
Divide-and-Conquer Matrix Factorization

Lester Mackeya Ameet Talwalkara Michael I. Jordana, b

a Department of Electrical Engineering and Computer Science, UC Berkeley
b Department of Statistics, UC Berkeley

Abstract

This work introduces Divide-Factor-Combine (DFC), a parallel divide-and-
conquer framework for noisy matrix factorization. DFC divides a large-scale
matrix factorization task into smaller subproblems, solves each subproblem in par-
allel using an arbitrary base matrix factorization algorithm, and combines the sub-
problem solutions using techniques from randomized matrix approximation. Our
experiments with collaborative filtering, video background modeling, and simu-
lated data demonstrate the near-linear to super-linear speed-ups attainable with
this approach. Moreover, our analysis shows that DFC enjoys high-probability
recovery guarantees comparable to those of its base algorithm.

1 Introduction

The goal in matrix factorization is to recover a low-rank matrix from irrelevant noise and corrup-
tion. We focus on two instances of the problem: noisy matrix completion, i.e., recovering a low-rank
matrix from a small subset of noisy entries, and noisy robust matrix factorization [2, 3, 4], i.e., re-
covering a low-rank matrix from corruption by noise and outliers of arbitrary magnitude. Examples
of the matrix completion problem include collaborative filtering for recommender systems, link pre-
diction for social networks, and click prediction for web search, while applications of robust matrix
factorization arise in video surveillance [2], graphical model selection [4], document modeling [17],
and image alignment [21].

These two classes of matrix factorization problems have attracted significant interest in the research
community. In particular, convex formulations of noisy matrix factorization have been shown to ad-
mit strong theoretical recovery guarantees [1, 2, 3, 20], and a variety of algorithms (e.g., [15, 16, 23])
have been developed for solving both matrix completion and robust matrix factorization via convex
relaxation. Unfortunately, these methods are inherently sequential and all rely on the repeated and
costly computation of truncated SVDs, factors that limit the scalability of the algorithms.

To improve scalability and leverage the growing availability of parallel computing architectures, we
propose a divide-and-conquer framework for large-scale matrix factorization. Our framework, en-
titled Divide-Factor-Combine (DFC), randomly divides the original matrix factorization task into
cheaper subproblems, solves those subproblems in parallel using any base matrix factorization al-
gorithm, and combines the solutions to the subproblem using efficient techniques from randomized
matrix approximation. The inherent parallelism of DFC allows for near-linear to superlinear speed-
ups in practice, while our theory provides high-probability recovery guarantees for DFC comparable
to those enjoyed by its base algorithm.

The remainder of the paper is organized as follows. In Section 2, we define the setting of noisy ma-
trix factorization and introduce the components of the DFC framework. To illustrate the significant
speed-up and robustness of DFC and to highlight the effectiveness of DFC ensembling, we present
experimental results on collaborative filtering, video background modeling, and simulated data in
Section 3. Our theoretical analysis follows in Section 4. There, we establish high-probability noisy
recovery guarantees for DFC that rest upon a novel analysis of randomized matrix approximation
and a new recovery result for noisy matrix completion.

1

Notation For M ∈ Rm×n, we define M(i) as the ith row vector and Mij as the ijth en-
try. If rank(M) = r, we write the compact singular value decomposition (SVD) of M as
UMΣMV"

M , where ΣM is diagonal and contains the r non-zero singular values of M, and
UM ∈ Rm×r and VM ∈ Rn×r are the corresponding left and right singular vectors of M. We
defineM+ = VMΣ−1

M U"
M as the Moore-Penrose pseudoinverse ofM and PM = MM+ as the

orthogonal projection onto the column space ofM. We let ‖·‖2, ‖·‖F , and ‖·‖∗ respectively denote
the spectral, Frobenius, and nuclear norms of a matrix and let ‖·‖ represent the !2 norm of a vector.

