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Abstract

Neurons typically respond to a restricted number of stimulus features within the
high-dimensional space of natural stimuli. Here we describe an explicit model-
based interpretation of traditional estimators for a neuron’s multi-dimensional
feature space, which allows for several important generalizations and extensions.
First, we show that traditional estimators based on the spike-triggered average
(STA) and spike-triggered covariance (STC) can be formalized in terms of the “ex-
pected log-likelihood” of a Linear-Nonlinear-Poisson (LNP) model with Gaussian
stimuli. This model-based formulation allows us to define maximum-likelihood
and Bayesian estimators that are statistically consistent and efficient in a wider
variety of settings, such as with naturalistic (non-Gaussian) stimuli. It also allows
us to employ Bayesian methods for regularization, smoothing, sparsification, and
model comparison, and provides Bayesian confidence intervals on model parame-
ters. We describe an empirical Bayes method for selecting the number of features,
and extend the model to accommodate an arbitrary elliptical nonlinear response
function, which results in a more powerful and more flexible model for feature
space inference. We validate these methods using neural data recorded extracel-
lularly from macaque primary visual cortex.

1 Introduction

A central problem in systems neuroscience is to understand the probabilistic relationship between
sensory stimuli and neural responses. Most neurons in the early sensory pathway are only sensitive
to a low-dimensional space of stimulus features, and ignore the other axes in the high-dimensional
space of stimuli. Dimensionality reduction therefore plays an important role in neural characteriza-
tion. The most popular dimensionality-reduction method for neural data uses the first two moments
of the spike-triggered stimulus distribution: the spike-triggered average (STA) and the eigenvectors
of the spike-triggered covariance (STC) [1–5]. These features are interpreted as filters or “recep-
tive fields” that form the first stage in a linear-nonlinear-Poisson (LNP) cascade model [6,7]. In this
model, stimuli are projected onto a bank of linear filters, whose outputs are combined via a nonlinear
function, which drives spiking as an inhomogeneous Poisson process (see Fig. 1).

Prior work has established the conditions for statistical consistency and efficiency of the STA and
STC as feature space estimators [1, 2, 8, 9]. However, these moment-based estimators have not yet
been interpreted in terms of an explicit probabilistic encoding model. We formalize that relationship
here, building on a recent information-theoretic treatment of spike-triggered average and covariance
analysis (iSTAC) [9]. Our general approach is inspired by probabilistic and Bayesian formulations
of principal components analysis (PCA) and extreme components analysis (XCA), moment-based
methods for linear dimensionality reduction that are closely related to STC analysis, but which were
only more recently formulated in terms of an explicit probabilistic model [10–14].
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Figure 1: Schematic of linear-nonlinear-Poisson (LNP) neural encoding model [6].

Here we show, first of all, that STA and STC arise naturally from the expected log-likelihood of an
LNP model with an “exponentiated-quadratic” nonlinearity, where expectation is taken with respect
to a Gaussian stimulus distribution. This insight allows us to formulate exact maximum-likelihood
estimators that apply to arbitrary stimulus distributions. We then introduce Bayesian methods for
regularizing and smoothing receptive field estimates, and an approximate empirical Bayes method
for selecting the feature space dimensionality, which obviates nested hypothesis tests, bootstrapping,
or cross-validation based methods [5]. Finally, we generalize these estimators to accommodate LNP
models with arbitrary elliptically symmetric nonlinearities. The resulting model class provides a
richer and more flexible model of neural responses but can still recover a high-dimensional feature
space (unlike more general information-theoretic estimators [8, 15], which do not scale easily to
more than 2 filters). We apply these methods to a variety of simulated datasets and to responses
from neurons in macaque primary visual cortex stimulated with binary white noise stimuli [16].

2 Model-based STA and STC

In a typical neural characterization experiment, the experimenter presents a train of rapidly varying
sensory stimuli and records a spike train response. Let x denote a D-dimensional vector containing
the spatio-temporal stimulus affecting a neuron’s scalar spike response y in a single time bin. A
principal goal of neural characterization is to identify �, a low-dimensional projection matrix such
that �>

x captures the neuron’s dependence on the stimulus x. The columns of � can be regarded as
linear receptive fields that provide a basis for the neural feature space.

