
Convergent Fitted Value Iteration
with Linear Function Approximation

Daniel J. Lizotte
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1 Canada
dlizotte@uwaterloo.ca

Abstract

Fitted value iteration (FVI) with ordinary least squares regression is known to
diverge. We present a new method, “Expansion-Constrained Ordinary Least
Squares” (ECOLS), that produces a linear approximation but also guarantees con-
vergence when used with FVI. To ensure convergence, we constrain the least
squares regression operator to be a non-expansion in the∞-norm. We show that
the space of function approximators that satisfy this constraint is more rich than
the space of “averagers,” we prove a minimax property of the ECOLS residual
error, and we give an efficient algorithm for computing the coefficients of ECOLS
based on constraint generation. We illustrate the algorithmic convergence of FVI
with ECOLS in a suite of experiments, and discuss its properties.

1 Introduction

Fitted value iteration (FVI), both in the model-based [4] and model-free [5, 15, 16, 17] settings, has
become a method of choice for various applied batch reinforcement learning problems. However, it
is known that depending on the function approximation scheme used, fitted value iteration can and
does diverge in some settings. This is particularly problematic—and easy to illustrate—when using
linear regression as the function approximator. The problem of divergence in FVI has been clearly
illustrated in several settings [2, 4, 8, 22]. Gordon [8] proved that the class of averagers–a very
smooth class of function approximators–can safely be used with FVI. Further interest in batch RL
methods then led to work that uses non-parametric function approximators with FVI to avoid diver-
gence [5, 15, 16, 17]. This has left a gap in the “middle ground” of function approximator choices
that guarantee convergence–we would like to have a function approximator that is more flexible than
the averagers but more easily interpreted than the non-parametric approximators. In many scientific
applications, linear regression is a natural choice because of its simplicity and interpretability when
used with a small set of scientifically meaningful state features. For example, in a medical setting,
one may want to base a value function on patient features that are hypothesized to impact a long-term
clinical outcome [19]. This enables scientists to interpret the parameters of an optimal learned value
function as evidence for or against the importance of these features. Thus for this work, we restrict
our attention to linear function approximation, and ensure algorithmic convergence to a fixed point
regardless of the generative model of the data. This is in contrast to previous work that explores
how properties of the underlying MDP and properties of the function approximation space jointly
influence convergence of the algorithm [1, 14, 6].

Our aim is to develop a variant of linear regression that, when used in a fitted value iteration al-
gorithm, guarantees convergence of the algorithm to a fixed point. The contributions of this paper
are three-fold: 1) We develop and describe the “Expansion-Constrained Ordinary Least Squares”
(ECOLS) approximator. Our approach is to constrain the regression operator to be a non-expansion
in the∞-norm. We show that the space of function approximators that satisfy this property is more

1

rich than the space of averagers [8], and we prove a minimax property on the residual error of the
approximator. 2) We give an efficient algorithm for computing the coefficients of ECOLS based
on quadratic programming with constraint generation. 3) We verify the algorithmic convergence
of fitted value iteration with ECOLS in a suite of experiments and discuss its performance. Fi-
nally, we discuss future directions of research and comment on the general problem of learning an
interpretable value function and policy from fitted value iteration.

2 Background

Consider a finite MDP with states S = {1, ..., n}, actionsA = {1, ..., |A|}, state transition matrices
P (a) ∈ Rn×n for each action, a deterministic1 reward vector r ∈ Rn, and a discount factor γ < 1.
Let Mi,: (M:,i) denote the ith row (column) of a matrix M . The “Bellman optimality” operator or
“Dynamic Programming” operator T is given by

(Tv)i = ri + max
a

[
γP

(a)
i,: v

]
. (1)

The fixed point of T is the optimal value function v∗ which satisfies the Bellman equation, Tv∗ = v∗

[3]. From v∗ we can recover a policy π∗i = ri + argmaxa γP
(a)
i,: v

∗ that has v∗ as its value function.
An analogous operator K can be defined for the state-action value function Q ∈ Rn×|A|.