2 The Divide-Factor-Combine Framework

In this section, we present our divide-and-conquer framework for scalable noisy matrix factorization.
We begin by defining the problem setting of interest.

2.1 Noisy Matrix Factorization (MF)

In the setting of noisy matrix factorization, we observe a subset of the entries of a matrix M =
L0 + S0 + Z0 ∈ Rm×n, where L0 has rank r # m,n, S0 represents a sparse matrix of outliers of
arbitrary magnitude, andZ0 is a dense noise matrix. We let Ω represent the locations of the observed
entries and PΩ be the orthogonal projection onto the space of m × n matrices with support Ω, so
that

(PΩ(M))ij = Mij , if (i, j) ∈ Ω and (PΩ(M))ij = 0 otherwise.
Our goal is to recover the low-rank matrixL0 from PΩ(M)with error proportional to the noise level
∆ ! ‖Z0‖F . We will focus on two specific instances of this general problem:

• Noisy Matrix Completion (MC): s ! |Ω| entries of M are revealed uniformly without
replacement, along with their locations. There are no outliers, so that S0 is identically zero.

• Noisy Robust Matrix Factorization (RMF): S0 is identically zero save for s outlier en-
tries of arbitrary magnitude with unknown locations distributed uniformly without replace-
ment. All entries ofM are observed, so that PΩ(M) = M.

2.2 Divide-Factor-Combine

Algorithms 1 and 2 summarize two canonical examples of the general Divide-Factor-Combine
framework that we refer to as DFC-PROJ and DFC-NYS. Each algorithm has three simple steps:

(D step) Divide input matrix into submatrices: DFC-PROJ randomly partitions PΩ(M) into t l-
column submatrices, {PΩ(C1), . . . ,PΩ(Ct)}1, while DFC-NYS selects an l-column sub-
matrix, PΩ(C), and a d-row submatrix, PΩ(R), uniformly at random.

(F step) Factor each submatrix in parallel using any base MF algorithm: DFC-PROJ performs
t parallel submatrix factorizations, while DFC-NYS performs two such parallel factoriza-
tions. Standard base MF algorithms output the low-rank approximations {Ĉ1, . . . , Ĉt} for
DFC-PROJ and Ĉ, and R̂ for DFC-NYS. All matrices are retained in factored form.

(C step) Combine submatrix estimates: DFC-PROJ generates a final low-rank estimate L̂proj by
projecting [Ĉ1, . . . , Ĉt] onto the column space of Ĉ1, while DFC-NYS forms the low-
rank estimate L̂nys from Ĉ and R̂ via the generalized Nyström method. These matrix
approximation techniques are described in more detail in Section 2.3.

2.3 Randomized Matrix Approximations

Our divide-and-conquer algorithms rely on two methods that generate randomized low-rank approx-
imations to an arbitrary matrixM from submatrices ofM.

1For ease of discussion, we assume that mod(n, t) = 0, and hence, l = n/t. Note that for arbitrary n and
t, PΩ(M) can always be partitioned into t submatrices, each with either !n/t" or #n/t$ columns.

2

Algorithm 1 DFC-PROJ
Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SAMPCOL(PΩ(M), t)
do in parallel

Ĉ1 = BASE-MF-ALG(PΩ(C1))
...

Ĉt = BASE-MF-ALG(PΩ(Ct))
end do
L̂proj = COLPROJECTION(Ĉ1, . . . , Ĉt)

Algorithm 2 DFC-NYSa

Input: PΩ(M), l, d
PΩ(C) ,PΩ(R) = SAMPCOLROW(PΩ(M), l, d)
do in parallel

Ĉ = BASE-MF-ALG(PΩ(C))
R̂ = BASE-MF-ALG(PΩ(R))

end do
L̂nys = GENNYSTRÖM (Ĉ, R̂)

aWhen Q is a submatrix ofM we abuse notation and
definePΩ(Q) as the corresponding submatrix ofPΩ(M).

