
Boosting with Maximum Adaptive Sampling

Charles Dubout
Idiap Research Institute

charles.dubout@idiap.ch

François Fleuret
Idiap Research Institute

francois.fleuret@idiap.ch

Abstract

Classical Boosting algorithms, such as AdaBoost, build a strong classifier without
concern about the computational cost. Some applications, in particular in com-
puter vision, may involve up to millions of training examples and features. In
such contexts, the training time may become prohibitive. Several methods exist
to accelerate training, typically either by sampling the features, or the examples,
used to train the weak learners. Even if those methods can precisely quantify the
speed improvement they deliver, they offer no guarantee of being more efficient
than any other, given the same amount of time.
This paper aims at shading some light on this problem, i.e. given a fixed amount
of time, for a particular problem, which strategy is optimal in order to reduce
the training loss the most. We apply this analysis to the design of new algo-
rithms which estimate on the fly at every iteration the optimal trade-off between
the number of samples and the number of features to look at in order to maximize
the expected loss reduction. Experiments in object recognition with two standard
computer vision data-sets show that the adaptive methods we propose outperform
basic sampling and state-of-the-art bandit methods.

1 Introduction

Boosting is a simple and efficient machine learning algorithm which provides state-of-the-art per-
formance on many tasks. It consists of building a strong classifier as a linear combination of weak-
learners, by adding them one after another in a greedy manner. However, while textbook AdaBoost
repeatedly selects each of them using all the training examples and all the features for a predeter-
mined number of rounds, one is not obligated to do so and can instead choose only to look at a
subset of examples and features.

For the sake of simplicity, we identify the space of weak learners and the feature space by consid-
ering all the thresholded versions of the latter. More sophisticated combinations of features can be
envisioned in our framework by expanding the feature space.

The computational cost of one iteration of Boosting is roughly proportional to the product of the
number of candidate weak learners Q and the number of samples T considered, and the perfor-
mance increases with both. More samples allow a more accurate estimation of the weak-learners’
performance, and more candidate weak-learners increase the performance of the best one. There-
fore, one wants at the same time to look at a large number of candidate weak-learners, in order to
find a good one, but also needs to look at a large number of training examples, to get an accurate
estimate of the weak-learner performances. As Boosting progresses, the candidate weak-learners
tend to behave more and more similarly, as their performance degrades. While a small number of
samples is initially sufficient to characterize the good weak-learners, it becomes more and more
difficult, and the optimal values for a fixed product QT moves to larger T and smaller Q.

We focus in this paper on giving a clear mathematical formulation of the behavior described above.
Our main analytical results are Equations (13) and (17) in § 3. They give exact expressions of the

1

expected edge of the selected weak-learner – that is the immediate loss reduction it provides in the
considered Boosting iteration – as a function of the number T of samples and number Q of weak-
learners used in the optimization process. From this result we derive several algorithms described in
§ 4, and estimate their performance compared to standard and state-of-the-art baselines in § 5.

2 Related works

The most computationally intensive operation performed in Boosting is the optimization of the
weak-learners. In the simplest version of the procedure, it requires to estimate for each candidate
weak-learner a score dubbed “edge”, which requires to loop through every training example. Re-
ducing this computational cost is crucial to cope with high-dimensional feature spaces or very large
training sets. This can be achieved through two main strategies: sampling the training examples, or
the feature space, since there is a direct relation between features and weak-learners.

Sampling the training set was introduced historically to deal with weak-learners which can not be
trained with weighted samples. This procedure consists of sampling examples from the training set
according to their Boosting weights, and of approximating a weighted average over the full set by
a non-weighted average over the sampled subset. See § 3.1 for formal details. Such a procedure
has been re-introduced recently for computational reasons [5, 8, 7], since the number of subsampled
examples controls the trade-off between statistical accuracy and computational cost.

Sampling the feature space is the central idea behind LazyBoost [6], and consists simply of replacing
the brute-force exhaustive search over the full feature set by an optimization over a subset produced
by sampling uniformly a predefined number of features. The natural redundancy of most of the
families of features makes such a procedure particularly efficient.