(KQ)i,j = ri + γP
(j)
i,: max

a
Q:,a (2)

The fixed point of K is the optimal state-action value Q∗ which satisfies KQ∗ = Q∗. The value
iteration algorithm proceeds by starting with an initial v or Q, and applying T or K repeatedly until
convergence, which is guaranteed because both T and K are contraction mappings in the infinity
norm [8], as we discuss further below. The above operators assume knowledge of the transition
model P (a) and rewards r. However K in particular is easily adapted to the case of a batch of n
tuples of the form (si, ai, ri, s

′
i) obtained by interaction with the system [5, 15, 16, 17]. In this case,

Q is only evaluated at states in our data set, and in MDPs with continuous state, the number of tuples
n is analogous from a computational point of view to the size of our state space.

Fitted value iteration [5, 15, 16, 17] (FVI) interleaves either T or K above with a function ap-
proximation operator M . For example in the model-based case, the composed operator (M ◦ T)
is applied repeatedly to an initial guess v0. FVI has become increasingly popular especially in the
field of “batch-mode Reinforcement Learning” [13, 7] where a policy is learned from a fixed batch
of data that was collected by a prior agent. This has particular significance in scientific and medical
applications, where ethics concerns prevent the use of current RL methods to interact directly with
a trial subject. In these settings, data gathered from controlled trials can still be used to learn good
policies [11, 19]. Convergence of FVI depends on properties of M—particularly on whether M is a
non-expansion in the∞-norm, as we discuss below. The main advantage of fitted value iteration is
that the computation of (M ◦T) can be much lower than n in cases where the approximator M only
requires computation of elements of (Tv)i for a small subset of the state space. If M generalizes
well, this enables learning in large finite or continuous state spaces. Another advantage is that M
can be chosen to represent the value function in a meaningful way, i.e. in a way that meaningfully
relates state variables to expected performance. For example, if M were linear regression and a
particular state feature had a positive coefficient in the learned value function, we know that larger
values of that state feature are preferable. Linear models are of importance because of their ease of
interpretation, but unfortunately, ordinary least squares (OLS) function approximation can cause the
successive iterations of FVI to fail to converge. We now examine properties of the approximation
operator M that control the algorithmic convergence of FVI.

3 Non-Expansions and Operator Norms

We say M is a linear operator if My + My′ = M(y + y′) ∀y, y′ ∈ Rp and M0 = 0. Any linear
operator can be represented by a p× p matrix of real numbers.

1A noisy reward signal does not alter the analyses that follow, nor does dependence of the reward on action.

2

By definition, an operator M is a γ-contraction in the q-norm if

∃γ ≤ 1 s.t. ||My −My′||q ≤ γ||y − y′||q ∀y, y′ ∈ Rp (3)

If the condition holds only for γ = 1 then M is called a non-expansion in the q-norm. It is well-
known [3, 5, 21] that the operators T and K are γ-contractions in the∞-norm.

The operator norm of M induced by the q-norm can be defined in several ways, including

||M ||op(q) = sup
y∈Rp,y 6=0

||My||q
||y||q

. (4)

Lemma 1. A linear operator M is a γ-contraction in the q-norm if and only if ||M ||op(q) ≤ γ.

Proof. If M is linear and is a γ-contraction, we have

||M(y − y′)||q ≤ γ||y − y′||q ∀y, y′ ∈ Rp. (5)

By choosing y′ = 0, it follows that M satisfies

||Mz||q ≤ γ||z||q ∀z ∈ Rp. (6)

Using the definition of || · ||op(q), we have that the following conditions are equivalent:

||Mz||q ≤ γ||z||q ∀z ∈ Rp (7)
||Mz||q
||z||q

≤ γ ∀z ∈ Rp, z 6= 0 (8)

sup
z∈Rp,z 6=0

||Mz||q
||z||q

≤ γ (9)

||M ||op(q) ≤ γ. (10)

Conversely, any M that satisfies (10) satisfies (5) because we can always write y − y′ = z.

