated in the second row, where the head detector consistently detects
the camera lens, and the thigh detector fires consistently at the edge of the head. Similarly, the leg
detector seems to consistently fire on keyboards (see the third image in the first row for an example),
thus improving the confidence of the computer detections for the ”Interacting with computer” action.
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Action / Method a. BOF [11] b. LSVM c. Detectors d. Interactions
(1) Inter. w/ Comp. 58.15 30.21 45.64 56.60
(2) Photographing 35.39 28.12 36.35 37.47
(3) Playing Music 73.19 56.34 68.35 72.00
(4) Riding Bike 82.43 68.70 86.69 90.39
(5) Riding Horse 69.60 60.12 71.44 75.03
(6) Running 44.53 51.99 57.65 59.73
(7) Walking 54.18 55.97 57.68 57.64

Average (mAP) 59.64 50.21 60.54 64.12

Table 1: Per-class average-precision for different methods on the Willow-actions dataset.

Action / Method d. Interactions e. BOF+LSVM+Inter. Poselets[30] MK-KDA[1]
(1) Phoning 42.11 48.61 49.6 52.6
(2) Playing Instr. 30.78 53.07 43.2 53.5
(3) Reading 28.70 28.56 27.7 35.9
(4) Riding Bike 84.93 80.05 83.7 81.0
(5) Riding Horse 89.61 90.67 89.4 89.3
(6) Running 81.28 85.81 85.6 86.5
(7) Taking Photo 26.89 33.53 31.0 32.8
(8) Using Computer 52.31 56.10 59.1 59.2
(9) Walking 70.12 69.56 67.9 68.6

Average (mAP) 56.30 60.66 59.7 62.2

Table 2: Per-class average-precision on the Pascal VOC 2010 action classification dataset.

We use only a small set of object detectors available at [2], however, we are now in a position
to include many more additional object (camera, computer, laptop) or texture (grass, road, trees)
detectors, trained from additional datasets, such as ImageNet or LabelMe. Currently, we consider
detections of entire objects, but the proposed model can be easily extended to represent interactions
between body parts and parts of objects [8].
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