
Appendix—Supplementary Materials

In the appendix, we give proofs of the theorems. First, we give some preliminaries.

If X ∼ χ2(k), then the non-central moments are given by

E [Xn] = 2n
Γ(n+ k/2)

Γ(k/2)
= k(k + 2) · · · (k + 2n− 2),

where Γ(z) is the Gamma function defined as

Γ(z) :=

∫ +∞

0

tz−1e−tdt.

The Gamma function satisfies Γ(z + 1) = zΓ(z), Γ(1/2) =
√
π, and Γ(1) = 1.

If X ∼ N (µ, σ2), central absolute moments (the moments of |X − µ|) are given by

E [|x− µ|p] =

{
σp(p− 1)!!

√
2/π, p is odd,

σp(p− 1)!! p is even,

where n!! denotes the double factorial defined by

n!! :=


n · (n− 2) · · · 5 · 3 · 1 n is positive odd,
n · (n− 2) · · · 6 · 4 · 2 n is positive even,
1 n = 1 or 0.

A Proof of Theorem 1

For notational brevity, we denote the i-th component of f(θ) = ∇η log p(θ | ρ) and the i-th
component of g(θ) = ∇τ log p(θ | ρ) as

fi(θ) = ∇ηi log p(θ | ρ) =
θi − ηi
τ2i

,

gi(θ) = ∇τi log p(θ | ρ) =
(θi − ηi)2 − τ2i

τ3i
.

Proof. According to Eq.(1), we have

Var[R(h)f(θ)] ≤
∑̀
i=1

E
[
(Rfi)

2
]

=
∑̀
i=1

∫
p(θi)

(
T∑
t=1

γt−1r(st, at, st+1)

)2(
θi − ηi
τ2i

)2

dθi

≤
∑̀
i=1

∫
p(θi)

(
T∑
t=1

γt−1β

)2(
θi − ηi
τ2i

)2

dθi

=
∑̀
i=1

∫
p(θi)

(
β(1− γT )

1− γ

)2(
θi − ηi
τ2i

)2

dθi

=
∑̀
i=1

β2(1− γT )2

τ2i (1− γ)2
E

[(
θi − ηi
τi

)2
]
.

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , `. We could know that ψi ∼ χ2(1) and E[ψi] = 1 since
θi ∼ N (ηi, τ

2
i ), and thus

Var[R(h)f(θ)] ≤ β2(1− γT )2B

(1− γ)2
.
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Hence the first part of Theorem 1 follows due to

Var
[
∇ηĴ(ρ)

]
=

1

N
Var[R(h)f(θ)].

Similarly,

Var[R(h)g(θ)] ≤
∑̀
i=1

E
[
(Rgi)

2
]

≤
∑̀
i=1

β2(1− γT )2

τ2i (1− γ)2
E

((θi − ηi
τi

)2

− 1

)2
 .

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , `. Since θi ∼ N (ηi, τ
2
i ), we could know that

E
[
(ψi − 1)2

]
= E

[
ψ2
i

]
− 2E[ψi] + 1 = 2.

Hence

Var[R(h)g(θ)] ≤ 2β2(1− γT )2B

(1− γ)2
.

Notice that
Var

[
∇τ Ĵ(ρ)

]
=

1

N
Var[R(h)g(θ)],

which completes the proof.

B Proof of Theorem 2

To begin with, we note that µ is a vector and σ is a scalar in REINFORCE. We denote the i-th
component of f(h) =

∑T
t=1∇µ log p(at | st,θ) and the scalar function g(h) as

fi(h) =

T∑
t=1

∇µi
log p(at | st,θ) =

T∑
t=1

at − µ>st
σ2

st,i,

g(h) =

T∑
t=1

∇σ log p(at | st,θ) =

T∑
t=1

(at − µ>st)2 − σ2

σ3
,

where all functions above are parameterized by θ.

Proof. Since

Var[∇µĴ(θ)] =
1

N
Var[R(h)f(h)],

Var[∇σĴ(θ)] =
1

N
Var[R(h)g(h)],

we can just focus on the bounds of Var[R(h)f(h)] and Var[R(h)g(h)].