Recently developed methods rely on multi-arms bandit methods to balance properly the exploitation
of features known to be informative, and the exploration of new features [3, 4]. The idea behind
those methods is to associate a bandit arm to every feature, and to see the loss reduction as a reward.
Maximizing the overall reduction is achieved with a standard bandit strategy such as UCB [1], or
Exp3.P [2], see § 5.2 for details.

These techniques suffer from three important drawbacks. First they make the assumption that the
quality of a feature – the expected loss reduction of a weak-learner using it – is stationary. This goes
against the underpinning of Boosting, which is that at any iteration the performance of the learners
is relative to the sample weights, which evolves over the training (Exp3.P does not make such an
assumption explicitly, but still rely only on the history of past rewards). Second, without additional
knowledge about the feature space, the only structure they can exploit is the stationarity of individual
features. Hence, improvement over random selection can only be achieved by sampling again the
exact same features one has already seen in the past. We therefore only use those methods in a
context where features come from multiple families. This allows us to model the quality, and to bias
the sampling, at the level of families instead of individual features.

Those approaches exploit information about features to bias the sampling, hence making it more
efficient, and reducing the number of weak-learners required to achieve the same loss reduction.
However, they do not explicitly aim at controlling the computational cost. In particular, there is no
notion of varying the number of samples used for the estimation of the weak-learners’ performance.

3 Boosting with noisy maximization

We present in this section some analytical results to approximate a standard round of AdaBoost – or
most other Boosting algorithms – by sampling both the training examples and the features used to
build the weak-learners. Our main goal is to devise a way of selecting the optimal numbers of weak-
learners Q and samples T to look at, so that their product is upper-bounded by a given constant, and
that the expectation of the real performance of the selected weak-learner is maximal.

In § 3.1 we recall standard notation for Boosting, the concept of the edge of a weak-learner, and
how it can be approximated by a sampling of the training examples. In § 3.2 we formalize the
optimization of the learners and derive the expectation E[G∗] of the true edge G∗ of the selected
weak-learner, and we illustrate these results in the Gaussian case in § 3.3.

2

1{condition} is equal to 1 if the condition is true, 0 otherwise
N number of training examples
F number of weak-learners
K number of families of weak-learners
T number of examples subsampled from the full training set
Q number of weak-learners sampled in the case of a single family of features
Q1, . . . , QK number of weak-learners sampled from each one of the K families
(xn, yn) ∈ X × {−1, 1} training examples
ωn ∈ R weights of the nth training example in the considered Boosting iteration
Gq true edge of the qth weak-learner
G∗ true edge of the selected weak-learner
e(Q,T) value of E[G∗], as a function of Q and T
e(Q1, . . . , QK , T) value of E[G∗], in the case of K families of features
Hq approximated edge of the qth weak-learner, estimated from the subsampled T examples
∆q estimation error in the approximated edge Hq −Gq

Table 1: Notations

As stated in the introduction, we will ignore the feature space itself, and only consider in the fol-
lowing sections the set of weak-learners built from it. Also, note that both the Boosting procedure
and our methods are presented in the context of binary classification, but can be easily extended to a
multi-class context using for example AdaBoost.MH, which we used in all our experiments.

3.1 Edge estimation with weighting-by-sampling

Given a training set
(xn, yn) ∈ X × {−1, 1}, n = 1, . . . , N (1)

and a setH of weak-learners, the standard Boosting procedure consists of building a strong classifier

f(x) =
∑
i

αi hi(x) (2)

by choosing the terms αi ∈ R and hi ∈ H in a greedy manner to minimize a loss estimated over the
training samples.

At every iteration, choosing the optimal weak-learner boils down to finding the weak-learner with
the largest edge, which is the derivative of the loss reduction w.r.t. the weak-learner weight. The
higher this value, the more the loss can be reduced locally, and thus the better the weak-learner. The
edge is a linear function of the responses of the weak-learner over the samples

G(h) =

N∑
n=1

ynωnh(xn), (3)

where the ωns depend on the current responses of f over the xns. We consider without loss of
generality that they have been normalized such that

∑N
n=1 ωn = 1.

