
MAP Inference for
Bayesian Inverse Reinforcement Learning

Jaedeug Choi and Kee-Eung Kim
bDepartment of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

jdchoi@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr

Abstract

The difficulty in inverse reinforcement learning (IRL) arises in choosing the best
reward function since there are typically an infinite numberof reward functions
that yield the given behaviour data as optimal. Using a Bayesian framework, we
address this challenge by using the maximum a posteriori (MAP) estimation for
the reward function, and show that most of the previous IRL algorithms can be
modeled into our framework. We also present a gradient method for the MAP es-
timation based on the (sub)differentiability of the posterior distribution. We show
the effectiveness of our approach by comparing the performance of the proposed
method to those of the previous algorithms.

1 Introduction

The objective of inverse reinforcement learning (IRL) is todetermine the decision making agent’s
underlying reward function from its behaviour data and the model of environment [1]. The signifi-
cance of IRL has emerged from problems in diverse research areas. In animal and human behaviour
studies [2], the agent’s behaviour could be understood by the reward function since the reward func-
tion reflects the agent’s objectives and preferences. In robotics [3], IRL provides a framework for
making robots learn to imitate the demonstrator’s behaviour using the inferred reward function.
In other areas related to reinforcement learning, such as neuroscience [4] and economics [5], IRL
addresses the non-trivial problem of finding an appropriatereward function when building a com-
putational model for decision making.

In IRL, we generally assume that the agent is an expert in the problem domain and hence it be-
haves optimally in the environment. Using the Markov decision process (MDP) formalism, the IRL
problem is defined as finding the reward function that the expert is optimizing given the behaviour
data of state-action histories and the environment model ofstate transition probabilities. In the last
decade, a number of studies have addressed IRL in a direct (reward learning) and indirect (policy
learning by inferring the reward function,i.e., apprenticeship learning) fashions. Ng and Russell [6]
proposed a sufficient and necessary condition on the reward functions that guarantees the optimality
of the expert’s policy and formulated a linear programming (LP) problem to find the reward func-
tion from the behaviour data. Extending their work, Abbeel and Ng [7] presented an algorithm for
finding the expert’s policy from its behaviour data with a performance guarantee on the learned pol-
icy. Ratliff et al. [8] applied the structured max-margin optimization to IRL and proposed a method
for finding the reward function that maximizes the margin between the expert’s policy and all other
policies. Neu and Szepesvári [9] provided an algorithm for finding the policy that minimizes the
deviation from the behaviour. Their algorithm unifies the direct method that minimizes a loss func-
tion of the deviation and the indirect method that finds an optimal policy from the learned reward
function using IRL. Syed and Schapire [10] proposed a methodto find a policy that improves the
expert’s policy using a game-theoretic framework. Ziebartet al. [11] adopted the principle of the

1

maximum entropy for learning the policy whose feature expectations are constrained to match those
of the expert’s behaviour. In addition, Neu and Szepesvári [12] provided a (non-Bayesian) unified
view for comparing the similarities and differences among previous IRL algorithms.

IRL is an inherently ill-posed problem since there may be an infinite number of reward functions
that yield the expert’s policy as optimal. Previous approaches summarized above employ various
preferences on the reward function to address the non-uniqueness. For example, Ng and Russell [6]
search for the reward function that maximizes the difference in the values of the expert’s policy and
the second best policy. More recently, Ramachandran and Amir [13] presented a Bayesian approach
formulating the reward preference as the prior and the behaviour compatibility as the likelihood, and
proposed a Markov chain Monte Carlo (MCMC) algorithm to find the posterior mean of the reward
function.

