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Complexity of Inference in Latent Dirichlet Allocation

A Proof of Lemma 2

Proof of Lemma 2. Assume there are T sets each having k � 3 elements, and let � be the
optimal LDA objective. Define F (n) = log�(n + ↵). Since l

it

is constant across all topics,
the linear term in Eq. 2 will be a constant K. First, note that, if there is a perfect matching,

� � n

k
F (k) + (T � n

k
)F (0) + K. (16)

The F (0) term is the contribution of unused topics. Otherwise, assume that the best packing
has �  cn/k sets, each with k elements. Then, by the properties of the log-gamma function,

�  �F (k) +
n � �k

k � 1
F (k � 1) + (T � n

k
)F (0) + K, (17)

where we assume, conservatively, that all of the remaining words are explained by topics
assigned (k�1) words. Also, since there was no perfect matching, there were at most T � n

k

unused topics. Using our bound on �, we have

�  cn

k
F (k) +

n � cn

k

k

k � 1
F (k � 1) + (T � n

k
)F (0) + K (18)

=
cn

k
F (k) +

n(1� c)

k � 1
F (k � 1) + (T � n

k
)F (0) + K (19)

=
dn

k
F (k) + (T � n

k
)F (0) + K, (20)

where

d := c + (1� c)�, for � :=
k

F (k)

F (k � 1)

k � 1
. (21)

Note that F (k)/k ! 1 as k ! 1. Along with the convexity of F , it follows that there
exists a k0 such that � < 1 for all k > k0. Note that k > (3+↵)2 su�ces. This implies that
d < 1, which shows that there is a non-zero gap between the possible values of �.

Note that the maximum concentration objective, F (n) = n log n, satisfies the conditions on
F and, in particular, we have � < 1 for k = 3.

B Derivation of MAP ✓ objective

Pr(✓|w) /
X

z1,...,zN

Pr(✓) Pr(w1, . . . , wN

, z1, . . . , zN |✓) (22)

= Pr(✓)
X

z1,...,zN

NY

i=1

Pr(z
i

|✓) Pr(w
i

|z
i

) (23)

= Pr(✓)
NY

i=1

X

zi

Pr(z
i

|✓) Pr(w
i

|z
i

) (24)

= Pr(✓)
NY

i=1

TX

t=1

✓
t

Pr(w
i

|z
i

= t) (25)

/
TY

t=1

✓↵t�1
t

NY

i=1

TX

t=1

✓
t

Pr(w
i

|z
i

= t). (26)
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C Proof of Lemma 3

If ✏ � K(↵, T, N) the claim trivially holds. Assume for the purpose of contradiction that
there exists a word î such that ✓⇤

t̂

< K(↵, T, N), where t̂ = argmax
t

 
ît

✓⇤
t

.

Let Y denote the set of topics t 6= t̂ such that ✓⇤
t

� 2✏. Let �1 =
P

t2Y

✓⇤
t

and �2 =P
t 62Y,t6=t̂

✓⇤
t

. Note that �2 < 2T ✏. Consider ✓̂ defined as follows:

✓̂
t̂

=
1

N
(27)

✓̂
t

=

✓
1� �2 � 1

N

�1

◆
✓⇤
t

for t 2 Y (28)

✓̂
t

= ✓⇤
t

for t 62 Y, t 6= t̂. (29)

Note that this construction implies the bound ✓̂
t

�
�
1� 2T ✏� 1

N

�
✓⇤
t

for t 2 Y . Assuming

n � 4 and ✏  1
2TN

, we have that ✓̂
t

� 1
2✓

⇤
t

� ✏ for t 2 Y , so ✓̂ is feasible.