Column Projection This approximation, introduced by Frieze et al. [7], is derived from column
sampling ofM. We begin by sampling l < n columns uniformly without replacement and let C
be the m × l matrix of sampled columns. Then, column projection uses C to generate a “matrix
projection” approximation [13] ofM as follows:

Lproj = CC+M = UCU
"
CM.

In practice, we do not reconstruct Lproj but rather maintain low-rank factors, e.g.,UC andU"
CM.

Generalized Nyström Method The standard Nyström method is often used to speed up large-
scale learning applications involving symmetric positive semidefinite (SPSD) matrices [24] and has
been generalized for arbitrary real-valued matrices [8]. In particular, after sampling columns to
obtain C, imagine that we independently sample d < m rows uniformly without replacement. Let
R be the d × n matrix of sampled rows and W be the d × l matrix formed from the intersection
of the sampled rows and columns. Then, the generalized Nyström method uses C,W, and R to
compute an “spectral reconstruction” approximation [13] ofM as follows:

Lnys = CW+R = CVWΣ+
WU"

WR .

As withMproj , we store low-rank factors of Lnys, such asCVWΣ+
W andU"

WR.

2.4 Running Time of DFC

Many state-of-the-art MF algorithms haveΩ(mnkM) per-iteration time complexity due to the rank-
kM truncated SVD performed on each iteration. DFC significantly reduces the per-iteration com-
plexity to O(mlkCi) time for Ci (or C) and O(ndkR) time for R. The cost of combining the
submatrix estimates is even smaller, since the outputs of standardMF algorithms are returned in fac-
tored form. Indeed, the column projection step of DFC-PROJ requires only O(mk2 + lk2) time for
k ! maxi kCi : O(mk2 + lk2) time for the pseudoinversion of Ĉ1 and O(mk2 + lk2) time for ma-
trix multiplication with each Ĉi in parallel. Similarly, the generalized Nyström step of DFC-NYS
requires only O(lk̄2 + dk̄2 + min(m,n)k̄2) time, where k̄ ! max(kC , kR). Hence, DFC divides
the expensive task of matrix factorization into smaller subproblems that can be executed in parallel
and efficiently combines the low-rank, factored results.

2.5 Ensemble Methods

Ensemble methods have been shown to improve performance of matrix approximation algorithms,
while straightforwardly leveraging the parallelism of modern many-core and distributed architec-
tures [14]. As such, we propose ensemble variants of the DFC algorithms that demonstrably reduce
recovery error while introducing a negligible cost to the parallel running time. For DFC-PROJ-
ENS, rather than projecting only onto the column space of Ĉ1, we project [Ĉ1, . . . , Ĉt] onto the
column space of each Ĉi in parallel and then average the t resulting low-rank approximations. For
DFC-NYS-ENS, we choose a random d-row submatrix PΩ(R) as in DFC-NYS and independently
partition the columns of PΩ(M) into {PΩ(C1), . . . ,PΩ(Ct)} as in DFC-PROJ. After running the

3

base MF algorithm on each submatrix, we apply the generalized Nyström method to each (Ĉi, R̂)
pair in parallel and average the t resulting low-rank approximations. Section 3 highlights the empir-
ical effectiveness of ensembling.

3 Experimental Evaluation

We now explore the accuracy and speed-up of DFC on a variety of simulated and real-world datasets.
We use state-of-the-art matrix factorization algorithms in our experiments: the Accelerated Proximal
Gradient (APG) algorithm of [23] as our base noisy MC algorithm and the APG algorithm of [15] as
our base noisy RMF algorithm. In all experiments, we use the default parameter settings suggested
by [23] and [15], measure recovery error via root mean square error (RMSE), and report parallel
running times for DFC. We moreover compare against two baseline methods: APG used on the full
matrix M and PARTITION, which performs matrix factorization on t submatrices just like DFC-
PROJ but omits the final column projection step.