Given an arbitrary distribution η over the sample indexes, with a non-zero mass over every index,
we can rewrite the edge as

G(h) = EN∼η

[
yNωN
η(N)

h(xN)

]
(4)

which, for η(n) = ωn gives
G(h) = EN∼η [yNh(xN)] (5)

The idea of weighting-by-sampling consists of replacing the expectation in that expression with an
approximation obtained by sampling. Let N1, . . . , NT , be i.i.d. of distribution η, we define the
approximated edge as

H(h) =
1

T

T∑
t=1

yNth(xNt), (6)

3

G*

P(H | G)P(H | G)

GGG

H H H

3

312

2 3 1

2 3
P(H | G)

112

Figure 1: To each of the Q weak-learner corresponds a real edge Gq computed over all the training
examples, and an approximated edge Hq computed from a subsampling of T training examples.
The approximated edge fluctuates around the true value, with a binomial distribution. The Boosting
algorithm selects the weak-learner with the highest approximated edge, which has a real edge G∗.
On this figure, the largest approximated edge is H1, hence the real edge G∗ of the selected weak-
learner is equal to G1, which is less than G3.

which follows a binomial distribution centered on the true edge, with a variance decreasing with the
number of samples T . It is accurately modeled with

H(h) ∼ N
(
G,

(1 +G)(1−G)

T

)
. (7)

3.2 Formalization of the noisy maximization

LetG1, . . . , GQ be a series of independent, real-valued random variables standing for the true edges
of Q weak-learners sampled randomly. Let ∆1, . . . ,∆Q be a series of independent, real-valued
random variables standing for the noise in the estimation of the edges due to the sampling of only T
training examples, and finally ∀q, let Hq = Gq + ∆q be the approximated edge.

We define G∗ as the true edge of the weak-learner, which has the highest approximated edge
G∗ = Gargmax1≤q≤Q Hq

(8)

This quantity is random due to both the sampling of the weak-learners, and the sampling of the
training examples.

The quantity we want to optimize is e(Q,T) = E[G∗], the expectation of the true edge of the
selected learner, which increases with both Q and T . A higher Q increases the number of terms in
the maximization of Equation (8), and a higher T reduces the variance of the ∆s, ensuring thatG∗ is
close to maxq Gq . In practice, if the variance of the ∆s is of the order of, or higher than, the variance
of the Gs, the maximization is close to a pure random selection, and looking at many weak-learners
is useless.

We have:
e(Q,T) = E[G∗] (9)

= E
[
Gargmax1≤q≤Q Hq

]
(10)

=

Q∑
q=1

E

Gq ∏
u6=q

1{Hq>Hu}

 (11)

=

Q∑
q=1

E

E
Gq ∏

u6=q

1{Hq>Hu}

∣∣∣∣∣∣Hq

 (12)

=

Q∑
q=1

E

E[Gq|Hq]
∏
u 6=q

E
[
1{Hq>Hu}

∣∣Hq

] (13)

4

If the distributions of theGqs and the ∆qs are Gaussians or mixtures of Gaussians, we can derive an-
alytical expressions for both E[Gq|Hq] and E

[
1{Hq>Hu}

∣∣Hq

]
, and compute the value of e(Q,T)

efficiently.

In the case of multiple families of weak-learners, it makes sense to model the distributions of the
edges Gq separately for each family, as they often have a more homogeneous behavior inside a
family than across families. We can easily adapt the framework developed in the previous sections
to that case, and we define e(Q1, . . . , QK , T), the expected edge of the selected weak-learner when
we sample T examples from the training set, and Qk weak-learners from the kth family.

