Clustered Multi-Task Learning Via Alternating Structure
Optimization: Supplemental Material

A. Algorithm Details

Alternating Optimization Method

Algorithm 1 Alternating Optimization Algorithm (altCMTL) for ConvexI@TL

1: Input: Wy, 7o € R, and max iteration numbet

: Output: M, W.

: fori=1togdo

Update)M; by solving Eq. (20).

UpdatelV; by solving Eq. (19).

if stopping criteria satisfiethen break the for loop.
: end-for

. SetM = 1\41‘4,17 W = Wi+1.

Accelerated Projected Gradient Method

Algorithm 2 Accelerated Projected Gradient Algorithm (apgCMTL) fom@ex CMTL

1. Input: Zy, 70 € R, and max iteration numbet
2: Output: Z.

3: SetZy = Zy,t_1 =0, andto =1.

4: fori=1togdo

5 Setp; = (ti—o = 1)/ti—1, Si = Zi + pi(Zi — Zi—1).
6: while (true)

7 ComputeZ* = argmin ., M s(2).

8: if f/(Z*) < M, s,(Z*) then break the while loop
9: elsesety; = ; x 2.
10: end-if
11 end-while
12: SetZH_l =7* and'yiﬂ = Y-
13: if stopping criteria satisfiethen break the for loop.
14:  Sett; = VI
15: end-for

16: SetZ = Zi+1-

The optimization problem in Eq. (23) admits an analyticdlgon via solving a simple convex
projection problem. The main result is summarized in thiofahg theorem.

Theorem 6.1. Given an arbitrary symmetric matrix/s € R™*™ in Eq. (23), letMs = PYPT be

its eigen-decomposition, whefe € R™*"™ is orthogonal, and: = diag(61,--- ,0.,) € R™*™is
diagonal with the eigenvalues on its main diagonal. Eét= diag(of,--- ,07,) € R™*™, where
{07}, is the optimal solution to the following optimization prebi:
. A N2 .
min o;—6;)°, st oi=k0<0;<1,i=1,---,m. (25)
min } (i — i) >

i=1 i=1
Then the global minimizer to Eq. (23) is given b = PX* PT.

To prove the above theorem, we first introduce the followamgrha:
Lemma 6.2. LetOy) be the optimal objective value of the optimization problem:

min |7 — E|%, st tr(T)=k 0=<T <1, (26)



and letO () be the optimal objective value of the optimization problem:
min |E - E||%, st tr (E) =k, B = diag(éy, - ,éq), 0< & < 1. 27)
E
ThenO(l) = 0(2).

Proof. According to the definition, the feasible domain of optintiaa (27) is a subset of the feasi-
ble domain of optimization (26), which indicat€k,) > O(;). LetT™ be the optimal solution to the

optimization (26), and” = diag(T™*) be the diagonal matrix by setting the non-diagonal elements
of 7% to 0. It is evident thatr (T) = kand0 < 7 =< I hold. Notice thatl is a feasible point in
optimization (27), we have following inequality:

Ow) = IT* = E|} > |T — E|} > Og), O = Oy (28)
ThereforeO ;) = O,y must hold. This completes the proof. O

We are now ready to prove Theorem 6.1:

Proof of Theorem 6.1For an arbitraryl/, feasible for Eq. (23), we denote its eigen-decomposition
by Mz = QAQT, whereQ € R™*™ is orthogonal A = diag(A1, - - -, \,,) € R™>*™ s diagonal
with the eigenvalues on its main diagonal. Because of th@mninvariant property of Frobenius
norm, the optimization in Eq. (23) can be equivalently repraed as:

2
in ||lPToA TPfle
min H QAQ .
st tr(A) =k, A =diag(A1, -, An), 0< N <1, QTQ=QQT =1,. (29)