In this paper, we propose a Bayesian framework subsuming most of the non-Bayesian IRL algo-
rithms in the literature. This is achieved by searching for the maximum-a-posteriori (MAP) reward
function, in contrast to computing the posterior mean. We show that the posterior mean can be prob-
lematic for the reward inference since the loss function is integrated over the entire reward space,
even including those inconsistent with the behaviour data.Hence, the inferred reward function can
induce a policy much different from the expert’s policy. TheMAP estimate, however, is more ro-
bust in the sense that the objective function (the posteriorprobability in our case) is evaluated on
a single reward function. In order to find the MAP reward function, we present a gradient method
using the differentiability result of the posterior, and show the effectiveness of our approach through
experiments.

2 Preliminaries

2.1 MDPs

A Markov decision process (MDP) is defined as a tuple〈S,A, T,R, γ, α〉: S is the finite set of
states;A is the finite set of actions;T is the state transition function whereT (s, a, s′) denotes the
probabilityP (s′|s, a) of changing to states′ from states by taking actiona; R is the reward function
whereR(s, a) denotes the immediate reward of executing actiona in states, whose absolute value
is bounded byRmax; γ ∈ [0, 1) is the discount factor;α is the initial state distribution where
α(s) denotes the probability of starting in states. Using matrix notations, the transition function is
denoted as an|S||A| × |S| matrix T , and the reward function is denoted as an|S||A|-dimensional
vectorR.

A policy is defined as a mappingπ : S → A. The value of policyπ is the expected discounted
return of executing the policy and defined asV π = E [

∑

∞

t=0 γtR(st, at)|α, π] where the initial
states0 is determined according to initial state distributionα and actionat is chosen by policyπ
in statest. The value function of policyπ for each states is computed byV π(s) = R(s, π(s)) +
γ

∑

s′∈S T (s, π(s), s′)V π(s′) such that the value of policyπ is calculated byV π =
∑

s α(s)V π(s).
Similarly, theQ-function is defined asQπ(s, a) = R(s, a) + γ

∑

s′∈S T (s, a, s′)V π(s′). We can
rewrite the equations for the value function and theQ-function in matrix notations as

V π = Rπ + γT πV π, Qπ
a = Ra + γT aV π (1)

whereT π is an |S| × |S| matrix with the(s, s′) element beingT (s, π(s), s′), T a is an |S| × |S|
matrix with the(s, s′) element beingT (s, a, s′), Rπ is an |S|-dimensional vector with thes-th
element beingR(s, π(s)), Ra is an|S|-dimensional vector with thes-th element beingR(s, a), and
Qπ

a is an|S|-dimensional vector with thes-th element beingQπ(s, a).

An optimal policy π∗ maximizes the value function for all the states, and thus should satisfy
the Bellman optimality equation:π is an optimal policy if and only if for alls ∈ S, π(s) ∈
argmaxa∈A Qπ(s, a). We denoteV ∗ = V π∗

andQ∗ = Qπ∗

.

When the state space is large, the reward function is often linearly parameterized:R(s, a) =
∑d

i=1 wiφi(s, a) with the basis functionsφi : S × A → R and the weight vectorw =
[w1, w2, · · · , wd]. Each basis functionφi has a corresponding basis valueV π

i of policy π : V π
i =

E [
∑

∞

t=0 γtφi(st, at)|α, π].

2

We also assume that the expert’s behaviour is given as the setX of M trajectories executed by
the expert’s policyπE , where them-th trajectory is anH-step sequence of state-action pairs:
{(sm

1 , am
1), (sm

2 , am
2), · · · , (sm

H , am
H)}. Given the set of trajectories, the value and the basis value

of the expert’s policyπE can be empirically estimated by

V̂ E = 1
M

∑M

m=1

∑H

h=1 γh−1R(sm
h , am

h), V̂ E
i = 1

M

∑M

m=1

∑H

h=1 γh−1φi(s
m
h , am

h).

In addition, we can empirically estimate the expert’s policy π̂E and its state visitation frequencŷµE

from the trajectories:

π̂E(s, a) =

∑M

m=1

∑H

h=1 1(sm

h
=s∧am

h
=a)

∑M

m=1

∑H

h=1 1(sm

h
=s)

, µ̂E(s) =
1

MH

∑M

m=1

∑H

h=1 1(sm

h
=s).