3.3 Gaussian case

As an illustrative example, we consider here the case where the Gqs, the ∆qs, and hence also the
Hqs all follow Gaussian distributions. We take Gq ∼ N (0, 1), and ∆q ∼ N (0, σ2), and obtain:

e(Q,T) = QE

E[G1|H1]
∏
u 6=1

E
[
1{H1>Hu}

∣∣H1

] (14)

= QE

[
H1

σ2 + 1
Φ

(
H1√
σ2 + 1

)Q−1]
(15)

=
1√

σ2 + 1
E
[
QG1Φ (G1)

Q−1
]

(16)

=
1√

σ2 + 1
E

[
max

1≤q≤Q
Gq

]
. (17)

Where, Φ stands for the cumulative distribution function of the unit Gaussian, and σ depends on T .
See Figure 2 for an illustration of the behavior of e(Q,T) for two different variances of the Gqs.

There is no reason to expect the distribution of theGqs to be Gaussian, contrary to the ∆qs, as shown
by Equation (7), but this is not a problem as it can always be approximated by a mixture, for which
we can still derive analytical expressions, even if the Gqs or the ∆qs have different distributions for
different qs.

4 Adaptive Boosting Algorithms

We propose here several new algorithms to sample features and training examples adaptively at each
Boosting step.

While all the formulation above deals with uniform sampling of weak learners, we actually sample
features, and optimize thresholds to build stumps. We observed that after a small number of Boosting
iterations, the Gaussian model of Equation (7) is sufficiently accurate.

4.1 Maximum Adaptive Sampling

At every Boosting step, our first algorithm MAS Naive models Gq with a Gaussian mixture model
fitted on the edges estimated at the previous iteration, computes from that density model the pair
(Q,T) maximizing e(Q,T), samples the corresponding number of examples and features, and keeps
the weak-learner with the highest approximated edge.

The algorithm MAS 1.Q takes into account the decomposition of the feature set into K families of
feature extractors. It models the distributions of the Gqs separately, estimating the distribution of
each on a small number of features and examples sampled at the beginning of each iteration, chosen
so as to account for 10% of the total cost. From these models, it optimizes Q, T and the index l of
the family to sample from, to maximize e(Q1{l=1}, . . . , Q1{l=K}, T). Hence, in a given Boosting
step, it does not mix weak-learners based on features from different families.

Finally MAS Q.1 similarly models the distributions of the Gqs, but it optimizes Q1, . . . , QK , T
greedily, starting from Q1 = 0, . . . , QK = 0, and iteratively incrementing one of the Ql so as to
maximize e(Q1, . . . , QK , T).

5

1
10

100
1,000

10,000

1
10

100
1,000

10,000

0

1

2

3

4

Number of samples TNumber of features Q

E
[G

*]

1
10

100
1,000

10,000

1
10

100
1,000

10,000

0

1

2

3

4

Number of samples TNumber of features Q

E
[G

*]

1 10 100 1,000 10,000
0

1

2

3

4

Number of features Q

E
[G

*]
fo

r
a

gi
ve

n
co

st
 T

Q

TQ = 1,000

TQ = 10,000

TQ = 100,000

1 10 100 1,000 10,000
0

1

2

3

4

Number of features Q

E
[G

*]
fo

r
a

gi
ve

n
co

st
 T

Q

TQ = 1,000

TQ = 10,000

TQ = 100,000

E[G*]

TQ = 1,000

TQ = 10,000

TQ = 100,000

E[G*]

TQ = 1,000

TQ = 10,000

TQ = 100,000

Figure 2: Simulation of the expectation of G∗ in the case where both the Gqs and the ∆qs follow
Gaussian distributions. Top: Gq ∼ N (0, 10−2). Bottom: Gq ∼ N (0, 10−4). In both simulations
∆q ∼ N (0, 1/T). Left: Expectation of G∗ vs. the number of sampled weak-learner Q and the
number of samples T . Right: same value as a function of Q alone, for different fixed costs (product
of the number of examples T and Q). As this graphs illustrates, the optimal value for Q is greater
for larger variances of the Gq . In such a case the Gq are more spread out, and identifying the largest
one can be done despite a large noise in the estimations, hence with a limited number of samples.

4.2 Laminating

The fourth algorithm we have developed tries to reduce the requirement for a density model of
the Gq . At every Boosting step it iteratively reduces the number of considered weak-learners, and
increases the number of samples.