According to Lemma 6.2, the optimization problems in Eq.)@®d Eq. (25) have the same optimal
objective value. It is easy to verify that the optimizatiawiglem in Eq. (29) is strictly convex, and
that the pairA = X*, Q) = P is a feasible solution. This means that= ¥*, Q = P is the unique
global minimizer to Eq. (29). Thud/* = PX*PT is the unique global minimizer to Eq. (23).0

Direct Gradient Descent Method

Algorithm 3 Direct Gradient Descent Algorithm (graCMTL) for Convex CMT

1: Input: Wy, 7o € R, and max iteration numbet
2: Output: M, W.
3: fori =1togdo

4: ComputeM;" by solving Eq. (20) usingV;_;.

5: Compute the gradient directiofy gemr (Wi—1) = 2(nl + M) *WL .
6: Perform a line search to determing.

7 Wy = Wi—1 + LiVwgemte (Wi—1).

8: if stopping criteria satisfiethen break the for loop.

9: end-for
10: SetM = J\/[i+1, W = Wi+1.

B. Construction of Synthetic Cluster-Structured Data

Denote byw¢ thei-th task from the-th cluster.w$ can be expressed as the sum of the cluster center
w® and the task-specific componeng, i.e.,w{ = w® + w¢. The cluster centex® is generated as
follows: (1) set the value of the fir@0 entries inw® as zero; (2) selecd — 20)/5 entries from the
otherd—20 entries, and generate non-zero values /g1, 900) for the selectedd —20) /5 entries.
Note that we keep© orthogonal to the other cluster centers by selecting theogpiate locations of

the non-zero entries. The task-specific componsgtis generated as follows: (1) generate non-zero
values fromA\/ (0, 16) for the first20 entries; (2) generate non-zero values frafdo, 16) for the
locations corresponding to the non-zero entries®f For each task we generate 60 sample pairs



(the data point and the response). Denote the data matrixhendesponse vector hy; andy;,
respectively. The entries iX; are generated fromV/'(0, 1), and the entries ify; are generated as
v = Xws + &, where ~ N(0,0.1) represents the noise vector.

C. Effectiveness Comparison on Sarcos Dataset

The Sarcos data is collected for an inverse dynamics predigroblem for a seven degrees-of-
freedom anthropomorphic robot arm. This data consists 883&bservations corresponding to 7
joint torques; each of the observations is described by &tLifes including 7 joint positions, 7 joint
velocities, and 7 joint accelerations. The prediction afreppint torque corresponds to one task.
Because using a few training samples already gives goodmpeaihce, we vary the training sample
size in the sef10, 20, 50, 100}. The results are presented in Table 2. We can observe (1) thken
training sample size is relatively small, cCMTL outperferiother competing methods; (2) when
the training ratio is large, cCMTL and RidgeSTL are compbea8) RegMTL performs poorly in
all settings.

Table 2: Performance comparison on the Sarcos data in tdrmd®E and aMSE. Smaller nMSE
and aMSE indicate better performance. The regularizatemarpeters of all methods are tuned
using 5-fold cross validation. The mean and standard dewiatre calculated based af random

repetitions.

Measure| Sample RidgeSTL RegMTL cCMTL

nMSE 10 2.3668 +0.3033  2.2310 +0.5008  2.1984 + 1.0083
20 0.7409 + 0.1461 0.8787 +£0.2007 0.6710 4+ 0.0740
50 0.2562 £+ 0.0366  0.4387 £ 0.0509  0.2522 4 0.0258
100 | 0.173540.0068 0.3717 4+0.0411 0.1784 + 0.0097

aMSE 10 0.9151 £ 0.0718 0.9399 +£0.1622  1.0803 4+ 0.6384
20 0.4129 +£0.0976  0.4796 +0.1267  0.3703 £ 0.0427
50 0.1457 £+ 0.0259  0.2581 £0.0374 0.1432 £+ 0.0198
100 0.0992 +0.0031 0.2133 £0.0242 0.1014 + 0.0041