Lemma 1 implies that a linear operator M is a non-expansion in the∞-norm only if

||M ||op(∞) ≤ 1 (11)

which is equivalent [18] to:

max
i

∑
j

|mij | ≤ 1 (12)

Corollary 1. The set of all linear operators that satisfy (12) is exactly the set of linear operators
that are non-expansions in the∞-norm.

One subset of operators on Rp that are guaranteed to be non-expansions in the ∞-norm are the
averagers2, as defined by Gordon [8].
Corollary 2. The set of all linear operators that satisfy (12) is larger than the set of averagers.

Proof. For M to be an averager, it must satisfy

mij ≥ 0 ∀i, j (13)

max
i

∑
j

mij ≤ 1. (14)

These constraints are stricter than (12), because they impose an additional non-negativity constraint
on the elements of M .

We have shown that restricting M to be a non-expansion is equivalent to imposing the constraint
||M ||op(∞) ≤ 1. It is well-known [8] that if such an M is used as a function approximator in
fitted value iteration, the algorithm is guaranteed to converge from any starting point because the
composition M ◦ T is a γ-contraction in the∞-norm.

2The original definition of an averager was an operator of the form y 7→ Ay+ b for a constant vector b. For
this work we assume b = 0.

3

4 Expansion-Constrained Ordinary Least Squares

We now describe our Expansion-Constrained Ordinary Least Squares function approximation
method, and show how we enforce that it is a non-expansion in the∞-norm.

Suppose X is an n × p design matrix with n > p and rank(X) = p, and suppose y is a vector of
regression targets. The usual OLS estimate β̂ for the model y ≈ Xβ is given by

β̂ = argmin
β
||Xβ − y||2 (15)

= (XTX)−1XTy. (16)

The predictions made by the model at the points in X—i.e., the estimates of y—are given by

ŷ = Xβ̂ = X(XTX)−1XTy = Hy (17)

where H is the “hat” matrix because it “puts the hat” on y. The ith element of ŷ is a linear combi-
nation of the elements of y, with weights given by the ith row of H . These weights sum to one, and
may be positive or negative. Note that H is a projection of y onto the column space of X , and has 1
as an eigenvalue with multiplicity rank(X), and 0 as an eigenvalue with multiplicity (n−rank(X)).

It is known [18] that for a linear operator M , ||M ||op(2) is given by the largest singular value of M .
It follows that ||H||op(2) ≤ 1 and, by Lemma 1, H is a non-expansion in the 2-norm. However,
depending on the data X , we may not have ||H||op(∞) ≤ 1, in which case H will not be a non-
expansion in the∞-norm. The∞-norm expansion property of H is problematic when using linear
function approximation for fitted value iteration, as we described earlier.

If one wants to use linear regression safely within a value-iteration algorithm, it is natural to consider
constraining the least-squares problem so that the resulting hat matrix is an∞-norm non-expansion.
Consider the following optimization problem:

W̄ = argmin
W

||XWXTy − y||2 (18)

s.t. ||XWXT||op(∞) ≤ 1, W ∈ Rp×p,W = WT.

The symmetric matrix W is of size p × p, so we have a quadratic objective with a convex norm
constraint on XWXT, resulting in a hat matrix H̄ = XW̄XT. If the problem were unconstrained,
we would have W̄ = (XTX)−1, H̄ = H and β̄ = W̄XTy = β̂, the original OLS parameter
estimate.

The matrix H̄ is a non-expansion by construction. However, unlike the OLS hat matrix H =
X(XTX)−1XT, the matrix H̄ depends on the targets y. That is, given a different set of regression
targets, we would compute a different H̄ . We should therefore more properly write this non-linear
operator as H̄y . Because of the non-linearity, the operator H̄y resulting from the minimization in
(18) can in fact be an expansion in the∞-norm despite the constraints.