The upper bound of Var[R(h)f(h)]:

Var[R(h)f(h)] ≤
∑̀
i=1

E
[
(Rfi)

2
]

= E
[
R2f>f

]
=

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)2( T∑
t=1

at − µ>st
σ2

st

)>( T∑
t=1

at − µ>st
σ2

st

)
dh

≤ β2(1− γT )2

σ2(1− γ)2
E

 T∑
t,t′=1

(at − µ>st)(at′ − µ>st′)
σ2

s>tst′

 .
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Let ξt = (at − µ>st)/σ for t = 1, . . . , T . Then, ξ1, . . . , ξT are independent standard normal
variables because of at ∼ N (µ>st, σ

2). Since all∇µ log p(at | st,θ) in f(h) are parameterized by
the states st, and the stochasticity of ξt comes only from at, it is sufficient to consider fixed states.
Given {st}Tt=1, ξ1s1, . . . , ξTsT are `-dimensional independent normal variables with zero means,
that is, E[ξtst] = 0. Hence,

E

 T∑
t,t′=1

(at − µ>st)(at′ − µ>st′)
σ2

s>tst′

 = E

 T∑
t,t′=1

ξtξt′s
>
tst′


=

T∑
t=1

E
[
ξ2t s
>
tst
]

+

T∑
t,t′=1,t6=t′

E[ξtst]
>E[ξt′st′ ]

=

T∑
t=1

‖st‖2E
[
ξ2t
]
.

Since ξt ∼ N (0, 1), we have ξ2t ∼ χ2(1) and E[ξ2t ] = 1. Consequently,

Var[R(h)f(h)] ≤ β2(1− γT )2

σ2(1− γ)2

T∑
t=1

‖st‖2E
[
ξ2t
]

=
β2(1− γT )2

σ2(1− γ)2

T∑
t=1

‖st‖2

≤ DTβ
2(1− γT )2

σ2(1− γ)2
,

with probability at least (1− δ)1/2N .

The upper bound of Var[R(h)g(h)]:

Var[R(h)g(h)] ≤ E
[
(Rg)2

]
=

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)2( T∑
t=1

(at − µ>st)2 − σ2

σ3

)2

dh

≤ β2(1− γT )2

σ2(1− γ)2
E

( T∑
t=1

(
at − µ>st

σ

)2

− T

)2
 .

Let ξt = (at − µ>st)/σ for t = 1, . . . , T . Then ξ1, . . . , ξT are independent standard normal
variables. Let κ =

∑T
t=1 ξ

2
t . Then we have κ ∼ χ2(T ) and

E
[
(κ− T )2

]
= E

[
κ2
]
− 2TE[κ] + T 2 = 2T.

Hence

Var[R(h)g(h)] ≤ 2Tβ2(1− γT )2

σ2(1− γ)2
.

The lower bound of Var[R(h)f(h)]: By the same technique used in the corresponding upper
bound, we can prove that with probability at least (1− δ)1/2N ,∑̀

i=1

E
[
(Rfi)

2
]
≥ CTα

2(1− γT )2

σ2(1− γ)2
.

On the other hand, based on the existence of {dt}Tt=1, there must be {dt,i}Tt=1 for i = 1, . . . , `, such
that d2t =

∑`
i=1 d

2
t,i and the inequality |st,i| ≤ dt,i holds with probability at least (1− δ)1/2N`. Let

ξt,i = sgn(st,i)(at−µ>st)/σ for t = 1, . . . , T and i = 1, . . . , `. Then all ξt,i are independent stan-
dard normal variables. Let κi =

∑T
t=1 ξt,i|st,i| and ζi =

∑T
t=1 ξt,idt,i. Then κi ∼ N (0,

∑T
t=1 s

2
t,i)
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for fixed s1,i, . . . , sT,i, ζi ∼ N (0,
∑T
t=1 d

2
t,i), and E[|κi| | s1,i, . . . , sT,i] ≤ E[|ζi|] holds with prob-

ability at least (1−δ)1/2N` over the choice of s1,i, . . . , sT,i according to the underlying p(h). When∫
h
p(h)Rfidh > 0, with probability at least (1− δ)1/2N`,∫

h

p(h)Rfidh ≤
∫
{h|fi(h)>0}

p(h)Rfidh

≤ β(1− γT )

1− γ

∫
{h|fi(h)>0}

p(h)fidh

=
β(1− γT )

1− γ

∫
{h|

∑T
t=1 ξt,i|st,i|>0}

p(h)

T∑
t=1

ξt,i|st,i|dh

=
β(1− γT )

1− γ

∫ +∞

0

p(κi)κidκi

=
β(1− γT )

1− γ

(
1

2
E[|κi|]

)
=
β(1− γT )

1− γ

(
1

2
Es1,i,...,sT,i

[
Eκi [|κi| | s1,i, . . . , sT,i]

])
≤ β(1− γT )

1− γ

(
1

2
E[|ζi|]

)

=
β(1− γT )

1− γ

√∑T
t=1 d

2
t,i√

2π
.

