Appendix A.1: Inference for MT-iILSVM

In this section, we provide the deviation of the inference algorithm for MT-iLSVM, which is outlined
in Alg. 1 and detailed below.

For MT-iILSVM, the model M consists of all the latent variables (v, W,Z,n). Let L,,,(p) &f

E,[log p(Xmn|Z, Wimn, A2,,,)] be the expected data likelihood. Then, under the truncated mean-

field assumption (14), we,ﬁgve

X Xn — 2%.) E,|[Zw.,) + E, W) UWy,n]  Dlog(2mA2,,)

Lmn = - - - o - )
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mn

where x; E [Zwmn] Zk x! ap b, &f (wlk ka.)T is the kth column of ¢ = E[Z];

i<k
and U & E[Z"Z]isa K x K matrix, whose element is

U, Yoqai, ifi=j
>4 Yaitba;, otherwise.

For the KL-divergence term, we have KL(p(M)[r(M)) = KL(p(v)|r(v)) +
KL(p(W)||7(W)) + KL(p(Z)||7(Z)) + KL(p(n)||7(n)), where the individual terms are
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where 1 (-) is the digamma function and E, [log v;] = ¥(v;1) — ¥(vj1 +7;2). For KL(p(n)||7(n)),
we do not need to write it explicitly, as we shall see. Finally, the effective discriminant function is

K
fm(an§p(Z7 77)) = n;‘bTxmn = ZEP[nmk}’ltb.-ll—cxmn'
k=1

All the above terms can be easily computed, except the term [E,,[log(1 — Hle v;)]. Here, we adopt
the multivariate lower bound [9]

E, [log( 1—H vi)] > qumw Yma) + Z qun »(Ym1) Z qun (Y1 + Yma)+H(qr.),

m=1 m=1ln=m++1 m=1 n=m

where the variational parameters qx, = (qg1 - qkk) belong to the k-simplex, and H(qgy.) is the
entropy of gi.. The tightest lower bound is achieved by setting gj. to be the optimum value

m—1 m

1
Qkm = ka exp (w(’}/mg) + nEZ:l "/"('Ynl) - nzz:l w(%u + ’Yn2)>7 (7
where Zj, is a normalization factor to make ¢ be a distribution. We denote the tightest lower bound

by L£7. Replacing the term E,[log(1 — H§:1 v;)] with its lower bound £}, we can have an upper
bound of KL(p(M)||m(M)) and we denote this upper bound by £L(p).
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Algorithm 1 Inference Algorithm of MT-iILSVM
1: Input: data D = {(Xsmn, Ymn) tmmezm U {Xmn }m,nezm, constants o and C
2: Output: distributions p(v), p(Z), p(W), p(n) and hyper-parameters o2, and A2,
3: Initialize 41 = o, yk2 = 1, Yar = 0.5 + €, where € ~ N (0,0.001), @,,,, = 0, O’mn =02, =
1, p,,, = 0, A2, is computed from D.
repeat
repeat
update (g1, vk2) using Eq. (19), V1 < k < K
update ¢F,, and o2, using Eq. (18), Vm,Vn,V1 < k < K;
update 141, using Eq. (20),V1 <d < D,V1 <k < K;
9:  until relative change of L is less than 7 (e.g., 1e~3) or iteration number is 7" (e.g., 10)
10:  form =1to M do
11: solve the dual problem (21) using a binary SVM learner.
12:  end for
13:  update the hyper-parameters o2, usmg Eq. (22) and A2, using Eq. (23). (Optional)
14: until relative change of L is less than 7’ (e.g., le~*) or iteration number is 7" (e.g., 20)

mn

XA

With the above terms and the upper bound £(p), we use the Lagrangian method with the Lagrangian
multipliers w, one for each margin constraint, and u for the nonnegativity constraint of £&. We have
the Lagrangian functional

(pa £ w, u ZLmn - Z Wmn (ymn (]Ep [ﬁm]TiﬁTan) -1+ fmn) - uT€~
mn m,neL™
Then, the inference procedure iteratively solves the following steps:

Infer p(v), p(Z) and p(W): For p(W), since both the prior 7(W) and p(W) are Gaussian, we
can easily derive the update rules, similar as in Gaussian mixture models

_ ZaTmn¥ar = Xk Hn Uk (L 42 wdk>71

k
¢m7’b Agnn U’r2nU A%Ln
1 1 Upip\ 1
2 Bl W 22
For p(v), we have the update rules similar as in [9], that is,

’Yk1:a+zz¢dm+ Z (D - Z¢dm Z Tmi) (19)

(18)

m=k d=1 m=k+1 1=k+1
V2 = 1+ Z D dem dmk-
m=k

For p(Z), we have the mean-field update equation as
1

T+eva’ ¢

Yap =

where
k

y 1
ﬁdk = ZEP[IOg'Uj] - ‘Ck Z 2)\2 ((ngzrm + ( fnn)z)

j=1 mn

7nn¢mn +2 Z ¢mn mnwd]) + Z ymnEp [n7nk]x7dnn'

J#k m,necL™

Infer p(n) and solve for w and &: We can optimize L to solve for ¢(n), which is

P(n) X 7T( exp{ Z ymnwmnnm'ﬂb an} Hﬂ— nm €xXp {nm Z YmnWmn P an)}

m,neL™ neLm
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Therefore, we can see that although we did not assume p(n) is factorized, we can get the induced
factorization form p(n) = [],, p(n,,), where

p(1hm) o 7(n,,) exp {77;( > ymnwmn'l/’—rxmn)}~
neZ™
Here, we assume 7 (,,,) is standard normal. Then, we have p(n,,,) = N'(n,,|1,,, I), where
Ko, = Z ymnwmanan-
neZy
Substituting the solution of p(n) into the Lagrangian functional, we get the M independent dual
problems
1
max — *N;Nm + Z Wimn St 0<wy, <1,Vne 20
Wm 2
nerL

which (and its primal form) can be efficiently solved with a binary SVM solver, such as SVM-light.