We now show how we might remove the dependence on y from (18) so that the resulting operator is
a linear non-expansion in the op(∞)-norm. Consider the following optimization problem:

W̌ = argmin
W

max
z
||XWXTz − z||2 (19)

s.t. ||XWXT||op(∞) ≤ 1, ||z||2 = c, W ∈ Rp×p,W = WT, z ∈ Rn

Intuitively, the resulting W̌ is a linear operator of the form XW̌XT that minimizes the squared
error between its approximation ž and the worst-case (bounded) targets z.3 The resulting W̌ does
not depend on the regression targets y, so the corresponding Ȟ is a linear operator. The constraint
||XWXT||op(∞) ≤ 1 is effectively a regularizer on the coefficients of the hat matrix which will
tend to shrink the fitted values XW̌XTy toward zero.

Minimization 19 gives us a linear operator, but, as we now show, W̌ is not unique—there are in fact
an uncountable number of W̌ that minimize (19).

3The c is a mathematical convenience; if ||z||2 were unbounded then the max would be unbounded and the
problem ill-posed.

4

Theorem 1. Suppose W ′ is feasible for (19) and is positive semi-definite. Then W ′ satisfies

max
z,||z||2<c

||XW ′XTz − z||2 = min
W

max
z,||z||2<c

||XWXTz − z||2 (20)

for all c.

Proof. We begin by re-formulating (19), which contains a non-concave maximization, as a convex
minimization problem with convex constraints.

Lemma 2. Let X , W , c, and H be defined as above. Then

max
z,||z||2=c

||XWXTz − z||2 = c||XWXT − I||op(2).

Proof. maxz∈Rn,||z||2=c ||XWXTz − Iz||2 = maxz∈Rn,||z||2≤1 ||(XWXT − I)cz||2 =

cmaxz∈Rn,||z||2 6=0 ||(XWXT − I)z||2/||z||2 = c||XWXT − I||op(2).

Using Lemma 2, we can rewrite (19) as

W̌ = argmin
W

||XWXT − I||op(2) (21)

s.t. ||XWXT||op(∞) ≤ 1, W ∈ Rp×p,W = WT

which is independent of z and independent of the positive constant c. This objective is convex in
W , as are the constraints. We now prove a lower bound on (21) and prove that W ′ meets the lower
bound.

Lemma 3. For all n×p design matricesX s.t. n > p and all symmetricW , ||XWXT−I||op(2) ≥ 1.

Proof. Recall that ||XWXT − I||op(2) is given by the largest singular value of XWXT − I . By
symmetry of W , write XWXT = UDUT where D is a diagonal matrix whose diagonal entries dii
are the eigenvalues of XWXT and U is an orthonormal matrix. We therefore have

XWXT − I = UDUT − I = UDUT − UIUT = U(D − I)UT (22)

Therefore ||XWXT− I||op(2) = maxi |dii−1|, which is the largest singular value of XWXT− I .
Furthermore we know that rank(XWXT) ≤ p and that therefore at least n− p of the dii are zero.
Therefore maxi |dii − 1| ≥ 1, implying ||XWXT − I||op(2) ≥ 1.

Lemma 4. For any symmetric positive definite matrix W ′ that satisfies the constraints in (19) and
any n× p design matrix X s.t. n > p, we have ||XW ′XT − I||op(2) = 1.

Proof. Let H ′ = XW ′XT and write H ′ − I = U ′(D′ − I)U ′
T where U is orthogonal and D′ is a

diagonal matrix whose diagonal entries d′ii are the eigenvalues ofH ′. We knowH ′ is positive semi-
definite because W ′ is assumed to be positive semi-definite; therefore d′ii ≥ 0. From the constraints
in (19), we have ||H ′||op(∞) ≤ 1, and by symmetry of H ′ we have ||H ′||op(∞) = ||H ′||op(1). It is
known [18] that for any M , ||M ||op(2) ≤

√
||M ||op(∞)||M ||op(1) which gives ||H ′||op(2) ≤ 1 and

therefore |d′ii| ≤ 1 for all i ∈ 1..n. Combining these results gives 0 ≤ d′ii ≤ 1 ∀i. Recall that
||XW ′XT− I||op(2) = maxi |dii− 1|, the maximum eigenvalue of H ′. Because rank(XWXT) ≤
p, we know that there exists an i such that d′ii = 0, and because we have shown that 0 ≤ d′ii ≤ 1, it
follows that maxi |dii − 1| = 1, and therefore ||XW ′XT − I||op(2) = 1.