In the rest of the paper, we use the notationf(R) or f(x;R) for functionf in order to be explicit
thatf is computed using reward functionR. For example, the value functionV π(s;R) denotes the
value of policyπ for states using reward functionR.

2.2 Reward Optimality Condition

Ng and Russell [6] presented a necessary and sufficient condition for reward functionR of an MDP
to guarantee the optimality of policyπ: Qπ

a(R) ≤ V π(R) for all a ∈ A. From the condition,
we obtain the following corollary (although it is a succinctreformulation of the theorem in [6], the
proof is provided in the supplementary material).

Corollary 1 Given an MDP\R 〈S,A, T, γ, α〉, policyπ is optimal if and only if reward functionR
satisfies

[

I − (IA − γT)(I − γT π)−1Eπ
]

R ≤ 0, (2)

whereEπ is an |S| × |S||A| matrix with the(s, (s′, a′)) element being 1 ifs = s′ andπ(s′) = a′,
andIA is an|S||A| × |S| matrix constructed by stacking the|S| × |S| identity matrix|A| times.

We refer to Equation (2) as thereward optimality conditionw.r.t. policy π. Since the linear in-
equalities define the region of the reward functions that yield policy π as optimal, we refer to the
region bounded by Equation (2) as thereward optimality regionw.r.t. policyπ. Note that there ex-
ist infinitely many reward functions in the reward optimality region even including constant reward
functions (e.g.R = c1 wherec ∈ [−Rmax, Rmax]). In other words, even when we are presented
with the expert’s policy, there are infinitely many reward functions to choose from, including the de-
generate ones. To resolve this non-uniqueness in solutions, IRL algorithms in the literature employ
various preferences on reward functions.

2.3 Bayesian framework for IRL (BIRL)

Ramachandran and Amir [13] proposed a Bayesian framework for IRL by encoding the reward
function preference as the prior and the optimality confidence of the behaviour data as the likelihood.
We refer to their work as BIRL.

Assuming the rewards are i.i.d., the prior in BIRL is computed by

P (R) =
∏

s∈S,a∈A P (R(s, a)). (3)

Various distributions can be used as the prior. For example,the uniform prior can be used if we have
no knowledge about the reward function other than its range,and a Gaussian or a Laplacian prior
can be used if we prefer rewards to be close to some specific values.

The likelihood in BIRL is defined as an independent exponential distribution analogous to the soft-
max function:

P (X|R) =

M
∏

m=1

H
∏

h=1

P (am
h |s

m
h ,R) =

M
∏

m=1

H
∏

h=1

exp(βQ∗(sm
h , am

h ;R))
∑

a∈A exp(βQ∗(sm
h , a;R))

(4)

3

0 0.2 0.4 0.6 0.8 1

0
0.5

1
0

0.02

0.04

R(s1)R(s5)

P
(R

(s
1
),

R
(s

5
)|
X

)

(a) (b)

Figure 1: (a) 5-state chain MDP. (b) Posterior forR(s1) andR(s5) of the 5-state chain MDP.

whereβ is a parameter that is equivalent to the inverse of temperature in the Boltzmann distribution.

The posterior over the reward function is then formulated bycombining the prior and the likelihood,
using Bayes theorem:

P (R|X) ∝ P (X|R)P (R). (5)

BIRL uses a Markov chain Monte Carlo (MCMC) algorithm to compute the posterior mean of the
reward function.

3 MAP Inference in Bayesian IRL

In the Bayesian approach to IRL, the reward function can be determined using different estimates,
such as the posterior mean, median, or maximum-a-posterior(MAP). The posterior mean is com-
monly used since it can be shown to be optimal under the mean square error function. However,
the problem with the posterior mean in Bayesian IRL is that the error is integrated over the entire
space of reward functions, even including infinitely many rewards that induce policies inconsistent
with the behaviour data. This can yield a posterior mean reward function with an optimal policy
again inconsistent with the data. On the other hand, the MAP does not involve an objective function
that is integrated over the reward function space; it is simply a point that maximizes the posterior
probability. Hence, it is more robust to infinitely many inconsistent reward functions. We present a
simple example that compares the posterior mean and the MAP reward function estimation.