When
∫
h
p(h)Rfidh < 0, with probability at least (1− δ)1/2N`,

∫
h

p(h)Rfidh ≥ −
β(1− γT )

1− γ

√∑T
t=1 d

2
t,i√

2π
.

Therefore,

∑̀
i=1

(E[Rfi])
2 =

∑̀
i=1

(∫
h

p(h)Rfidh

)2

≤
∑̀
i=1

β2(1− γT )2

σ2(1− γ)2

∑T
t=1 d

2
t,i

2π

=
β2(1− γT )2

2πσ2(1− γ)2

T∑
t=1

∑̀
i=1

d2t,i

=
β2(1− γT )2

2πσ2(1− γ)2

T∑
t=1

d2t

=
DTβ

2(1− γT )2

2πσ2(1− γ)2
,

with probability at least (1− δ)1/2N .

Finally, with probability at least (1− δ)1/N , we have

Var[R(h)f(h)] =
∑̀
i=1

E
[
(Rfi)

2
]
− (E[Rfi])

2

≥ (1− γT )2

σ2(1− γ)2
L(T ).
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C Proof of Theorem 3

Proof. According to Theorem 1 and Theorem 2, we could know that if there exists T0 such that

(1− γT )2

Nσ2(1− γ)2
L(T0) ≥ β2(1− γT )2B

N(1− γ)2
,

we could get
L(T0) ≥ β2Bσ2.

Under our assumption that L(T ) > 0 and L(T ) is monotonically increasing with respect to T , we
will have that whenever

∃T0,L(T0) ≥ β2Bσ2,

there must be
∀T > T0,Var[∇µĴ(θ)] > Var[∇ηĴ(ρ)].

D Proof of Theorem 4

We denote f(θ) and its i-th component fi(θ) as

f(θ) =
(
∇η log p(θ | ρ)>,∇τ log p(θ | ρ)>

)>
= ∇ρ log p(θ | ρ),

fi(θ) = (∇ηi log p(θ | ρ),∇τi log p(θ | ρ))>= ∇ρi
log p(θ | ρ).

Note that we still have

Var
[
∇ρĴb(ρ)

]
= Var

[
∇ηĴb(ρ)

]
+ Var

[
∇τ Ĵb(ρ)

]
=

1

N
Var[(R(h)− b)∇η log p(θ | ρ)] +

1

N
Var[(R(h)− b)∇τ log p(θ | ρ)]

=
1

N
Var[(R(h)− b)f(θ)].

Proof. According to Eq.(1), we have

Var[(R(h)− b)f(θ)] =
∑̀
i=1

E[(R− b)2f>i fi]− (E[(R− b)fi])>(E[(R− b)fi])

=
∑̀
i=1

E[R2f>i fi]− 2E[Rbf>i fi] + E[b2f>i fi]

− (E[Rfi]− E[bfi])
>(E[Rfi]− E[bfi]).

Noticing that

E[bfi] =

∫
p(θi | ρi)b∇ρi log p(θi | ρi)dθi

=

∫
b∇ρi

p(θi | ρi)dθi

= b∇ρi

∫
p(θi | ρi)dθi

= b∇ρi
1

= b(∇ηi1,∇τi1)>

= (0, 0)>,

we have

Var[(R(h)− b)f(θ)] = E[R2f>f ]− 2E[Rbf>f ] + E[b2f>f ]− E[Rf ]>E[Rf ].
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The optimal baseline is obtained by minimizing the variance, so that differentiating it with respect
to b and setting the result to zero will give us the optimal baseline for PGPE:

b∗PGPE =
E[Rf>f ]

E[f>f ]
.

Subsequently,

Var[(R− b)f ]−Var[(R− b∗PGPE)f ]

= −2E[Rbf>f ] + E[b2f>f ] + 2E[Rb∗PGPEf
>f ]− E[b∗2PGPEf

>f ]

= −2E[Rbf>f ] + E[b2f>f ] + 2
E[Rf>f ]

E[f>f ]
E[Rf>f ]−

(
E[Rf>f ]

E[f>f ]

)2

E[f>f ]

= b2E[f>f ]− 2bE[Rf>f ] +
(E[Rf>f ])2

E[f>f ]

=

(
b− E[Rf>f ]

E[f>f ]

)2

E[f>f ]

= (b− b∗PGPE)
2 E[f>f ],

which leads to

Var[∇ρĴb(ρ)]−Var[∇ρĴb
∗
PGPE(ρ)] =

1

N
Var[(R− b)f ]− 1

N
Var[(R− b∗PGPE)f ]

=
(b− b∗PGPE)2

N
E[f>f ].