As we have stated, the hyperparameters o2 and A2, can be set a priori or estimated from the data.
The empirical estimation can be easily done with closed form solutions. For MT-iLSVM, we have

Zfzvlnl (KUTQTLTL + (I);an)mn)

Omo = T 22)
)\2 _ X;yrlnxmn - 2X;rnnEp[ZWmn] + ]Ep [W;;nUW'mn] 23

Appendix A.2: Inference for Infinite Latent SVM

In this section, we develop the inference algorithm for iLSVM based on the stick-breaking construc-
tion of the IBP prior. The algorithm is outlined in Alg. 2 and detailed below.

Similar as in the inference for MT-ILSVM, we make the additional constraint about the feasible
distribution

K K
p(v. W, Z,m) = p(mp(W|®, %) T ( TT pzueln) ) [T p00),
n k=1 k=1
where K is the truncation level; p(W|®, %) = [[, N(Wi|®, 021); p(znkldnk) =
Bernoulli(¢,r); and p(vg|y,) = Beta(vki,vk2). Then, we solve the constrained problem us-
ing Lagrangian methods with Lagrangian multipliers being w, one for each large-margin constraint,

and u for the nonnegativity constraints of £. Similarly, let L,, (p) o E,[log p(x,, |2, W)]. We have

X, Xn — 2%, OB, [2,] " + Ey[2,Az,]  Dlog(2mor)

Ln(p) = , 24
(») 202, 5 (24)
where A & E,[WTW]Jisa K x K matrix; x,, ®E,[z,,] " = 23", 1, (x, @ x); and
EplznAz)] =2 UnjtnrAjr + Y Unk(Dog + Agr).
j<k k
The effective discriminant function is f(y,x,) = > . E, [n’;]wnk. Again, for computational

tractability, we need the lower bound £}, of the term E, [log(1 — Hle v;)]. Using this lower bound,
we can get an upper bound of the KL-divergence term, and we denote the Lagrangian functional by
L(p, &, w,u). Then, the inference procedure iteratively solves the following steps:

Infer p(v), p(Z) and p(W): For p(W), we have the update rules

®, :;%(Xngwﬁj)(uggf 25)
of = (1—&—2%)71.
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Algorithm 2 Inference Algorithm of iLSVM
1: Input: data D = {(Xn, Yn) }nez, Y {Xn }nez,, constants « and C
2: Output: distributions p(v), p(Z), p(W), p(n) and hyper-parameters o2 and 02,
3: Initialize y41 = o, Ye2 = 1, ¥ = 0.5 + ¢, where € ~ N(0,0.001), @, = 0, 02 = 02 = 1,
=0, 02 is computed from D.

4: repeat

5:  repeat

6: update (yx1,vx2) using Eq. (26),V1 < k < K;;

7: update ® ;, and O']% using Eq. (25),V1 <k < K;

8: update 1,1, using Eq. (27), Vn € Z,;,,V1 < k < K

9: update 1, using Eq. (27), but 9,1 doesn’t have the last term, Vn € Z, V1 < k < K;

10:  until relative change of L is less than 7 (e.g., 1e™3) or iteration number is T (e.g., 10)
11:  solve the dual problem (28) (or its primal form) using a multi-class SVM learner.

12:  update the hyper-parameters o2 using Eq. (29) and o2, using Eq. (30). (Optional)

13: until relative change of L is less than 7/ (e.g., le~*) or iteration number is 7" (e.g., 20)

For p(v), we have the update rules similar as in [9] that is,

m=kn=1 m= k+1 :Ic+1
n=1
where g . is computed in the same way as in Eq. (17). For p(Z), the mean-field update equation for
Pis 1
nk = ————, 27
Yk = (27)
where X
Ok = Y Bplloguv;] — LY (p) — 307 (D2 +® D)
j 1 Tno
o 0% (x0 — 3 vns) + Zw%E [y, — 3.

Jj#k
For testing data, 9, does not have the last term because of the absence of large-margin constraints.

Infer p(n) and solve for (£, w, u): We can optimize L to solve for ¢(n), which is
p(n) o< m(n eXp{ (D0 WiE[g(yn, Xn,2n) — g(y,xn,zn)])}.
n€ly Y
For the standard normal prior 7(n), we have that ¢(n) is also normal, with mean
H = Z ngEp[g(memZn) - g(y,xn, Zn)]
n€ly Y

and identity covariance matrix. Substituting the solution of p(n) into the Lagrangian functional, we
get the dual problem

I+
max — opl gt DN Wl st 0> wl <CVneT, (28)

n€ly Yy )
which (and its primal form) can be efficiently solved with a multi-class SVM solver.

Similar as in MT-ILSVM, the hyperparameters 02 and o2, can be set a priori or estimated from the
data. The empirical estimation can be easily done with closed form solutions. For iLSVM, we have

K
o2 — > er (Dop + @) 94)

= 29
0 KD (29
o2, = x!x, — 2X;<I>Ep [z,] " + E, [z2,Az]] . (30)

D
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