We will show that �(✓̂) > �(✓⇤), contradicting the optimality of ✓⇤. First we need the
following upper bound, which uses the fact that ✓⇤

t̂

< 1
N

:

1� �2 � 1
n

�1
=

1� �2 � 1
N

1� �2 � ✓⇤
t̂

(30)

< 1. (31)

Then, we have:

P (✓̂)

↵� 1
=

TX

t=1

log(✓̂
t

) (32)

= log
1

N
+
X

t2Y

log
⇣1� �2 � 1

N

�1

⌘
+
X

t 6=t̂

log ✓⇤
t

(33)

 log
1

N
+
X

t 6=t̂

log ✓⇤
t

. (34)

Thus,

P (✓̂)� P (✓⇤)

↵� 1
 log

1

N
� log ✓⇤

t̂

(35)

which when ↵ < 1 gives the inequality:

P (✓̂)� P (✓⇤) � (↵� 1)
⇣
log

1

N
� log ✓⇤

t̂

⌘
(36)

= (1� ↵)
⇣
logN + log ✓⇤

t̂

⌘
. (37)

Moving on to the second term, we have:

L(✓̂) =
X

j2[N ] : j 6=î

log

 
X

t

 
jt

✓̂
t

!
+ log

 
X

t

 
ît

✓̂
t

!
(38)

� (N � 1) log

✓
1� �2 � 1

N

�1

◆
+

X

j2[N ] : j 6=î

log

 
X

t

 
jt

✓⇤
t

!
+ log

✓
 
ît̂

N

◆
(39)

� (N � 1) log

✓
1� 2

N

◆
+

X

j2[N ] : j 6=î

log

 
X

t

 
jt

✓⇤
t

!
+ log

✓
 
ît̂

N

◆
. (40)
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L(✓̂)� L(✓⇤) � (N � 1) log

✓
1� 2

N

◆
+ log

✓
 
ît̂

N

◆
� log

 
X

t

 
ît

✓⇤
t

!
(41)

� (N � 1) log

✓
1� 2

N

◆
+ log

✓
 
ît̂

N

◆
� log

�
T 

ît̂

✓⇤
t̂

�
(42)

= (N � 1) (log(N � 2)� logN) + log

✓
1

N

◆
� log

�
T✓⇤

t̂

�
(43)

� (N � 1)

✓
� 2

N � 2

◆
+ log

✓
1

N

◆
� log

�
T✓⇤

t̂

�
(44)

� �3 + log

✓
1

N

◆
� log

�
T✓⇤

t̂

�
. (45)

where we used the lower bound log(N � 2) � logN � 2
N�2 that arises from the convexity of

the log(x) function, and again assumed N � 4.

Finally, putting these two together, we have:

�(✓̂)� �(✓⇤) � �3� ↵ logN � log T � ↵ log ✓⇤
t̂

(46)

Plugging in ✓⇤
t̂

< K(↵, T, N) results in �(✓̂)� �(✓⇤) > 0, giving the contradiction.

D Proof of Theorem 8

Here we reduce from the unique set cover problem, where we are guaranteed that there is
only one minimal size set that covers all elements. It can be shown that Unique Set Cover
is NP-hard (under randomized reductions) by using standard reductions from Unique SAT
to Vertex Cover, and then from Vertex Cover to Set Cover.

Consider a Unique Set Cover instance and our standard reduction to an LDA instance as
described in earlier sections. In particular, let w = (w1, . . . , wN

) denote a Unique Set Cover
reduction instance and let C ✓ [T ] denote the unique minimum cover. Let S

i

be those sets
(topics) that cover element w

i

. We will show that for su�ciently small hyperparameters ↵
t

,
we can determine whether a set (topic) t 2 C by testing the value of E[✓

t

|X], thus proving
that the computation of the latter is NP-hard.

We have

p(✓ | X) /
Y

t

✓↵t�1
t

Y

i

X

t

02Si

✓
t

0 (47)

=
X

r

Y

t

✓
↵t�1+⌘t(r)
t

, (48)

where the final summation is over elements r 2 R := S1⇥· · ·⇥S
N

and ⌘
t

(r) := |{i : r
i

= t}|.
For r 2 R, we write |r| to denote the number of topics t such that ⌘

t

(r) 6= 0.