Consider an MDP with 5 states arranged in a chain, 2 actions, and the discount factor 0.9. As shown
in Figure 1(a), we denote the leftmost state ass1 and the rightmost state ass5. Action a1 moves to
the state on the right with probability 0.6 and to the state onthe left with probability 0.4. Actiona2

always moves to states1. The true reward of each state is[0.1, 0, 0, 0, 1], hence the optimal policy
choosesa1 in every state. Suppose that we already knowR(s2), R(s3), andR(s4) which are all 0,
and estimateR(s1) andR(s5) from the behaviour dataX which contains optimal actions for all the
states. We can compute the posteriorP (R(s1), R(s5)|X) using Equations (3), (4), and (5) under the
assumption that0 ≤ R ≤ 1 and priorsP (R(s1)) beingN (0.1, 1), andP (R(s5)) beingN (1, 1).
The reward optimality region can be also computed using Equation (2).

Figure 1(b) presents the posterior distribution of the reward function. The true reward, the MAP
reward, and the posterior mean reward are marked with the black star, the blue circle, and the red
cross, respectively. The black solid line is the boundary ofthe reward optimality region. Although
the prior mean is set to the true reward, the posterior mean isoutside the reward optimality region.
An optimal policy for the posterior mean reward function chooses actiona2 rather than actiona1

in states1, while an optimal policy for the MAP reward function is identical to the true one. The
situation gets worse when using the uniform prior. An optimal policy for the posterior mean reward
function chooses actiona2 in statess1 ands2, while an optimal policy for the MAP reward function
is again identical to the true one.

In the rest of this section, we additionally show that most ofthe IRL algorithms in the literature can
be cast as searching for the MAP reward function in Bayesian IRL. The main insight comes from
the fact that these algorithms try to optimize an objective function consisting of a regularization term
for the preference on the reward function and an assessment term for the compatibility of the reward
function with the behaviour data. The objective function isnaturally formulated as the posterior in
a Bayesian framework by encoding the regularization into the prior and the data compatibility into
the likelihood. In order to subsume different approaches used in the literature, we generalize the

4

Table 1: IRL algorithms and their equivalentf(X ;R) and prior for the Bayesian formulation.q ∈
{1, 2} is for representingL1 or L2 slack penalties.

Previous algorithm f(X ; R) Prior

Ng and Russell’s IRL from sampled trajectories [6] fV Uniform
MMP without the loss function [8] (fV)q Gaussian

MWAL [10] fG Uniform
Policy matching [9] fJ Uniform

MaxEnt [11] fE Uniform

likelihood in Equation (4) to the following:

P (X|R) ∝ exp(βf(X ;R))

whereβ is a parameter for scaling the likelihood andf(X ;R) is a function which will be defined
appropriately to encode the data compatibility assessmentused in each IRL algorithm. We then have
the following result (the proof is provided in the supplementary material):

Theorem 1 IRL algorithms listed in Table 1 are equivalent to computingthe MAP estimates with
the prior and the likelihood usingf(X ;R) defined as follows:

• fV (X ;R) = V̂ E(R)− V ∗(R) • fG(X ;R) = mini

[

V
π∗(R)
i − V̂ E

i

]

• fJ (X ;R) = −
∑

s,a µ̂E(s) (J(s, a;R)− π̂E(s, a))
2 • fE(X ;R) = logPMaxEnt(X|T ,R)

where π∗(R) is an optimal policy induced by the reward functionR, J(s, a;R) is a smooth
mapping from reward functionR to a greedy policy such as the soft-max function, andPMaxEnt
is the distribution on the behaviour data (trajectory or path) satisfying the principle of maximum
entropy.