Lemma 4 shows that the objective value at any feasible, symmetric postive-definite W ′ matches the
lower bound proved in Lemma 3, and that therefore any suchW ′ satisfies the theorem statement.

5

Theorem 1 shows that the optimum of (19) not unique. We therefore solve the following optimiza-
tion problem, which has a unique solution, shows good empirical performance, and yet still provides
the minimax property guaranteed by Theorem 1 when the optimal matrix is positive semi-definite.4

W̃ = argmin
W

max
z
||XWXTz −Hz||2 (23)

s.t. ||XWXT||op(∞) ≤ 1, ||z||2 = c, W ∈ Rp×p,W = WT, z ∈ Rn

Intuitively, this objective searches for a W̃ such that linear approximation usingXW̃TXT is as close
as possible to the OLS approximation, for the worst case regression targets, according to the 2-norm.

5 Computational Formulation

By an argument identical to that of Lemma 2, we can re-formulate (23) as a convex optimization
problem with convex constraints, giving

W̃ = argmin
W

||XWXT −H||op(2) (24)

s.t. ||XWXT||op(∞) ≤ 1, W ∈ Rp×p,W = WT.

Though convex, objective (24) has no simple closed form, and we found that standard solvers have
difficulty for larger problems [9]. However, ||XWXT−H||op(2) is upper bounded by the Frobenius
norm ||M ||F = (

∑
i,jm

2
ij)

1/2. Therefore, we minimize the quadratic objective ||XWXT −H||F
subject to the same convex constraints, which is easier to solve than (21). Note that Theorem 1
applies to the solution of this modified objective when the resulting W̃ is positive semidefinite.
Expanding ||XWXT −H||F gives ||XWXT −H||F = Tr

[
XWXTXWXT − 2XWXT −H

]
.

Let M(:) be the length p · n vector consisting of the stacked columns of the matrix M . After
some algebraic manipulations, we can re-write the objective as W (:)TΞW (:) − 2ζTW (:), where
Ξ =

∑n
i=1

∑n
j=1 ξ

(ij)ξ(ij)T and ξ(ij) = (XT
i,:Xj,:)(:), and ζ = (XTX)(:). This objective can

then be fed into any standard QP solver. The constraint ||XWXT||op(∞) ≤ 1 can be expressed
as the set of constraints

∑n
j=1 |Xi,:WXT

j,:| < 1, i = 1..n, or as a set of n2n linear constraints∑n
j=1 kjXi,:WXT

j,: < 1, i = 1..n, k ∈ {+1,−1}n. Each of these linear constraints involves a
vector k with entries {+1,−1} multiplied by a row of XWXT. If the entries in k match the signs
of the row of XWXT, then their inner product is equal to the sum of the absolute values of the
row, which must be constrained. If they do not match, the result is smaller. By constraining all n2n

patterns of signs, we constrain the sum of the absolute values of the entries in the row. Explicitly
enforcing all of these constraints is intractable, so we employ a constraint-generation approach [20].
We solve a sequence of quadratic programs, adding the most violated linear constraint after each
step. The most violated constraint is given by a row i∗ = argmaxi∈1..n

∑n
j=1 |Xi,:WXT

j,:| and a
vector k∗ = signXi,:W . The resulting constraint on W (:) can be written as k∗LW (:) ≤ 1 where
Lj,: = ξ(i

∗j), i = 1..n. This formulation allows us to use a general QP solver to compute W̃ .

Note that batch fitted value iteration performs many regressions where the targets y change from
iteration to iteration, but the design matrix X is fixed. Therefore we only need to solve the ECOLS
optimization problem once for any given application of FVI, meaning the additional computational
cost of ECOLS over OLS is not a major drawback.

6 Experimental results

In order to illustrate the behavior of ECOLS in different settings, we present four different empirical
evaluations: one regression problem and three RL problems. In each of the RL settings, ECOLS
with FVI converges, and the learned value function defines a good greedy policy.