The methods we consider here all assume that neural responses can be described by an LNP cascade
model (Fig. 1). Under this model, the conditional probability of a response y|x is Poisson with rate
f(�

>
x), where f is a vector function mapping feature space to instantaneous spike rate.1

2.1 STA and STC analysis

The STA and the STC matrix are the (empirical) first and second moments, respectively, of the
spike-triggered stimulus ensemble {xi|yi}Ni=1. They are defined as:

STA: µ =

1

nsp

NX

i=1

yixi, and STC: ⇤ =

1

nsp

NX

i=1

yi(xi � µ)(xi � µ)

>
, (1)

where nsp =

P
yi is the number of spikes and N is the total number of time bins. Traditional

STA/STC analysis provides an estimate for the feature space basis � consisting of: (1) µ, if it is
significantly different from zero; and (2) the eigenvectors of ⇤ whose eigenvalues are significantly
smaller or larger from those of the prior stimulus covariance � = E[xxT

]. This estimate is provably
consistent only in the case of stimuli drawn from a spherically symmetric (for STA) or independent
Gaussian distribution (for STC) [17].2

1Here f has units of spikes/bin, for some fixed bin size �. In the limit � ! 0, the model output is an
inhomogeneous Poisson process, but we use discrete time bins here for concreteness.

2For elliptically symmetric or colored Gaussian stimuli, a consistent estimate requires whitening the stimuli

by �� 1
2 and then multiplying the estimated features (STA and STC eigenvectors) again by �� 1

2 (see [5]).
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2.2 Equivalent model-based formulation

Motivated by [9], we consider an LNP model where the spike rate is defined by an exponentiated
general quadratic function:

f(x) = exp

�
1
2x

>
Cx+ b

>
x+ a

�
, (2)

where C is a symmetric matrix, b is a vector, and a is a scalar. Then the log-likelihood per spike, the
conditional log-probability of the data divided by the number of spikes, is

L =

1
nsp

X

i

logP (yi|C, b, a,xi) =
1

nsp

X

i

(yi log f(xi)� f(xi)) (3)

=

1
2 Tr [C⇤] +

1
2µ

>
Cµ+ b

>
µ+ a� N

nsp
e

a

"
1
N

X

i

exp

�
1
2xi

>
Cxi + b

>
xi

�
#
. (4)

If the stimuli are drawn from x ⇠ N (0,�), a zero-mean Gaussian with covariance �, then the
expression in square brackets (eq. 4) will converge to its expectation, given by:

E

e

1
2x

>Cx+b>x

�
= |I � �C|�

1
2
exp

⇣
1
2b

>
(�

�1 � C)

�1
b

⌘
, (5)

so long as (��1�C) is invertible and positive definite.3 Substituting this expectation (eq. 5) into the
log-likelihood (eq. 4) yields a quantity we call the expected log-likelihood ˜L, which can be expressed
in terms of the STA, STC, �, and the model parameters:

˜L =

1
2 Tr [C⇤] +

1
2µ

>
Cµ+ b

>
µ+ a� N

nsp
|I � �C|�

1
2
exp

⇣
1
2b

>
(�

�1 � C)

�1
b+ a

⌘
. (6)

Maximizing this expression yields expected-ML estimates (see online supplement for derivation):

˜

Cml = �

�1 � ⇤

�1
,

˜

bml = ⇤

�1
µ,

ãml = log

✓
nsp

N

��
�⇤

�1
��
1
2

◆
� 1

2µ
>
�

�1
⇤

�1
µ. (7)

Thus, for an LNP model with exponentiated-quadratic nonlinearity stimulated with Gaussian noise,
the (expected) maximum likelihood estimates can be obtained in closed form from the STA, STC,
stimulus covariance, and mean spike rate nsp/N .