More precisely: given a fixed Q0 and T0, at every Boosting iteration, the Laminating first samples
Q0 weak-learners and T0 training examples. Then, it computes the approximated edges and keeps
the Q0/2 best weak-learners. If more than one remains, it samples 2T0 examples, and re-iterates.
The cost of each iteration is constant, equal toQ0T0, and there are at most log2(Q0) of them, leading
to an overall cost ofO(log2(Q0)Q0T0). In the experiments, we equalize the computational cost with
the MAS approaches parametrized by T,Q by forcing log2(Q0)Q0T0 = TQ.

5 Experiments

We demonstrate the validity of our approach for pattern recognition on two standard data-sets, using
multiple types of image features. We compare our algorithms both to different flavors of uniform
sampling and to state-of-the-art bandit based methods, all tuned to deal properly with multiple fam-
ilies of features.

5.1 Datasets and features

For the first set of experiments we use the well known MNIST handwritten digits database [10], con-
taining respectively 60,000/10,000 train/test grayscale images of size 28× 28 pixels, divided in ten
classes. We use features computed by multiple image descriptors, leading to a total of 16,451 fea-
tures. Those descriptors can be broadly divided in two categories. (1) Image transforms: Identity,
Gradient image, Fourier and Haar transforms, Local Binary Patterns (LBP/iLBP). (2) Histograms:

6

sums of the intensities in random image patches, histograms of (oriented and non oriented) gradients
at different locations, Haar-like features.

For the second set of experiments we use the challenging CIFAR-10 data-set [9], a subset of the
80 million tiny images data-set. It contains respectively 50,000/10,000 train/test color images of
size 32 × 32 pixels, also divided in 10 classes. We dub it as challenging as state-of-the-art results
without using additional training data barely reach 65% accuracy. We use directly as features the
same image descriptors as described above for MNIST, plus additional versions of some of them
making use of color information.

5.2 Baselines

We first define three baselines extending LazyBoost in the context of multiple feature families. The
most naive strategy one could think of, that we call Uniform Naive, simply ignores the families, and
picks features uniformly at random. This strategy does not properly distribute the sampling among
the families, thus if one of them had a far greater cardinality than the others, all features would come
from it. We define Uniform 1.Q to pick one of the feature families at random, and then samples
the Q features from that single family, and Uniform Q.1 to pick uniformly at random Q families of
features, and then pick one feature uniformly in each family.

The second family of baselines we have tested bias their sampling at every Boosting iteration ac-
cording to the observed edges in the previous iterations, and balance the exploitation of families of
features known to perform well with the exploration of new family by using bandit algorithms [3, 4].
We use three such baselines (UCB, Exp3.P, ε-greedy), which differ only by the underlying bandit
algorithm used.

We tune the meta-parameters of these techniques – namely the scale of the reward and the
exploration-exploitation trade-off – by training them multiple times over a large range of parameters
and keeping only the results of the run with the smallest final Boosting loss. Hence, the computa-
tional cost is around one order of magnitude higher than for our methods in the experiments.

Nb. of Uniform Bandits MAS
stumps Naive 1.Q Q.1 UCB? Exp3.P? ε-greedy? Naive 1.Q Q.1 Laminating

MNIST
10 -0.34 (0.01) -0.33 (0.02) -0.35 (0.02) -0.33 (0.01) -0.32 (0.01) -0.34 (0.02) -0.51 (0.02) -0.50 (0.02) -0.52 (0.01) -0.43 (0.00)
100 -0.80 (0.01) -0.73 (0.03) -0.81 (0.01) -0.73 (0.01) -0.73 (0.02) -0.73 (0.03) -1.00 (0.01) -1.00 (0.01) -1.03 (0.01) -1.01 (0.01)
1,000 -1.70 (0.01) -1.45 (0.02) -1.68 (0.01) -1.64 (0.01) -1.52 (0.02) -1.60 (0.04) -1.83 (0.01) -1.80 (0.01) -1.86 (0.00) -1.99 (0.01)
10,000 -5.32 (0.01) -3.80 (0.02) -5.04 (0.01) -5.26 (0.01) -5.35 (0.04) -5.38 (0.09) -5.35 (0.01) -5.05 (0.02) -5.30 (0.00) -6.14 (0.01)