4One could in principle include a semi-definite constraint in the problem formulation, at an increased com-
putational cost. (The problem is not a standard semi-definite program because the objective is not linear in the
elements of W .) We have not imposed this constraint in our experiments and we have always found that the
resulting W̃ is positive semi-definite. We conjecture that W̃ is always positive semi-definite.

6

−2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

x

y

Expansion−Constrained Ordinary Least Squares Comparisons

OLS
ECOLS with Fro. norm

ECOLS with op(2)−norm
ECOLS Avg. with Fro. norm

Function Coefficients

β∗ β̂ β̃F β̃op(2) β̃avg
1 1 0.95 0.16 0.77 -2.21
x -3 -2.92 -1.80 -2.02 -0.97
x2 -3 -3.00 -1.71 -1.88 -1.09
x3 1 1.00 0.58 0.64 0.37
rms 6.69 6.68 13.60 13.44 16.52

Figure 1: Example of OLS, ECOLS with ||XWXT −H||F , ECOLS with ||XWXT −H||op(2)

Regression The first is a simple regression setting, where we examine the behavior of ECOLS
compared to OLS. To give a simple, pictorial rendition of the difference between OLS, ECOLS
using the Frobenius, ECOLS using the op(2)-norm, and an averager, we generated a dataset of
n = 25 tuples (x, y) as follows: x ∼ U(−2, 4), y = 1 − 3x − 3x2 + x3 + ε, ε ∼ N(0, 4). The
design matrix X had rows Xi,: = [1, xi, x

2
i , x

3
i]. The ECOLS regression optimizing the Frobenius

norm using CPLEX [12] took 0.36 seconds, whereas optimizing the op(2)-norm using the cvx
package [10] took 8.97 seconds on a 2 GHz Intel Core 2 Duo.

Figure 1 shows the regression curves produced by OLS and the two versions of ECOLS, along with
the learned coefficients and root mean squared error of the predictions on the data. Neither of the
ECOLS curves fit the data as well as OLS, as one would expect. Generally, their curves are smoother
than the OLS fit, and predictions are on the whole shrunk toward zero. We also ran ECOLS with
an additional positivity constraint on XW̃XT, effectively forcing the result to be an averager as
described in Sect. 3. The result is smoother than either of the ECOLS regressors, with a higher RMS
prediction error. Note the small difference between ECOLS using the Frobenius norm (dark black
line) and using the op(2)-norm (dashed line.) This is encouraging, as we have found that in larger
datasets optimizing the op(2)-norm is much slower and less reliable.

Two-state example Our second example is a classic on-policy fitted value iteration problem that is
known to diverge using OLS. It is perhaps the simplest example of FVI diverging, due to Tsitsiklis
and Van Roy [22]. This is a deterministic on-policy example, or equivalently for our purposes, a
problem with |A| = 1. There are three states {1, 2, 3} with features X = (1, 2, 0)T, one action with
P1,2 = 1, P2,2 = 1 − ε, P2,3 = ε, P3,3 = 1 and Pi,j = 0 elsewhere. The reward is R = [0, 0, 0]T

and the value function is v∗ = [0, 0, 0]T. For γ > 5/(6 − 4ε), FVI with OLS diverges for any
starting point other than v∗. FVI with ECOLS always converges to v∗. If we change the reward
to R = [1, 1, 0]T and set γ = 0.95, ε = 0.1, we have v∗ = [7.55, 6.90, 0]. FVI with OLS of
course still diverges, whereas FVI with ECOLS converges to ṽ = [4.41, 8.82, 0]. In this case, the
approximation space is poor, and no linear method based on the features in X can hope to perform
well. Nonetheless, ECOLS converges to a v̂ of at least the appropriate magnitude.

Grid world Our third example is an off-policy value iteration problem which is known to diverge
with OLS, due to Boyan and Moore [4]. In this example, there are effectively 441 discrete states, laid
out in a 21× 21 grid, and assigned an (x, y) feature in [0, 1]2 according to their position in the grid.
There are four actions which deterministically move the agent up, down, left, or right by a distance
of 0.05 in the feature space, and the reward is -0.5 everywhere except the corner state (1, 1), where
it is 0. The discount γ is set to 1.0 so the optimal value function is v∗(x, y) = −20 + 10x+ 10y.