Several features of this solution are worth remarking. First, if the quadratic component C = 0, then
˜

bml = �

�1
µ, the whitened STA (as in [17]). Second, if the stimuli are white, meaning � = I ,

then ˜

Cml = I � ⇤

�1, which has the same eigenvectors as the STC matrix. Third, if we plug the
expected-ML estimates back into the log-likelihood, we get

˜L =

1
2

�
Tr

⇥
⇤�

�1
⇤
+ µ

>
�

�1
µ� log

��
⇤�

�1
���

+ const (8)

which (for � = I) is the information-theoretic spike-triggered average and covariance (iSTAC) cost
function [9]. The iSTAC estimator finds the subspace that maximizes the “single-spike information”
[18] under a Gaussian model of the raw and spike-triggered stimulus distributions (that coincides
with (eq. 8)), but its precise relationship to maximum likelihood has not been shown previously.

2.3 Generalizing to non-Gaussian stimuli

The conditions for which the STA and STC provide asymptotically efficient estimators for a neural
feature space are clear from the derivations above: if the stimuli are Gaussian (a condition which is
rarely if ever met in practice), the STA is optimal when the nonlinearity is f(x) = exp(b

>
x + a)

(as shown in [8]); the STC is optimal when f(x) = exp(x

>
Cx+ a) (as shown in [9]).

However, the maximum of the exact model log-likelihood (eq. 4) yields a consistent and asymp-
totically efficient estimator even when stimuli are not Gaussian. Numerically optimizing this loss

3If it is not, then this expectation does not exist, and simulations of the corresponding model will produce
impossibly high spike counts, with STA and STC dominated by the response to a single stimulus.
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function is computationally more expensive than computing the STA and STC eigendecomposition,
but the log-likelihood is jointly concave in the model parameters (C, b, a), meaning ML estimates
can be obtained rapidly by convex optimization [19].

For cases where x is high-dimensional, it is easier to directly estimate a low-rank representation of
C, rather than optimize the entire D⇥D matrix. We therefore define a rank-d representation for C:

C =

dX

i=1

wisiwi
>
= WSW

>
, (9)

where W is a matrix whose columns wi are features, si 2 {�1, 1} are constants that control the
shape of the nonlinearity along each axis in feature space (-1 for suppressive, +1 for excitatory), and
S is a diagonal matrix containing si along the diagonal. (We will assume the si are fixed using the
sign of the eigenvalues of the expected-ML estimate ˜

Cml, and not varied thereafter).

The feature space of the resulting model is spanned by b and the columns of W . We refer to ML
estimators for (b,W ) as maximum-likelihood STA and STC (or exact ML, as opposed to expected-
ML estimates from moment-based formulas (eq. 7); see Figs. 2-3 for comparisons). These estimates
will closely match the standard STA and STC-based feature space when stimuli are Gaussian, but (as
maximum-likelihood estimates) are also consistent and asymptotically efficient for arbitrary stimuli.

An additional difference between maximum-likelihood and standard STA/STC analysis is that the
parameters (b,W ) have meaningful units of length: the vector norm of b determines the amplitude
of the “linear” contribution to the neural response (via b

>
x), while the norm of columns in W

determines the amplitude of “symmetric” excitatory or suppressive contributions to the response
(via x

>
WSW

>
x). Shrinking these vectors (e.g., with a prior) has the effect of reducing their

influence in the model, and they drop out of the model entirely if we shrink them to zero (a fact that
we will exploit in the next section). By contrast, the standard STA and STC eigenvectors are usually
taken as unit vectors, providing a basis for the neural feature space in which the nonlinearity (“N”
stage) must still be estimated. We are free to normalize the ML estimates (

ˆ

b,

ˆ

W ) and estimate an
arbitrary nonlinearity in a similar manner, but it is noteworthy that the parameters (a, b,W ) specify
a complete encoding model in and of themselves.

3 Bayesian STC

Now that we have defined an explicit model and likelihood function underlying STA and STC anal-
ysis, we can straightforwardly apply Bayesian methods for estimation, prediction, error bars, model
comparison, etc., by introducing a prior over the model parameters. Bayesian methods can be es-
pecially useful in cases where we have prior information (e.g., about smoothness or sparseness of
neural features, [20–25]), and in general have attractive theoretical properties for high-dimensional
inference problems [26–28].

Here we consider two types of priors: (1) a smoothing prior, which holds the filters to be smooth
in space/time; and (2) a sparsifying prior, which we employ to directly estimate the feature space
dimensionality (i.e., the number of significant filters). We apply these priors to b and the columns of
W , in conjunction with either exact (for accuracy) or expected (for speed) log-likelihood functions
defined above. We refer to the resulting estimators as Bayesian STC (or “BSTC”).