3.1 Simulations

For our simulations, we focused on square matrices (m = n) and generated random low-rank and
sparse decompositions, similar to the schemes used in related work, e.g., [2, 12, 25]. We created
L0 ∈ Rm×m as a random product, AB", where A and B are m × r matrices with indepen-
dent N (0,

√

1/r) entries such that each entry of L0 has unit variance. Z0 contained independent
N (0, 0.1) entries. In the MC setting, s entries of L0 + Z0 were revealed uniformly at random. In
the RMF setting, the support of S0 was generated uniformly at random, and the s corrupted entries
took values in [0, 1] with uniform probability. For each algorithm, we report error between L0 and
the recovered low-rank matrix, and all reported results are averages over five trials.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
MC

R
M

SE

% revealed entries

Part−10%
Proj−10%
Nys−10%
Proj−Ens−10%
Nys−Ens−10%
Proj−Ens−25%
Base−MC

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25
RMF

R
M

SE

% of outliers

Part−10%
Proj−10%
Nys−10%
Proj−Ens−10%
Nys−Ens−10%
Base−RMF

Figure 1: Recovery error of DFC relative to base algorithms.

We first explored the recovery error of DFC as a function of s, using (m = 10K, r = 10) with
varying observation sparsity for MC and (m = 1K, r = 10) with a varying percentage of outliers
for RMF. The results are summarized in Figure 1.2 In both MC and RMF, the gaps in recovery
between APG and DFC are small when sampling only 10% of rows and columns. Moreover, DFC-
PROJ-ENS in particular consistently outperforms PARTITION and DFC-NYS-ENS and matches the
performance of APG for most settings of s.

We next explored the speed-up of DFC as a function of matrix size. For MC, we revealed 4% of
the matrix entries and set r = 0.001 ·m, while for RMF we fixed the percentage of outliers to 10%
and set r = 0.01 · m. We sampled 10% of rows and columns and observed that recovery errors
were comparable to the errors presented in Figure 1 for similar settings of s; in particular, at all
values of n for both MC and RMF, the errors of APG and DFC-PROJ-ENS were nearly identical.
Our timing results, presented in Figure 2, illustrate a near-linear speed-up for MC and a superlinear
speed-up for RMF across varying matrix sizes. Note that the timing curves of the DFC algorithms
and PARTITION all overlap, a fact that highlights the minimal computational cost of the final matrix
approximation step.

2In the left-hand plot of Figure 1, the lines for Proj-10% and Proj-Ens-10% overlap.

4

1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

500

1000

1500

2000

2500

3000
MC

tim
e

(s
)

m

Part−10%
Proj−10%
Nys−10%
Proj−Ens−10%
Nys−Ens−10%
Base−RMF

1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000
RMF

tim
e

(s
)

m

Part−10%
Proj−10%
Nys−10%
Proj−Ens−10%
Nys−Ens−10%
Base−RMF

Figure 2: Speed-up of DFC relative to base algorithms.

3.2 Collaborative Filtering

Collaborative filtering for recommender systems is one prevalent real-world application of noisy
matrix completion. A collaborative filtering dataset can be interpreted as the incomplete observation
of a ratings matrix with columns corresponding to users and rows corresponding to items. The goal
is to infer the unobserved entries of this ratings matrix. We evaluate DFC on two of the largest
publicly available collaborative filtering datasets: MovieLens 10M3 (m = 4K, n = 6K, s > 10M)
and the Netflix Prize dataset4 (m = 18K, n = 480K, s > 100M). To generate test sets drawn
from the training distribution, for each dataset, we aggregated all available rating data into a single
training set and withheld test entries uniformly at random, while ensuring that at least one training
observation remained in each row and column. The algorithms were then run on the remaining
training portions and evaluated on the test portions of each split. The results, averaged over three
train-test splits, are summarized in Table 3.2. Notably, DFC-PROJ, DFC-PROJ-ENS, and DFC-
NYS-ENS all outperform PARTITION, and DFC-PROJ-ENS performs comparably to APG while
providing a nearly linear parallel time speed-up. The poorer performance of DFC-NYS can be in
part explained by the asymmetry of these problems. Since these matrices have many more columns
than rows, MF on column submatrices is inherently easier than MF on row submatrices, and for
DFC-NYS, we observe that Ĉ is an accurate estimate while R̂ is not.