Boyan and Moore define “lucky” convergence of FVI as the case where the policy induced by
the learned value function is optimal, even if the learned value function itself does not accurately
represent v∗. They found that with OLS and a design matrix Xi,: = [1, xi, yi], they achieve lucky
convergence. We replicated their result using FVI on 255 randomly sampled states plus the goal

7

state, and found that OLS converged5 to β̂ = [−515.89, 9.99, 9.99] after 10455 iterations. This
value function induces a policy that attempts to increase x and y, which is optimal. ECOLS on the
other hand converged to β̃ = [−1.09, 0.030, 0.07] after 31 iterations, which also induces an optimal
policy. In terms of learning correct value function coefficients, the OLS estimate gets 2 of the 3
almost exactly correct. In terms of estimating the value of states, OLS achieves an RMSE over all
states of 10413.73, whereas ECOLS achieves an RMSE of 208.41.

In the same work, Boyan and Moore apply OLS with quadratic features Xi,: =
[1, x, y, x2, y2, xy], and find that FVI diverges. We found that ECOLS converges, with coefficients
[−0.80,−2.67,−2.78, 2.73, 2.91, 0.06]. This is not “lucky”, as the induced policy is only optimal
for states in the upper-right half of the state space.

Left-or-right world Our fourth and last example is an off-policy value iteration problem with
stochastic dynamics where OLS causes non-divergent but non-convergent behavior. To investigate
properties of their tree-based Fitted Q-Iteration (FQI) methods, Ernst, Geurts, and Wehenkel define
the “left-or-right” problem [5], an MDP with S = [0, 10], and stochastic dynamics given by st+1 =
st + a+ ε, where ε ∼ N(0, 1). Rewards are 0 for s ∈ [0, 10], 100 for s > 10, and 50 for s < 0. All
states outside [0, 10] are terminal. The discount factor γ is 0.75. In their formulation they use A ∈
{−2, 2}, which gives an optimal policy that is approximately π∗(s) = {2 if s > 2.5, -2 otherwise}.
We examine a simpler scenario by choosing A ∈ {−4, 4}, so that π∗(s) = 4, i.e., it is optimal to
always go right. Based on prior data [5], the optimal Q functions for this type of problem appear
to be smooth and non-linear, possibly with inflection points. Thus we use polynomial features6

Xi,: = [1, x, x2, x3] where x = s/5− 1. As is common in FQI, we fit separate regressions to learn
Q(·, 4) andQ(·,−4) at each iteration. We used 300 episodes worth of data generated by the uniform
random policy for learning.

In this setting, OLS does not diverge, but neither does it converge: the parameter vector of each
Q function moves chaotically within some bounded region of R4. The optimal policy induced by
the Q-functions is determined solely by zeroes of Q(·, 4) − Q(·,−4), and in our experiments this
function had at most one zero. Over 500 iterations of FQI with OLS, the cutpoint ranged from -7.77
to 14.04, resulting in policies ranging from “always go right” to “always go left.’ FQI with ECOLS
converged to a near-optimal policy π̃(s) = {4 if s > 1.81, -4 otherwise}. We determined by Monte
Carlo rollouts that, averaged over a uniform initial state, the value of π̃ is 59.59, whereas the value
of the optimal policy π∗ is 60.70. While the performance of the learned policy is very good, the
estimate of the average value using the learned Qs, 28.75, is lower due to the shrinkage induced by
ECOLS in the predicted state-action values.