We perform BSTC estimation by maximizing the sum of log-likelihood and log-prior to obtain
maximum a posteriori (MAP) estimates of the filters and constant a. It is worth noting that since
the derivatives of the expected likelihood (eq. 6) are also written in terms of STA/STC, optimization
using the expected log-likelihood can be carried out more efficiently—it reduces the cost of each
iteration by a factor of N compared to optimizing the exact likelihood (eq. 3).

3.1 Smoothing prior

Neural receptive fields are generally smooth, so a prior that encourages this tendency will tend
to improve performance. Receptive field estimates under such a prior will be smooth unless the
likelihood provides sufficient evidence for jaggedness. To encourage smoothness, we placed a zero-
mean Gaussian prior on the second-order differences of each filter [29]:

Lw ⇠ N (0,�

�1
I), (10)
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Figure 2: Estimated filters and error rates for various estimators. An LNP model with 4 orthogonal
32-elements filters (see text) was simulated with two types of stimuli (A-B: white Gaussian: C:
sparse binary). Mean firing rate 0.16 spk/s. (A) Filters estimated from 10,000 samples. STA/STC
filters are normalized to match the norm of true filters. (B) Convergence to the true filter under each
method, Gaussian stimuli. (C) Convergence for sparse binary stimuli.

where L is the discrete Laplacian operator and � is a hyperparameter controlling the smoothness of
feature vectors. This is equivalent to imposing a penalty (given by 1

2�wi
>
LL

>
wi) on the squared

second derivatives b and W in the optimization function. Larger � implies a narrower Gaussian prior
on these differences, hence a stronger preference for smooth filters. For simplicity, we assumed all
filters came from the same prior, resulting in a single hyperparameter � for all filters, and used
cross-validation to choose an appropriate � for each dataset.

To illustrate the effects of this prior, we simulated an example dataset from an LNP neuron with
exponentiated-quadratic nonlinearity and four 32-element, 1-dimensional (temporal) filters. The
filter shapes were given by orthogonalized randomly-placed Gaussians (Fig. 2). We fixed the di-
mensionality of our feature space estimates to be the same as the true model, since our focus was
the quality of each corresponding filter estimate.

For Gaussian stimuli, we found that classical STA/STC, expected-ML, and exact-ML estimates
were indistinguishable (Fig. 2). However, for “sparse” binary stimuli (3 of the 32 pixels set ran-
domly to ±1), for which STA/STC and expected-ML estimates are no longer consistent, we found
significantly better performance from the exact-ML estimates (Fig. 2C). Most importantly, for both
Gaussian and sparse stimuli alike, the smoothing prior provided a large improvement in the quality
of feature space estimates, achieving similar error with 2 orders of magnitude fewer stimuli.

3.2 Automatic selection of feature space dimensionality

While smoothing regularizes receptive field estimates by penalizing filter roughness, a perhaps more
critical aspect of the STA/STC model is its vast number of possible parameters due to uncertainty in
the number of filters. Our approach to this problem was inspired by Bayesian PCA [10], a method for
automatically choosing the number of meaningful principle components using a “feature-selection
prior” designed to encourage sparsity. The basic idea behind this approach is that a zero-mean Gaus-
sian prior on each filter wi (separately controlled by a hyperparameter ↵i) can be used to “shrink to
zero” any components that do not contribute meaningfully to the evidence, just as in automatic rele-
vance determination (ARD), also known as sparse Bayesian learning [27,30]. Unlike PCA, we seek
to preserve components of the STC matrix with both large and small eigenvalues, which correspond
to excitatory and suppressive filters, respectively. One solution to this problem, Bayesian Extreme
Components Analysis [14], preserves large and small eigenvalues of the covariance matrix, but does
not incorporate additional priors on filter shape, and has not yet been formulated for our (Poisson)
likelihood function. Instead, we address the problem by using the sign of the diagonal elements in
S to determine whether a feature w produces a positive or negative eigenvalue in C (eq. 9). (Recall
that the eigenvalues of C = �

�1 � ⇤

�1 are positive and negative, while those of the STC matrix ⇤

are strictly positive). Reparametrizing the STC in terms of C therefore allows us to apply a variant
of the Bayesian PCA algorithm directly to b and the columns of W .