The MAP estimation approach provides a rich framework for explaining the previous non-Bayesian
IRL algorithms in a unified manner, as well as encoding various types of a priori knowledge into the
prior distribution. Note that this framework can exploit the insights behind apprenticeship learning
algorithms even if they do not explicitly learn a reward function (e.g., MWAL [10]).

4 A Gradient Method for Finding the MAP Reward Function

We have proposed a unifying framework for Bayesian IRL and suggested that the MAP estimate can
be a better solution to the IRL problem. We can then reformulate the IRL problem into the posterior
optimization problem, which is findingRMAP that maximizes the (log unnormalized) posterior:

RMAP = argmaxR P (R|X) = argmaxR [log P (X|R) + log P (R)]

Before presenting a gradient method for the optimization problem, we show that the generalized
likelihood is differentiable almost everywhere.

The likelihood is defined for measuring the compatibility ofthe reward functionR with the be-
haviour dataX . This is often accomplished using the optimal value function V ∗ or the optimal
Q-function Q∗ w.r.t. R. For example, the empirical value ofX is compared withV ∗ [6, 8], X
is directly compared to the learned policy (e.g. the greedy policy fromQ∗) [9], or the probability
of following the trajectories inX is computing usingQ∗ [13]. Thus, we generally assume that
P (X|R) = g(X ,V ∗(R)) or g(X ,Q∗(R)) whereg is differentiable w.r.t.V ∗ or Q∗. The remain-
ing question is the differentiability ofV ∗ andQ∗ w.r.t. R, which we address in the following two
theorems (The proofs are provided in the supplementary material.):

Theorem 2 V ∗(R) andQ∗(R) are convex.

Theorem 3 V ∗(R) andQ∗(R) are differentiable almost everywhere.

Theorems 2 and 3 relate to the previous work on gradient methods for IRL. Neu and Szepesvári [9]
showed thatQ∗(R) is Lipschitz continuous, and except on a set of measure zero (almost every-
where), it is Fŕechet differentiable by Rademacher’s theorem. We have obtained the same result

5

based on the reward optimality region, and additionally identified the condition for whichV ∗(R)
andQ∗(R) are non-differentiable (refer to the proof for details). Ratliff et al. [8] used a subgra-
dient of their objective function because it involves differentiatingV ∗(R). Using Theorem 3 for
computing the subgradient of their objective function yields an identical result.

Assuming a differentiable prior, we can compute the gradient of the posterior using the result in The-
orem 3 and the chain rule. If the posterior is convex, we will find the MAP reward function. Other-
wise, as in [9], we will obtain a locally optimal solution. Inthe next section, we will experimentally
show that the locally optimal solutions are nonetheless better than the posterior mean in practice.
This is due to the property that they are generally found within the reward optimality region w.r.t.
the policy consistent with the behaviour data.

The gradient method uses the update ruleRnew← R + δt∇RP (R|X) whereδt is an appropriate
step-size (or learning rate). Since computing∇RP (R|X) involves computing an optimal policy
for the current reward function and a matrix inversion, caching these results helps reduce repetitive
computation. The idea is to compute the reward optimality region for checking whether we can
reuse the cached result. IfRnew is inside the reward optimality region of an already visitedreward
function R′, they share the same optimal policy and hence the same∇RV π(R) or ∇RQπ(R).
Given policyπ, the reward optimality region is defined byHπ = I − (IA − γT)(I − γT π)−1Eπ,
and we can reuse the cached result ifHπ · Rnew ≤ 0. The gradient method using this idea is
presented in Algorithm 1.