CIFAR-10
10 -0.26 (0.00) -0.25 (0.01) -0.26 (0.00) -0.25 (0.01) -0.25 (0.01) -0.26 (0.00) -0.28 (0.00) -0.28 (0.00) -0.28 (0.01) -0.28 (0.00)
100 -0.33 (0.00) -0.33 (0.01) -0.34 (0.00) -0.33 (0.00) -0.33 (0.00) -0.33 (0.00) -0.35 (0.00) -0.35 (0.00) -0.37 (0.01) -0.37 (0.00)
1,000 -0.47 (0.00) -0.46 (0.00) -0.48 (0.00) -0.48 (0.00) -0.47 (0.00) -0.48 (0.00) -0.48 (0.00) -0.48 (0.00) -0.49 (0.01) -0.50 (0.00)
10,000 -0.93 (0.00) -0.85 (0.00) -0.91 (0.00) -0.90 (0.00) -0.91 (0.00) -0.91 (0.00) -0.93 (0.00) -0.88 (0.00) -0.89 (0.01) -0.90 (0.00)

Table 2: Mean and standard deviation of the Boosting loss (log10) on the two data-sets and for
each method, estimated on ten randomized runs. Methods highlighted with a ? require the tuning of
meta-parameters which have been optimized by training fully multiple times.

5.3 Results and analysis

We report the results of the proposed algorithms against the baselines introduced in § 5.2 on the
two data-sets of § 5.1 using the standard train/test cuts in tables 2 and 3. We ran each configuration
ten times and report the mean and standard deviation of each. We set the maximum cost of all the
algorithms to 10N , setting Q = 10 and T = N for the baselines, as this configuration leads to the
best results after 10,000 Boosting rounds of AdaBoost.MH.

These results illustrate the efficiency of the proposed methods. For 10, 100 and 1,000 weak-learners,
both the MAS and the Laminating algorithms perform far better than the baselines. Performance
tend to get similar for 10,000 stumps, which is unusually large.

As stated in § 5.2, the meta-parameters of the bandit methods have been optimized by running the
training fully ten times, with the corresponding computational effort.

7

Nb. of Uniform Bandits MAS
stumps Naive 1.Q Q.1 UCB? Exp3.P? ε-greedy? Naive 1.Q Q.1 Laminating

MNIST
10 51.18 (4.22) 54.37 (7.93) 48.15 (3.66) 52.86 (4.75) 53.80 (4.53) 51.37 (6.35) 25.91 (2.04) 25.94 (2.57) 25.73 (1.33) 35.70 (2.35)
100 8.95 (0.41) 11.64 (1.06) 8.69 (0.48) 11.39 (0.53) 11.58 (0.93) 11.59 (1.12) 4.87 (0.29) 4.78 (0.16) 4.54 (0.21) 4.85 (0.16)
1,000 1.75 (0.06) 2.37 (0.12) 1.76 (0.08) 1.80 (0.08) 2.18 (0.14) 1.83 (0.16) 1.50 (0.06) 1.59 (0.08) 1.45 (0.04) 1.34 (0.08)
10,000 0.94 (0.06) 1.13 (0.03) 0.94 (0.04) 0.90 (0.05) 0.84 (0.02) 0.85 (0.07) 0.92 (0.03) 0.97 (0.05) 0.94 (0.04) 0.85 (0.04)

CIFAR-10
10 76.27 (0.97) 78.57 (1.94) 76.00 (1.60) 77.04 (1.65) 77.51 (1.50) 77.13 (1.15) 71.54 (0.69) 71.13 (0.49) 70.63 (0.34) 71.54 (1.06)
100 56.94 (1.01) 58.33 (1.30) 54.48 (0.64) 57.49 (0.46) 58.47 (0.81) 58.19 (0.83) 53.94 (0.55) 52.79 (0.09) 50.15 (0.64) 50.44 (0.68)
1,000 39.13 (0.61) 39.97 (0.37) 37.70 (0.38) 38.13 (0.30) 39.23 (0.31) 38.36 (0.72) 38.79 (0.28) 38.31 (0.27) 36.95 (0.25) 36.39 (0.58)
10,000 31.83 (0.29) 31.16 (0.29) 30.56 (0.30) 30.55 (0.24) 30.39 (0.22) 29.96 (0.45) 32.07 (0.27) 31.36 (0.13) 32.51 (0.38) 31.17 (0.22)

