
A Reinforcement Learning Theory for Homeostatic
Regulation: Supplementary Methods

Mehdi Keramati
Group for Neural Theory, LNC, ENS

Paris, France
mohammadmahdi.keramati@ens.fr

Boris Gutkin
Group for Neural Theory, LNC, ENS

Paris, France
boris.gutkin@ens.fr

1 Performance measure of instrumental responses

Definition 1.1: A “homeostatic pathway”, denoted by p, is an ordered sequence of transitions in the
homeostatic space, like {K1,K2, ...}. We also define P(H0) as the set of all pathways that if start
from H0, will end up at H∗. �
Definition 1.2: For each homeostatic pathway p that starts from the initial motivational state H0

and consists of n elements, we define SDDp(H0) as the “sum of discounted drives” through that
pathway:

SDDp(H0) =

n−1∑
t=0

γtd(Ht+1) (1)

Where Ht is the motivational state at time t. �
Definition 1.3: Similarly, for each homeostatic pathway p that starts from the initial motivational
state H0 and consists of n elements, we define SDRp(H0) as the “sum of discounted rewards”
through that pathway:

SDRp(H0) =

n−1∑
t=0

γtrt =

n−1∑
t=0

γt(d(Ht)− d(Ht+1)) (2)

�
Proposition 1: For any initial state H0, if γ < 1, we will have:

argmin
p∈P(H0)

SDDp(H0) = argmax
p∈P(H0)

SDRp(H0) (3)

Roughly, this means that a policy that minimizes deviation from the setpoint, also maximizes acqui-
sition of reward, and vice versa.

Proof: Assume that pi ∈ P(H0) is a sample pathway consisting of ni transitions. As a result of
these transitions, the internal state will take a sequence like: {H0,i = H0,H1,i, H2,i, .., Hn,i =
H∗}. Denoting D(Hx) by dx for the sake of simplicity in notation, the drive value will take the
following sequence: {d0,i = d0, d1,i, d2,i, .., dn,i = d∗ = 0}. We have:

SDDpi(H0) = di,1 + γdi,2 + γ2di,3 + ..+ γn−2di,n−1 + γn−1d∗ (4)
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We also have:

SDRpi(H0) = ri,0 + γri,1 + γ2ri,2 + ..++γn−1ri,n−1

= (d0 − di,1) + γ(di,1 − di,2) + γ2(di,2 − di,3) + ..+ γn−1(di,n−1 − d∗)

= d0 + (γ − 1)(di,1 + γdi,2 + γ2di,3 + ..+ γn−2di,n−1)

= d0 + (γ − 1).SDDpi(H0) (5)

Since d0 has a fixed value and γ − 1 < 0, it can be concluded that if a certain pathway from P(H0)
maximizes SDR(H0), it will also minimize SDD(H0). and vice versa. Thus, the pathways that
satisfy these two objective are identical. �

2 Energizing effect of motivational manipulation on habitual responses

We show the energizing effect for a two-dimensional homeostatic space. The proposition, however,
can be easily extended to higher dimensions.

Proposition 2: For the two internal states H0 = (x0, y0) , H1 = (x1, y1), and the drive-reducing
outcome K = (εX), εY ), we will have:

r(H1,K) =
d(H1)

d(H0)
.r(H0,K) (6)

if εX , εY → 0, and
x∗ − x0

y∗ − y0
=

x∗ − x1

y∗ − y1
=

εX
εY

.

Proof: Figure 1 shows a sample case that satisfies the assumptions of the proposition. The assump-
tions can be rewritten as:

εX = k(x∗ − x0) = l(x∗ − x1)

εY = k(y∗ − y0) = l(y∗ − y1) (7)

Using the drive-reduction definition of reward, we will have:

Figure 1: A sample for motivational shift in a two dimensional homeostatic space
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r(H1,K)

r(H0,K)
=

d(h1)− d(h1 +K)

d(h0)− d(h0 +K)

=
d(h1)− d((x1 + εX , y1 + εY ))

d(h0)− d((x0 + εX , y0 + εY ))