Algorithm 1 Gradient method for MAP inference in Bayesian IRL
Input: MDP\R, behaviour dataX , step-size sequence{δt}, number of iterationsN
1: InitializeR
2: π ← solveMDP(R)
3: Hπ ← computeRewardOptRgn(π)
4: Π← {〈π, Hπ〉}
5: for t = 1 to N do
6: Rnew← R + δt∇RP (R|X)
7: if isNotInRewardOptRgn(Rnew, H

π) then
8: 〈π, Hπ〉 ← findRewardOptRgn(Rnew, Π)
9: if isEmpty(〈π, Hπ〉) then

10: π ← solveMDP(Rnew)
11: Hπ ← computeRewardOptRgn(π)
12: Π← Π ∪ {〈π, Hπ〉}
13: end if
14: end if
15: R ← Rnew

16: end for

5 Experimental Results

The first set of experiments was conducted inN × N gridworlds [7]. The agent can move west,
east, north, or south, but with probability 0.3, it fails andmoves in a random direction. The grids
are partitioned intoM ×M non-overlapping regions, so there are(N

M
)2 regions. The basis function

is defined by a 0-1 indicator function for each region. The linearly parameterized reward function
is determined by the weight vectorw sampled i.i.d. from a zero mean Gaussian prior with variance
0.1 and|wi| ≤ 1 for all i. The discount factor is set to 0.99.

We compared the performance of our gradient method to those of other IRL algorithms in the liter-
ature: Maximum Margin Planning (MMP) [8], Maximum Entropy (MaxEnt) [11], Policy Matching
with natural gradient (NatPM) and the plain gradient (PlainPM) [9], and Bayesian Inverse Rein-
forcement Learning (BIRL) [13]. We executed our gradient method for finding MAP using three
different choices of the likelihood: B denotes the BIRL likelihood, and E and J denote the likelihood
with fE andfJ , respectively. For the Bayesian IRL algorithms (BIRL and MAP), two types of the
prior are prepared: U denotes the uniform prior and G denotesthe true Gaussian prior. We evaluated
the performance of the algorithms using the difference betweenV ∗ (the value of the expert’s policy)
andV L(the value of the optimal policy induced by the learned weight wL measured on the true
weightw∗) and the difference betweenw∗ andwL usingL2 norm.

6

Table 2: Results in the gridworld problems.
‖ w∗ −wL ‖2 V ∗ − V L

|S| 24× 24 32× 32 24× 24 32× 32

dim(w) 36 144 576 64 256 1024 36 144 576 64 256 1024

NatPM 3.04 6.84 16.83 3.50 8.88 21.25 2.49 8.97 8.74 1.08 12.8410.97
PlainPM 3.77 6.63 16.60 5.21 9.05 17.36 0.15 0.67 0.51 0.41 1.281.91
MaxEnt 6.05 11.98 22.11 7.91 15.48 25.52 0.33 0.60 0.60 0.95 2.22 2.91
MMP 0.85 1.26 2.38 0.83 1.61 3.17 10.74 16.32 13.72 13.58 10.59 8.87

BIRL-U 3.27 5.67 n.a. 3.78 7.89 n.a. 1.38 0.80 n.a. 0.35 2.24 n.a.
BIRL-G 0.86 1.36 n.a. 0.98 1.71 n.a. 2.21 0.54 n.a. 0.50 0.90 n.a.

MAP-B-U 4.45 8.46 13.87 5.68 10.50 18.21 0.13 0.57 1.06 1.63 1.34 2.17
MAP-B-G 0.83 1.30 2.40 0.94 1.62 3.17 0.16 0.45 0.40 0.410.77 0.87
MAP-E-G 0.83 1.22 2.33 0.76 1.53 3.13 0.19 0.44 0.42 0.43 1.291.88
MAP-J-G 0.48 1.10 2.30 0.65 1.51 3.11 0.17 0.42 0.37 0.38 0.90 1.21

0 20 40 60 80

1

2

3

CPU time (sec)

‖
w

∗
−

w
L
‖

2

0 20 40 60 80
0

5

10

15

CPU time (sec)

V
∗
−

V
L

0 200 400 600 800
1

2

3

4

5

CPU time (sec)

‖
w

∗
−

w
L
‖

2

0 200 400 600 800
0

10

20

CPU time (sec)

V
∗
−

V
L

BIRL
MAP−B

(a) (b)

Figure 2: CPU timing results of BIRL and MAP-B in24× 24 gridworld problem. (a) dim(w) = 36.
(b) dim(w) = 144.