Let N denote the set of sequences n = (n1, . . . , nT

) such that n
t

� 0 and
P

t

n
t

= N . For
n 2 N , define

Z(n) :=

Z
· · ·
Z Y

t

✓↵t�1+nt
t

d✓1 · · · d✓T =

Q
t

�(↵
t

+ n
t

)

�(↵̄+ N)
, (49)

where ↵̄ =
P

t

↵
t

. It follows that

E[✓
t

|X] =

Z
· · ·
Z
✓
t

· p(✓ | X)d✓1 · · · d✓T (50)

=
1P

r

Z(⌘(r))

Z
· · ·
Z
✓
t

X

r

Y

⌧

✓↵⌧�1+n⌧ (r)
⌧

d✓1 · · · d✓T (51)

=
1P

r

Z(⌘(r))

X

r

Z(⌘(r, t)), (52)
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where ⌘(r, t) 2 N is given by ⌘(r, t)
⌧

= ⌘
⌧

(r) + 1(⌧ = t). By the identity �(z + 1) = z�(z),

we have Z(⌘(r, t)) = Z(⌘(r))↵t+nt(r)
↵̄+N

, and so it follows that

E[✓
t

|X] =
X

r2R
Z̄(⌘(r))

↵
t

+ n
t

(r)

↵̄ + N
, (53)

where

Z̄(n) :=
Z(n)P

r

02R Z(⌘(r0))
. (54)

For c 2 [T ], let R
c

denote the set of those r 2 R such that |r| = c. Recall that C ✓ [T ] is
the unique minimum set cover associated with the reduction X. Thus, for t 2 C,

E[✓
t

|X] =
X

r2R|C|

Z̄(⌘(r))
↵
t

+ n
t

(r)

↵̄ + N
+

X

r2R\R|C|

Z̄(⌘(r))
↵
t

+ n
t

(r)

↵̄ + N
(55)

� ↵
t

+ 1

↵̄ + N

X

r2R|C|

Z̄(⌘(r)), (56)

where we have used the observation that ⌘
t

(r) � 1 for r 2 R|C|. Let � =
P

r2R|C|
Z̄(⌘(r)).

If t 62 C, then n
t

(r) = 0 for r 2 R|C| and so we have E[✓
t

|X]  � ↵t
↵̄+N

+ (1� �). It follows
that if

� >
1

2

⇣
1 +

↵̄ + N

↵̄ + N + 1

⌘
(57)

then the minimum cover C contains a topic t if and only if E[✓|X] � 1
4

⇣
1 + 3 ↵̄+N

↵̄+N+1

⌘
↵t+1
↵̄+N

,

and, moreover, we can determine the minimum cover from a bound on � and polynomial
approximations to the marginal distributions of the components of ✓. We will take ↵

t

= ↵
henceforth, and show that for ↵ small enough, the bound (57) indeed holds.

Let n, n0 2 N be topic counts associated with the minimal cover and some non-minimal
cover, respectively. That is, let n = ⌘(r) for some r 2 R|C| and let n0 = ⌘(r0) for some
r0 2 R

k

and k > |C|. We will bound Z(n0)/Z(n) in order to bound �. We have
Y

t

�(↵ + n
t

) � �(↵)T�|C| �(↵ + 1)|C|, (58)

whereas
Y

t

�(↵ + n0
t

)  �(↵)T�|C|�1 �(↵ + 1)|C| �(↵ + N � |C|). (59)

Therefore,

Z(n0)

Z(n)
 �(↵)T�|C|�1 �(↵ + 1)|C| �(↵ + N � |C|)

�(↵)T�|C| �(↵ + 1)|C| (60)

=
�(↵ + N � |C|)

�(↵)
. (61)

By the convexity of �(1/c) in c, we have �(↵) � ↵�1 � �, where � ⇡ .577 is the Euler
constant. Therefore,

Z(n0)

Z(n)
 �(↵ + N � 1)

↵�1 � �
=: (↵). (62)

Then by conservatively assuming that there is only one responsibility corresponding to the
minimum cover, we have that

� � Z(n)

Z(n) + TN(↵)Z(n)
. (63)
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Therefore, the bound (57) is achieved when

(↵)  1

TN (2↵̄ + 2N + 1)
. (64)

In particular, when N, T � 2 and

↵�1 > 2TN�(N)(2N + 2) (65)

the marginal expectations can be used to read o↵ the unique minimal set cover.
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