Table 1: Performance of DFC relative to APG on collaborative filtering tasks.

Method MovieLens 10M Netflix
RMSE Time RMSE Time

APG 0.8005 294.3s 0.8433 2653.1s
PARTITION-25% 0.8146 77.4s 0.8451 689.1s
PARTITION-10% 0.8461 36.0s 0.8492 289.2s
DFC-NYS-25% 0.8449 77.2s 0.8832 890.9s
DFC-NYS-10% 0.8769 53.4s 0.9224 487.6s
DFC-NYS-ENS-25% 0.8085 84.5s 0.8486 964.3s
DFC-NYS-ENS-10% 0.8327 63.9s 0.8613 546.2s
DFC-PROJ-25% 0.8061 77.4s 0.8436 689.5s
DFC-PROJ-10% 0.8272 36.1s 0.8484 289.7s
DFC-PROJ-ENS-25% 0.7944 77.4s 0.8411 689.5s
DFC-PROJ-ENS-10% 0.8119 36.1s 0.8433 289.7s

3.3 Background Modeling

Background modeling has important practical ramifications for detecting activity in surveillance
video. This problem can be framed as an application of noisy RMF, where each video frame is
a column of some matrix (M), the background model is low-rank (L0), and moving objects and

3http://www.grouplens.org/
4http://www.netflixprize.com/

5

background variations, e.g., changes in illumination, are outliers (S0). We evaluate DFC on two
videos: ‘Hall’ (200 frames of size 176 × 144) contains significant foreground variation and was
studied by [2], while ‘Lobby’ (1546 frames of size 168×120) includes many changes in illumination
(a smaller video with 250 frames was studied by [2]). We focused on DFC-PROJ-ENS, due to its
superior performance in previous experiments, and measured the RMSE between the background
model recovered by DFC and that of APG. On both videos, DFC-PROJ-ENS recovered nearly the
same background model as the full APG algorithm in a small fraction of the time. On ‘Hall,’ the
DFC-PROJ-ENS-5% and DFC-PROJ-ENS-0.5% models exhibited RMSEs of 0.564 and 1.55, quite
small given pixels with 256 intensity values. The associated runtime was reduced from 342.5s for
APG to real-time (5.2s for a 13s video) for DFC-PROJ-ENS-0.5%. Snapshots of the results are
presented in Figure 3. On ‘Lobby,’ the RMSE of DFC-PROJ-ENS-4% was 0.64, and the speed-up
over APG was more than 20X, i.e., the runtime reduced from 16557s to 792s.

Original frame APG 5% sampled 0.5% sampled
(342.5s) (24.2s) (5.2s)

Figure 3: Sample ‘Hall’ recovery by APG, DFC-PROJ-ENS-5%, and DFC-PROJ-ENS-.5%.

4 Theoretical Analysis

Having investigated the empirical advantages of DFC, we now show that DFC admits high-
probability recovery guarantees comparable to those of its base algorithm.

4.1 Matrix Coherence

Since not all matrices can be recovered from missing entries or gross outliers, recent theoretical
advances have studied sufficient conditions for accurate noisy MC [3, 12, 20] and RMF [1, 25].
Most prevalent among these are matrix coherence conditions, which limit the extent to which the
singular vectors of a matrix are correlated with the standard basis. Letting ei be the ith column of
the standard basis, we define two standard notions of coherence [22]:
Definition 1 (µ0-Coherence). Let V ∈ Rn×r contain orthonormal columns with r ≤ n. Then the
µ0-coherence ofV is:

µ0(V) ! n
r max1≤i≤n ‖PV ei‖2 = n

r max1≤i≤n ‖V(i)‖2 .
Definition 2 (µ1-Coherence). Let L ∈ Rm×n have rank r. Then, the µ1-coherence of L is:

µ1(L) !
√

mn
r maxij |e#i ULV

#
Lej | .

For any µ > 0, we will call a matrix L (µ, r)-coherent if rank(L) = r, max(µ0(UL), µ0(VL)) ≤
µ, and µ1(L) ≤ √

µ. Our analysis will focus on base MC and RMF algorithms that express their
recovery guarantees in terms of the (µ, r)-coherence of the target low-rank matrix L0. For such
algorithms, lower values of µ correspond to better recovery properties.