We used training data with 10 trajectories of 50 time steps, collected from the simulated runs of
the expert’s policy. Table 2 shows the average performance over 10 training data. Most of the
algorithms found the weight that induces an optimal policy whose performance is as good as that
of the expert’s policy (i.e., smallV ∗ − V L) except for MMP and NatPM. The poor performance of
MMP was due to the small size in the training data, as already noted in [14]. The poor performance
of NatPM may be due to the ineffectiveness of pseudo-metric in high dimensional reward spaces,
since PlainPM was able produce good performance. Regardingthe learned weights, the algorithms
using the true prior (MMP, BIRL, and the variants of MAP) found the weight close to the true one
(i.e., small||w∗ −wL||2). Comparing BIRL and MAP-B is especially meaningful since they share
the same prior and likelihood. The only difference was in computing the mean versus MAP from the
posterior. MAP-B was consistently better than BIRL in termsof both ||w∗ −wL||2 andV ∗ − V L.
Finally, we note that the correct prior yields small||w∗ − wL||2 andV ∗ − V L when we compare
PlainPM, MaxEnt, BIRL-U, and MAP-B-U (uniform prior) to MAP-J-G, MAP-E-G, BIRL-G, and
MAP-B-G (Gaussian prior), respectively.

Figure 2 compares the CPU timing results of the MCMC algorithm in BIRL and the gradient method
in MAP-B for the 24×24 gridworld with 36 and 144 basis functions. BIRL takes muchlonger
CPU time to converge than MAP-B since the former takes much larger number of iterations to
converge, and in addition, each iteration requires solvingan MDP with a sampled reward function.
The CPU time gap gets larger as we increase the dimension of the reward function. Caching the
optimal policies and gradients sped up the gradient method by factors of 1.5 to 4.2 until convergence,
although not explicitly shown in the figure.

The second set of experiments was performed on a simplified car race problem, modified from [14].
The racetrack is shown in Figure 3. The shaded and white cellsindicate the off-track and on-track
locations, respectively. The state consists of the location and velocity of the car. The velocities in the
vertical and horizontal directions are represented as 0, 1,or 2, and the net velocity is computed as
the squared sum of directional velocities. The net velocityis regarded as high if greater than 2, zero
if 0, and low otherwise. The car can increase, decrease, or maintain one of the directional velocities.
The control of the car succeeds withp=0.9 if the net velocity is low, butp=0.6 if high. If the control
fails, the velocity is maintained, and if the car attempts tomove outside the racetrack, it remains in
the previous location with velocity 0. The basis functions are 0-1 indicator functions for the goal
locations, off-track locations, and 3 net velocity values (zero, low, high) while the car is on track.
Hence, there are 3150 states, 5 actions, and 5 basis functions. The discount factor is set to 0.99.

7

Table 3: True and learned weights in the car race problem.
Goal Off-track Velocity while on track

Zero Low High

Fast expert 1.00 0.00 0.00 0.00 0.10
BIRL 0.96±0.02 -0.20±0.03 -0.04±0.01 -0.12±0.02 0.32±0.02

MAP-B 1.00±0.00 -0.19±0.02 -0.03±0.01 -0.13±0.01 0.29±0.01

Table 4: Statistics of the policies simulated in the car raceproblem.
Avg. steps Avg. steps in locations Avg. steps in velocity

to goal Off-track On-track Zero Low High

Fast expert 20.41 1.56 17.85 2.01 3.40 12.44
BIRL 32.98±6.42 2.13±0.60 29.85±6.03 3.33±0.52 4.34±0.79 22.18±4.84

MAP-B 24.77±1.92 1.68±0.26 22.09±1.71 2.70±0.16 3.38±0.18 16.01±1.48

We designed two experts. The slow expert prefers low velocity and avoids the off-track locations,
w = [1,−0.1, 0, 0.1, 0]. The fast expert prefers high velocity,w = [1, 0, 0, 0, 0.1]. We compared the
posterior mean and the MAP using the priorP (w1)=N (1, 1) andP (w2)=P (w3)=P (w4)=P (w5)=
N (0, 1) assuming that we do not know the experts’ preference on the locations nor the velocity, but
we know the experts’ ultimate goal is to reach one of the goal locations. We used BIRL for the
posterior mean and MAP-B for the MAP estimation, hence usingthe identical prior and likelihood.