Table 3: Mean and standard deviation of the test error (in percent) on the two data-sets and for
each method, estimated on ten randomized runs. Methods highlighted with a ? require the tuning of
meta-parameters which have been optimized by training fully multiple times.

On the MNIST data-set, when adding 10 or 100 weak-learners, our methods roughly divides the
error rate by two, and still improves it by ' 30% with 1,000 stumps. The loss reduction follows the
same pattern.

The CIFAR data-set is a very difficult pattern recognition problem. Still our algorithms performs
substantially better than the baselines for 10 and 100 weak-learners, gaining more than 10% in the
test error rates, and behave similarly to the baselines for larger number of stumps.

As stated in § 1, the optimal values for a fixed product QT moves to larger T and smaller Q.
For instance, On the MNIST data-set with MAS Naive, averaging on ten randomized runs, for
respectively 10, 100, 1,000, 10,000 stumps, T = 1,580, 13,030, 37,100, 43,600, and Q = 388, 73,
27, 19. We obtain similar and consistent results across settings.

The overhead of MAS algorithms compared to Uniform ones is small, in our experiments, taking
into account the time spent computing features, it is approximately 0.2% for MAS Naive, 2% for
MAS 1.Q and 8% for MAS Q.1. The Laminating algorithm has no overhead.

The poor behavior of bandit methods for small number of stumps may be related to the large varia-
tions of the sample weights during the first iterations of Boosting, which goes against the underlying
assumption of stationarity of the loss reduction.

6 Conclusion

We have improved Boosting by modeling the statistical behavior of the weak-learners’ edges. This
allowed us to maximize the loss reduction under strict control of the computational cost. Experi-
ments demonstrate that the algorithms perform well on real-world pattern recognition tasks.

Extensions of the proposed methods could be investigated along two axis. The first one is to blur the
boundary between the MAS procedures and the Laminating, by deriving an analytical model of the
loss reduction for generalized sampling procedures: Instead of doubling the number of samples and
halving the number of weak-learners, we could adapt both set sizes optimally. The second is to add a
bandit-like component to our methods by adding a variance term related to the lack of samples, and
their obsolescence in the Boosting process. This would account for the degrading density estimation
when weak-learner families have not been sampled for a while, and induce an exploratory sampling
which may be missing in the current algorithms.

Acknowledgments

This work was supported by the European Community’s 7th Framework Programme under grant
agreement 247022 – MASH, and by the Swiss National Science Foundation under grant 200021-
124822 – VELASH. We also would like to thank Dr. Robert B. Israel, Associate Professor Emeritus
at the University of British Columbia for his help on the derivation of the expectation of the true
edge of the weak-learner with the highest approximated edge (equations (9) to (13)).

8

References

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning, 47(2):235–256, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multiarmed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2003.

[3] R. Busa-Fekete and B. Kegl. Accelerating AdaBoost using UCB. JMLR W&CP, Jan 2009.
[4] R. Busa-Fekete and B. Kegl. Fast Boosting using adversarial bandits. In ICML, 2010.
[5] N. Duffield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary subset

sums. J. ACM, 54, December 2007.
[6] G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation.

Machine Learning: ECML 2000, pages 129–141, 2000.
[7] F. Fleuret and D. Geman. Stationary features and cat detection. Journal of Machine Learning

Research (JMLR), 9:2549–2578, 2008.
[8] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-scale Boosting. British

machine vision conference, 2008.
[9] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, 2009.

http://www.cs.toronto.edu/˜kriz/cifar.html.
[10] Y. Lecun and C. Cortes. The mnist database of handwritten digits. http://yann.lecun.

com/exdb/mnist/.

9

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