4.2 DFC Master Theorem

We now show that the same coherence conditions that allow for accurate MC and RMF also imply
high-probability recovery for DFC. To make this precise, we let M = L0 + S0 + Z0 ∈ Rm×n,
where L0 is (µ, r)-coherent and ‖PΩ(Z0)‖F ≤ ∆. We further fix any ε, δ ∈ (0, 1] and define A(X)

as the event that a matrix X is (rµ2

1−ε/2 , r)-coherent. Then, our Thm. 3 provides a generic recovery
bound for DFC when used in combination with an arbitrary base algorithm. The proof requires a
novel, coherence-based analysis of column projection and random column sampling. These results
of independent interest are presented in Appendix A.

6

Theorem 3. Choose t = n/l and l ≥ crµ log(n) log(2/δ)/ε2, where c is a fixed positive con-
stant, and fix any ce ≥ 0. Under the notation of Algorithm 1, if a base MF algorithm yields
P
(

‖C0,i − Ĉi‖F > ce
√
ml∆ | A(C0,i)

)

≤ δC for each i, where C0,i is the corresponding parti-
tion of L0, then, with probability at least (1− δ)(1 − tδC), DFC-PROJ guarantees

‖L0 − L̂proj‖F ≤ (2 + ε)ce
√
mn∆.

Under Algorithm 2, if a base MF algorithm yields P
(

‖C0 − Ĉ‖F > ce
√
ml∆ | A(C)

)

≤ δC

and P
(

‖R0 − R̂‖F > ce
√
dn∆ | A(R)

)

≤ δR for d ≥ clµ0(Ĉ) log(m) log(1/δ)/ε2, then, with
probability at least (1− δ)2(1− δC − δR), DFC-NYS guarantees

‖L0 − L̂nys‖F ≤ (2 + 3ε)ce
√
ml + dn∆.

To understand the conclusions of Thm. 3, consider a typical base algorithm which, when applied to
PΩ(M), recovers an estimate L̂ satisfying ‖L0 − L̂‖F ≤ ce

√
mn∆ with high probability. Thm. 3

asserts that, with appropriately reduced probability, DFC-PROJ exhibits the same recovery error
scaled by an adjustable factor of 2+ ε, while DFC-NYS exhibits a somewhat smaller error scaled by
2+3ε.5 The key take-away then is that DFC introduces a controlled increase in error and a controlled
decrement in the probability of success, allowing the user to interpolate between maximum speed
and maximum accuracy. Thus, DFC can quickly provide near-optimal recovery in the noisy setting
and exact recovery in the noiseless setting (∆ = 0), even when entries are missing or grossly
corrupted. The next two sections demonstrate how Thm. 3 can be applied to derive specific DFC
recovery guarantees for noisy MC and noisy RMF. In these sections, we let n̄ ! max(m,n).

4.3 Consequences for Noisy MC

Our first corollary of Thm. 3 shows that DFC retains the high-probability recovery guarantees of a
standard MC solver while operating on matrices of much smaller dimension. Suppose that a base
MC algorithm solves the following convex optimization problem, studied in [3]:

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆.