7 Concluding Remarks

Divergence of FVI with OLS has been a long-standing problem in the RL literature. In this pa-
per, we introduced ECOLS, which provides guaranteed convergence of FVI. We proved theoretical
properties that show that in the minimax sense, ECOLS is optimal among possible linear approx-
imations that guarantee such convergence. Our test problems confirm the convergence properties
of ECOLS and also illustrate some of its properties. In particular, the empirical results illustrate
the regularization effect of the op(∞)-norm constraint that tends to “shrink” predicted values to-
ward zero. This is a further contribution of our paper: Our theoretical and empirical results indicate
that this shrinkage is a necessary cost of guaranteeing convergence of FVI using linear models with
a fixed set of features. This has important implications for the deployment of FVI with ECOLS.
In some applications where accurate estimates of policy performance are required, this shrinkage
may be problematic; addressing this problem is an interesting avenue for future research. In other
applications where the goal is to identify a good, intuitively represented value function and policy
ECOLS, is a useful new tool.

Acknowledgements We acknowledge support from Natural Sciences and Engineering Research
Council of Canada (NSERC) and the National Institutes of Health (NIH) grants R01 MH080015
and P50 DA10075.

5Convergence criterion was ||βiter+1 − βiter|| ≤ 10−5. All starts were from β = 0.
6The re-scaling of s is for numerical stability.

8

References

[1] A. Antos, R. Munos, and Cs. Szepesvári. Fitted Q-iteration in continuous action-space MDPs.
In Advances in Neural Information Processing Systems 20, pages 9–16. MIT Press, 2008.

[2] L. Baird. Residual Algorithms: Reinforcement Learning with Function Approximation. In
A. Prieditis and S. Russell, editors, Proceedings of the 25th International Conference on Ma-
chine Learning, pages 30–37. Morgan Kaufmann, 1995.

[3] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2007.
[4] J. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximating

the value function. In Advances in neural information processing systems, pages 369–376,
1995.

[5] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learning. Jour-
nal of Machine Learning Research, 6:503–556, 2005.

[6] A. M. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Mannor. Regularized fitted Q-
iteration for planning in continuous-space Markovian decision problems. In American Control
Conference, pages 725–730, 2009.

[7] R. Fonteneau. Contributions to Batch Mode Reinforcement Learning. PhD thesis, University
of Liege, 2011.

[8] G. J. Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis, Carnegie
Mellon University, 1999.

[9] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, Apr. 2011.

[10] M. C. Grant. Disciplined convex programming and the cvx modeling framework. Information
Systems Journal, 2006.

[11] A. Guez, R. D. Vincent, M. Avoli, and J. Pineau. Adaptive treatment of epilepsy via batch-
mode reinforcement learning. In D. Fox and C. P. Gomes, editors, Innovative Applications of
Artificial Intelligence, pages 1671–1678, 2008.

[12] IBM. IBM ILOG CPLEX Optimization Studio V12.2, 2011.
[13] S. Kalyanakrishnan and P. Stone. Batch reinforcement learning in a complex domain. In

Proceedings of the 6th international joint conference on Autonomous agents and multiagent
systems AAMAS 07, 2007.

[14] R. Munos and Cs. Szepesvári. Finite time bounds for fitted value iteration. Journal of Machine
Learning Research, 9:815–857, 2008.

[15] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine learning, 49(2):161–
178, 2002.

[16] M. Riedmiller. Neural fitted Q iteration-first experiences with a data efficient neural reinforce-
ment learning method. In ECML 2005, pages 317–328. Springer, 2005.

[17] J. Rust. Using randomization to break the curse of dimensionality. Econometrica, 65(3):pp.
487–516, 1997.

[18] G. A. F. Seber. A MATRIX HANDBOOK FOR STATISTICIANS. Wiley, 2007.
[19] S. M. Shortreed, E. Laber, D. J. Lizotte, T. S. Stroup, J. Pineau, and S. A. Murphy. Inform-

ing sequential clinical decision-making through reinforcement learning : an empirical study.
Machine Learning, 2010.

[20] S. Siddiqi, B. Boots, and G. Gordon. A Constraint Generation Approach to Learning Stable
Linear Dynamical Systems. In Advances in Neural Information Processing Systems 20, pages
1329–1336. MIT Press, 2008.

[21] Cs. Szepesvári. Algorithms for Reinforcement Learning. Morgan and Claypool, 2010.
[22] J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with function

approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

9