The details of our approach are as follows. We put the ARD prior on each column of W :

wi ⇠ N
�
0,↵

�1
i I

�
, (11)
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Figure 3: Goodness-of-fit of estimated models and the estimated dimension as a function of number
of samples. The same simulation parameters as Fig. 2 were used. Left: Information per spike
(normalized difference in log-likelihoods) captured by different estimates. Models were estimated
from 10

3, 104, and 5 ⇥ 10

4 stimuli respectively. Right: Estimated number of dimensions as a
function of the number of training samples. When both smoothing and ARD priors are used, the
variability rapidly diminishes to near zero.

where ↵i is a hyperparameter controlling the prior variance of wi. We impose the same prior on b,
with an additional hyperparamter ↵0, resulting in (D+1) hyperparameters for the complete model.
We initialize b to its ML estimate and the wi to the eigenvectors of ˜

Cml, scaled by the square root of
their eigenvalues. Then, we optimize the parameters and hyperparameters in a similar fashion to the
Bayesian PCA algorithm [10]: we alternate between maximizing the posterior for the parameters
(a, b,W ) given hyperparameters ↵, and evidence optimization (argmax↵ Pr[(x, y)|↵]) to update ↵.
Since a closed form for the evidence is not known, we use the approximate fixed point update rule
developed in [10]: ↵new

i  D
|||wi||2

. This update is valid when each element of the receptive field wi

is well defined (non-zero), otherwise it overestimates the corresponding ↵i. The algorithm begins
with all ↵i set to zero (infinite prior variance), giving ML estimates for the parameters. Subsequent
updates will cause some ↵i to grow without bound, shrinking the prior variance of the corresponding
feature vector wi until it drops out of the model entirely as ↵i !1. The remaining wj , for which
↵j remain finite, define the feature space estimate. Note that these updates are fast (especially with
expected log-likelihood), providing a much less computationally intensive estimate of feature space
dimensionality than bootstrap-based methods [5].

Figure 3 (left) shows that ARD prior greatly increases the model goodness-of-fit (likelihood on
test data), and is synergistic with the smoothing prior defined above. The improvement (relative to
ML estimates) is greatest when the number of samples is small, and it enhances both expected and
exact likelihood estimates. We compared this method for estimating feature space dimensionality
with a more classical (non-Bayesian) approach based on cross-validation. We first fit a full-rank
model with exact likelihood, and built a sparse model by adding filters from this set greedily until
the likelihood of test data began to decrease. The resulting estimate of dimension is underestimated
when there is not enough data, and even with large amount of data, it has high variance (Fig. 3, right).
In comparison, our ARD-based estimate converged quickly to the correct dimension and exhibited
smaller variability. When both smoothing and ARD priors were used, the variability decreased
markedly and always achieved the correct dimension even for moderate amounts of data. One
additional advantage of Bayesian approach is that it can use all the available data; under cross-
validation, some proportion of data is needed to form the test set (in this example we provided extra
data for this method only).

4 Extension: the elliptical-LNP model

Finally, the model and inference procedures we have described above can be extended to a much
more general class of response functions with zero additional computational cost. We can replace
the exponential function which operates on the quadratic form in the model nonlinearity (eq. 2)
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Figure 4: 1-D nonlinear functions g mapping
z, the output of the quadratic stage, to spike
rate for a V1 complex cell [16]. The exact-ML
filter estimate for W and b were obtained us-
ing the smoothing BSTC with an exponential
nonlinearity. (Final filter estimates for this cell
shown in Fig. 5). The quadratic projection (z)
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tive nonlinearity log(1 + e

z
) (red), and a cu-

bic spline estimated using 7 knots (green trace).
We fixed the fitted cubic spline nonlinearity and
then refit the filters, resulting in an estimate of
the elliptical-LNP model.

with an arbitrary function g(·), resulting in a model class that includes any elliptically symmetric
mapping of the stimulus to spike rate. We call this the elliptical-LNP model.