Then, Cor. 4 follows from a novel guarantee for noisy convex MC, proved in the appendix.
Corollary 4. Suppose thatL0 is (µ, r)-coherent and that s entries ofM are observed, with locations
Ω distributed uniformly. Define the oversampling parameter

βs !
s(1 − ε/2)

32µ2r2(m+ n) log2(m+ n)
,

and fix any target rate parameter 1 < β ≤ βs. Then, if ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., it suffices
to choose t = n/l and

l ≥ max

(

nβ
βs

+
√

n(β−1)
βs

, crµ log(n) log(2/δ)
ε2

)

, d ≥ max

(

mβ
βs

+
√

m(β−1)
βs

, clµ0(Ĉ) log(m) log(1/δ)
ε2

)

to achieve
DFC-PROJ: ‖L0 − L̂proj‖F ≤ (2 + ε)c′e

√
mn∆

DFC-NYS: ‖L0 − L̂nys‖F ≤ (2 + 3ε)c′e
√
ml + dn∆

with probability at least

DFC-PROJ: (1− δ)(1− 5t log(n̄)n̄2−2β) ≥ (1− δ)(1 − n̄3−2β)

DFC-NYS: (1− δ)2(1 − 10 log(n̄)n̄2−2β),

respectively, with c as in Thm. 3 and c′e a positive constant.
5Note that the DFC-NYS guarantee requires the number of rows sampled to grow in proportion to µ0(Ĉ),

a quantity always bounded by µ in our simulations.

7

Notably, Cor. 4 allows for the fraction of columns and rows sampled to decrease as the oversampling
parameter βs increases with m and n. In the best case, βs = Θ(mn/[(m + n) log2(m + n)]), and
Cor. 4 requires only O(n

m log2(m+n)) sampled columns and O(mn log2(m+n)) sampled rows. In
the worst case, βs = Θ(1), and Cor. 4 requires the number of sampled columns and rows to grow
linearly with the matrix dimensions. As a more realistic intermediate scenario, consider the setting
in which βs = Θ(

√
m+ n) and thus a vanishing fraction of entries are revealed. In this setting,

only O(
√
m+ n) columns and rows are required by Cor. 4.

4.4 Consequences for Noisy RMF

Our next corollary shows that DFC retains the high-probability recovery guarantees of a standard
RMF solver while operating on matrices of much smaller dimension. Suppose that a base RMF
algorithm solves the following convex optimization problem, studied in [25]:

minimizeL,S ‖L‖∗ + λ‖S‖1 subject to ‖M− L− S‖F ≤ ∆,

with λ = 1/
√
n̄. Then, Cor. 5 follows from Thm. 3 and the noisy RMF guarantee of [25, Thm. 2].

Corollary 5. Suppose that L0 is (µ, r)-coherent and that the uniformly distributed support set of
S0 has cardinality s. For a fixed positive constant ρs, define the undersampling parameter

βs !
(

1− s

mn

)

/ρs,

and fix any target rate parameter β > 2 with rescaling β′ ! β log(n̄)/ log(m) satisfying 4βs −
3/ρs ≤ β′ ≤ βs. Then, if ‖M− L0 − S0‖F ≤ ∆ a.s., it suffices to choose t = n/l and

l ≥ max

(

r2µ2 log2(n̄)

(1− ε/2)ρr
,
4 log(n̄)β(1− ρsβs)

m(ρsβs − ρsβ′)2
, crµ log(n) log(2/δ)/ε2

)

d ≥ max

(

r2µ2 log2(n̄)

(1− ε/2)ρr
,
4 log(n̄)β(1− ρsβs)

n(ρsβs − ρsβ′)2
, clµ0(Ĉ) log(m) log(1/δ)/ε2

)

to have

DFC-PROJ: ‖L0 − L̂proj‖F ≤ (2 + ε)c′′e
√
mn∆

DFC-NYS: ‖L0 − L̂nys‖F ≤ (2 + 3ε)c′′e
√
ml+ dn∆

with probability at least

DFC-PROJ: (1− δ)(1− tcpn̄−β) ≥ (1− δ)(1 − cpn̄1−β)

DFC-NYS: (1− δ)2(1 − 2cpn̄−β),

respectively, with c as in Thm. 3 and ρr, c′′e , and cp positive constants.