E Proof of Theorem 5

We denote the i-th component of f(θ) = ∇η log p(θ | ρ) as

fi(θ) = ∇ηi log p(θ | ρ) =
θi − ηi
τ2i

.

Proof. By the same technique used in the proof of Theorem 4, we know, when the baseline b = 0,

Var[∇ηĴ(ρ)]−Var[∇ηĴb
∗
PGPE(ρ)] =

(
E[Rf>f ]

)2
NE[f>f ]

.

On one hand,

E[f>f ] =
∑̀
i=1

E[f2i ]

=
∑̀
i=1

E

[(
θi − ηi
τ2i

)2
]

=
∑̀
i=1

1

τ2i
E

[(
θi − ηi
τi

)2
]
.

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , `. We could know that ψi ∼ χ2(1) and E[ψi] = 1 since
θi ∼ N (ηi, τ

2
i ), and thus

E[f>f ] =
∑̀
i=1

1

τ2i
= B.
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On the other hand, when E[Rf>f ] > 0, we have

E[Rf>f ] =
∑̀
i=1

∫
p(θi)R

(
θi − ηi
τ2i

)2

dθi

≤
∑̀
i=1

β(1− γT )

τ2i (1− γ)

∫
p(θi)

(
θi − ηi
τi

)2

dθi

=
∑̀
i=1

β(1− γT )

τ2i (1− γ)
E[ψi]

=
β(1− γT )B

(1− γ)
,

while E[Rf>f ] < 0, we have

E[Rf>f ] ≥ −β(1− γT )B

(1− γ)
.

Hence, (
E[Rf>f ]

)2
E[f>f ]

≤ β2(1− γT )2B

(1− γ)2
.

Similarly, (
E[Rf>f ]

)2
E[f>f ]

≥ α2(1− γT )2B

(1− γ)2
,

which completes the proof.

F Proof of Theorem 6

We denote f(h) =
∑T
t=1∇µ log p(at | st,θ).

Proof. It is easy to prove that, when b = 0,

Var[∇µĴ(θ)]−Var[∇µĴb
∗
REINFORCE(θ)] =

(E[Rf>f ])2

NE[f>f ]
.

From the proof of Theorem 2, we could have

E[f>f ] =
1

σ2

T∑
t=1

‖st‖2.

On the other hand,

E[Rf>f ] =

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)(
T∑
t=1

at − µ>st
σ2

st

)>( T∑
t=1

at − µ>st
σ2

st

)
dh

≤ β(1− γT )

σ2(1− γ)
E

 T∑
t,t′=1

(at − µ>st)(at′ − µ>st′)
σ2

s>tst′


=
β(1− γT )

σ2(1− γ)

T∑
t=1

‖st‖2.

Similarly,

E[Rf>f ] ≥ α(1− γT )

σ2(1− γ)

T∑
t=1

‖st‖2.

16



Therefore,

α2(1− γT )2
∑T
t=1 ‖st‖2

σ2(1− γ)2
≤ (E[Rf>f ])2

E[f>f ]
≤
β2(1− γT )2

∑T
t=1 ‖st‖2

σ2(1− γ)2
,

and subsequently, with probability at least (1− δ)1/N , we have

CTα
2(1− γT )2

σ2(1− γ)2
≤ (E[Rf>f ])2

E[f>f ]
≤ β2(1− γT )2DT

σ2(1− γ)2
.

From this, the theorem follows.

G Proof of Theorem 7

Proof. According to Theorem 5, we know

Var[∇ηĴb
∗
PGPE(ρ)] ≤ Var

[
∇ηĴ(ρ)

]
− α2(1− γT )2B

N(1− γ)2
.

According to Theorem 1, we have

Var
[
∇ηĴ(ρ)

]
≤ β2(1− γT )2B

N(1− γ)2
.

Hence,

Var[∇ηĴb
∗
PGPE(ρ)] ≤ (1− γT )2

N(1− γ)2
(β2 − α2)B.

According to Theorem 6, we know that

Var[∇µĴb
∗
REINFORCE(θ)] ≤ Var

[
∇µĴ(θ)

]
− CTα

2(1− γT )2

Nσ2(1− γ)2

will hold with probability at least (1 − δ)1/2. Furthermore, according to Theorem 2, we have the
following upper bound with probability at least (1− δ)1/2:

Var
[
∇µĴ(θ)

]
≤ DTβ

2(1− γT )2

Nσ2(1− γ)2
.

Eventually, we arrive at the upper bound for REINFORCE with the optimal baseline:

Var[∇µĴb
∗
REINFORCE(θ)] ≤ (1− γT )2

Nσ2(1− γ)2
(DTβ

2 − CTα2),

with probability at least 1− δ.
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