The elliptical-LNP model can be formalized by writing the nonlinearity f(x) (depicted in Fig. 1)
as the composition of two nonlinear functions: a quadratic function that maps high dimensional
stimulus to real line z(x) =

1
2x

>
Cx+ b

>
x+ a, and a 1-D nonlinearity g(z). The full nonlinearity

is thus f(x) = g(z(x)).

Although LNP with exponential nonlinearity has been widely adapted in neuroscience for its sim-
plicity, the actual nonlinearity of neural systems is often sub-exponential. Moreover, the effect of
nonlinearity is even more pronounced in the exponentiated-quadratic function, and hence it may be
helpful to use a sub-exponential function g. Figure 4 shows the nonlinearity of an example neuron
from V1 (see next section) compared to g(z) = e

z (the assumption implicit in STA/STC), a more
linear function g(z) = log(1 + e

z
), and a cubic spline fit by maximum likelihood.

The likelihood given by eq. 3 can be optimized efficiently as long as g and g

0 can be computed
efficiently. The log-likelihood is concave in (a, b, C) so long as g obeys the standard regularity
conditions (convex and log-concave), but we did not impose those conditions here. For fast opti-
mization, we first used the exponentiated-quadratic nonlinearity as an initialization (expected then
exact-ML), then we refined the model with a spline nonlinearity.

5 Application to neural data

We applied BSTC to data from a V1 complex cell (data published in [16]). The stimulus consisted
of oriented binary white noise (“flickering bars”) aligned with the cell’s preferred orientation. We
selected a cell (544l029.p21) that was reported to have large set of filters, to illustrate the power
of our technique. The size of receptive field was chosen to be 16 bars ⇥ 10 time bins, yielding a
160-dimensional stimulus space. Three features of this data that make BSTC appropriate: (1) the
stimulus is non-Gaussian; (2) the nonlinearity is not exponential (Fig. 4); (3) the filters are smooth
in space and time (Fig. 5).

We estimated the nonlinearity using a cubic spline, and applied a smoothing BSTC to 10

4 samples
presented at 100 Hz (Fig. 5, top). The ARD-prior BSTC estimate trained on 2⇥105 stimuli preserved
14 filters (Fig. 5, bottom). The quality of the filters are qualitatively close to that obtained by
STA/STC. However, the resulting model has better overall goodness-of-fit, as well as significant
improvement over the exact ML model for each reduced dimension model (Fig. 6). To achieve the
same level of fit as using 2 filters for BSTC, the exact ML based sparse model required 6 additional
filters (dotted line).

We also compared BSTC to a generalized linear model (GLM) with same number of linear and
quadratic filters fit by STA/STC (a method described previously by [7]). This approach places a
prior over the weights on squared filter outputs, but not on the filters themselves. On a test set,
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BSTC outperformed the GLM on all cells in the dataset, achieving 34% more bits/spike (normalized
log-likelihood) over a population of 50 cells.

6 Conclusion

We have provided an explicit, probabilistic, model-based framework that formalizes the classical
moment-based estimators (STA, STC) and a more recent information-theoretic estimator (iSTAC)
for neural feature spaces. The maximum of the “expected log-likelihood” under this model, where
expectation is taken with respect to Gaussian stimulus distribution, corresponds precisely to the
moment-based estimators for uncorrelated stimuli. A model-based formulation allows us to com-
pute exact maximum-likelihood estimates when stimuli are non-Gaussian, and we have incorporated
priors in conjunction with both expected and exact likelihoods to achieve Bayesian methods for
smoothing and feature selection (estimation of the number of filters).

The elliptical-LNP model extends BSTC analysis to a richer class of nonlinear response models.
Although the assumption of elliptical symmetry makes it less general than information-theoretic
estimators such as maximally informative dimensions (MID) [8, 15], it has significant advantages
in computational efficiency, number of local optima, and suitability for high-dimensional feature
spaces. The elliptical-LNP model may also be easily extended to incorporate spike-history effects
by adding linear projections of the neuron’s spike history as inputs, as in the generalized linear model
(GLM) [9, 17, 25, 31]. We feel the synthesis of multi-dimensional nonlinear stimulus sensitivity (as
described here) and non-Poisson, history-dependent spiking presents a promising tool for unlocking
the statistical structure of the neural code.
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