Note that Cor. 5 places only very mild restrictions on the number of columns and rows to be sampled.
Indeed, l and d need only grow poly-logarithmically in the matrix dimensions to achieve high-
probability noisy recovery.

5 Conclusions

To improve the scalability of existing matrix factorization algorithms while leveraging the ubiquity
of parallel computing architectures, we introduced, evaluated, and analyzed DFC, a divide-and-
conquer framework for noisy matrix factorization with missing entries or outliers. We note that the
contemporaneous work of [19] addresses the computational burden of noiseless RMF by reformu-
lating a standard convex optimization problem to internally incorporate random projections. The
differences between DFC and the approach of [19] highlight some of the main advantages of this
work: i) DFC can be used in combination with any underlying MF algorithm, ii) DFC is trivially
parallelized, and iii) DFC provably maintains the recovery guarantees of its base algorithm, even in
the presence of noise.

8

References
[1] A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex relaxation:

Optimal rates in high dimensions. In International Conference on Machine Learning, 2011.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58
(3):1–37, 2011.

[3] E.J. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925 –936, 2010.

[4] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Sparse and low-rank matrix decompo-
sitions. In Allerton Conference on Communication, Control, and Computing, 2009.

[5] Y. Chen, H. Xu, C. Caramanis, and S. Sanghavi. Robust matrix completion and corrupted columns. In
International Conference on Machine Learning, 2011.

[6] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions. SIAM
Journal on Matrix Analysis and Applications, 30:844–881, 2008.

[7] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approximations.
In Foundations of Computer Science, 1998.

[8] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. A theory of pseudoskeleton approximations.
Linear Algebra and its Applications, 261(1-3):1 – 21, 1997.

[9] D. Gross and V. Nesme. Note on sampling without replacing from a finite collection of matrices. CoRR,
abs/1001.2738, 2010.

[10] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[11] D. Hsu, S. M. Kakade, and T. Zhang. Dimension-free tail inequalities for sums of random matrices.
arXiv:1104.1672v3[math.PR], 2011.

[12] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. Journal of Machine
Learning Research, 99:2057–2078, 2010.

[13] S. Kumar, M. Mohri, and A. Talwalkar. On sampling-based approximate spectral decomposition. In
International Conference on Machine Learning, 2009.

[14] S. Kumar, M. Mohri, and A. Talwalkar. Ensemble Nyström method. In NIPS, 2009.

[15] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization algorithms for exact
recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214, 2009.

[16] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman iterative methods for matrix rank minimiza-
tion. Mathematical Programming, 128(1-2):321–353, 2011.

[17] K. Min, Z. Zhang, J. Wright, and Y. Ma. Decomposing background topics from keywords by principal
component pursuit. In Conference on Information and Knowledge Management, 2010.

[18] M. Mohri and A. Talwalkar. Can matrix coherence be efficiently and accurately estimated? In Conference
on Artificial Intelligence and Statistics, 2011.

[19] Y. Mu, J. Dong, X. Yuan, and S. Yan. Accelerated low-rank visual recovery by random projection. In
Conference on Computer Vision and Pattern Recognition, 2011.

[20] S. Negahban and M. J. Wainwright. Restricted strong convexity and weighted matrix completion: Optimal
bounds with noise. arXiv:1009.2118v2[cs.IT], 2010.

[21] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Robust alignment by sparse and low-rank
decomposition for linearly correlated images. InConference on Computer Vision and Pattern Recognition,
2010.

[22] B. Recht. A simpler approach to matrix completion. arXiv:0910.0651v2[cs.IT], 2009.

[23] K. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least squares
problems. Pacific Journal of Optimization, 6(3):615–640, 2010.

[24] C.K. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In NIPS, 2000.

[25] Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma. Stable principal component pursuit. arXiv:
1001.2363v1[cs.IT], 2010.

9