=
d(h1)− m

√
(x∗ − x1 − l(x∗ − x1))n + (y∗ − y1 − k(y∗ − y1))n

d(h0)− m
√
(x∗ − x0 − l(x∗ − x0))n + (y∗ − y0 − k(y∗ − y0))n

=
d(h1)− m

√
((x∗ − x1)(1− l))n + ((y∗ − y1)(1− l))n

d(h0)− m
√
((x∗ − x0)(1− k))n + ((y∗ − y0)(1− k))n

=
d(h1)(1− m

√
(1− l)n)

d(h0)(1− m
√

(1− k)n)
(8)

Assuming that k, l → 0, which is equivalent to assuming that εX , εY → 0, and using the hopital
rule, we will have:

lim
εX ,εY →0

r(H1,K)

r(H0,K)
= lim

εX ,εY →0

d(h1)(1− m
√
(1− l)n)

d(h0)(1− m
√

(1− k)n)
=

d(H1)

d(H0)
(9)

�
By assuming that the animals motivational state during the training trials has been H0, and has
shifted to H1 for test trials, proposition 2 shows that under some assumptions, the rewarding value

of an outcome that could be acquired in the training phase will be multiplied by
d(H1)

d(H0)
in the test

phase. Thus, as cached value of each state-action pair is expected to have converged to the sum of

discounted rewards, and as all the rewards are multiplied by the factor
d(H1)

d(H0)
, the value of state-

action pairs in the new motivational state can be approximated by:

Q1(s, a) =
d(H1)

d(H0)
.Q0(s, a) (10)

The above argument requires the animal to be in a single physiological state during the course of
learning. Although this assumption is consistent with most of the behavioral conditioning experi-
ments where the motivational state of the animal is tried to be kept constant at different blocks of the
experiment, the internal state is so variable in real life conditions. To handle this variability it can
be assumed that the habitual system uses a fixed physiological state, denoted by H̄ , as a common
currency that everything else can be translated into. To see how this works, let’s assume that at time
t, the animal is in internal state Ht and after taking action a in state s, receives an outcome that has
a rewarding value equal to rt. This rewarding value is computed by the drive reduction equation and
thus, is a function of Ht. The habitual system, however, rather that using rt for updating the value
of the performed action, uses r̄t computed by the below equation:

r̄t =
d(H̄)

d(Ht)
.rt (11)

This means that the habitual system learns the value of that action as if the outcome has been received
when the internal state had been H̄ , rather than Ht. Again, the above equation gives a perfect
approximation only when Ht = c.H̄ , where c ≥ 0. Using this mechanism, variations in the internal
state during training doesn’t disrupt value learning, because the rewarding effect of outcomes has
been evaluated as if the animal has been in a fixed internal state, H̄ . At the time of performance,
t′, the common-currency-based values, denote by Q̄(s, a), can be translated back, given the current
internal state of the animal, Ht′ :

Qt′(s, a) =
d(Ht′)

d(H̄)
.Q̄(s, a) (12)
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3 Anticipatory responses

Proposition 3: Assume that at the drive state x∗, the animal can voluntarily choose kX and change
its drive state to (x∗ + kX). After one time delay the drive state moves to (x∗ + kX − lX), and after
one more delay it will again go back to the setpoint, x∗. If γ → 1, then the optimal strategy in this
scenario in order to maximize the sum of discounted rewards, or minimize the sum of discounted
deviations, is when kX = lX/2.

Proof: Figure 2 shows the trajectory of the internal state in the scenario described above. Denoting

Figure 2: Predictive homeostasis for temperature regulation

the sum of discounted rewards by SDR, we will have:

SDR = r(x∗, kX) + γ.r(x∗ + kX ,−lX) + γ2.r(x∗ + kX − lX , lX − kX)

= [d(x∗)− d(x∗ + kX)] + γ.[d(x∗ + kX)− d(x∗ + kX − lX)] + γ2.[d(x∗ + kX − lX)− d(x∗)]

= 0− m
√
|kX |n + γ.

[
m
√

|kX |n − m
√
|kX − lX |n

]
+ γ2.

[
m
√
|lX − kX |n − 0

]
(13)

Thus,
d(SDR)

dlX
= 0 ⇒ (kX)

n

m
−1

(γ − 1) = (lX − kX)

n

m
−1

γ(γ − 1) (14)

If γ ̸= 1, then

kX = lX .
1

1 + γ

m

m− n

(15)

Thus, for γ → 1 we have kX = lX/2. �
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