We used 10 training data, each consisting of 5 trajectories.We omit

S

S

G

G

G

G

Figure 3: Racetrack.

the results regarding the slow expert since both BIRL and MAP-
B successfully found the weight similar with the true one, which
induced the slow expert’s policy as optimal. However for thefast
expert, MAP-B was significantly better than BIRL.1 Table 3 shows
the true and learned weights, and Table 4 shows some statistics
characterizing the expert’s and learned policies. The policy from
BIRL tends to remain in high speed on the track for significantly
more steps than the one from MAP-B since BIRL converged to a larger ratio ofw5 to w1.

6 Conclusion

We have argued that, when using a Bayesian framework for learning reward functions in IRL, the
MAP estimate is preferable over the posterior mean. Experimental results confirmed the effec-
tiveness of our approach. We have also shown that the MAP estimation approach subsumes non-
Bayesian IRL algorithms in the literature, and allows us to incorporate various types of a priori
knowledge about the reward functions and the measurement ofthe compatibility with behaviour
data.

We proved that the generalized posterior is differentiablealmost everywhere, and proposed a gradi-
ent method to find a locally optimal solution to the MAP estimation. We provided the theoretical
result equivalent to the previous work on gradient methods for non-Bayesian IRL, but used a differ-
ent proof based on the reward optimality region.

Our work could be extended in a number of ways. For example, the IRL algorithm for partially
observable environments in [15] mostly relies on Ng and Russell [6]’s heuristics for MDPs, but our
work opens up new opportunities to leverage the insight behind other IRL algorithms for MDPs.

Acknowledgments

This work was supported by National Research Foundation of Korea (Grant# 2009-0069702) and the
Defense Acquisition Program Administration and the Agencyfor Defense Development of Korea
(Contract# UD080042AD)

1All the results in Table 4 except for the average number of steps in the off-track locations are statistically
significant at the 95% confidence level.

8

References

[1] S. Russell. Learning agents for uncertain environments (extendedabstract). InProceedings of COLT,
1998.

[2] P. R. Montague and G. S. Berns. Neural economics and the biological substrates of valuation.Neuron,
36(2), 2002.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A surveyof robot learning from demonstration.
Robotics and Autonomous Systems, 57(5), 2009.

[4] Y. Niv. Reinforcement learning in the brain.Journal of Mathematical Psychology, 53(3), 2009.

[5] E. Hopkins. Adaptive learning models of consumer behavior.Journal of Economic Behavior and Orga-
nization, 64(3–4), 2007.

[6] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. InProceedings of ICML, 2000.

[7] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. InProceedings of
ICML, 2004.

[8] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. InProceedings of ICML,
2006.

[9] G. Neu and C. Szepesvári. Apprenticeship learning using inverse reinforcement learning andgradient
methods. InProceedings of UAI, 2007.

[10] U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. InProceedings of
NIPS, 2008.

[11] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement learning.
In Proceedings of AAAI, 2008.

[12] G. Neu and C. Szepesvári. Training parsers by inverse reinforcement learning.Machine Learning, 77(2),
2009.

[13] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. InProceedings of IJCAI, 2007.

[14] A. Boularias and B. Chaib-Draa. Bootstrapping apprenticeship learning. InProceedings of NIPS, 2010.

[15] J. Choi and K. Kim. Inverse reinforcement learning in partially observable environments. InProceedings
of IJCAI, 2009.

9

