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Abstract

We consider the computational complexity of probabilistic inference in La-
tent Dirichlet Allocation (LDA). First, we study the problem of finding
the maximum a posteriori (MAP) assignment of topics to words, where
the document’s topic distribution is integrated out. We show that, when
the e↵ective number of topics per document is small, exact inference takes
polynomial time. In contrast, we show that, when a document has a large
number of topics, finding the MAP assignment of topics to words in LDA
is NP-hard. Next, we consider the problem of finding the MAP topic dis-
tribution for a document, where the topic-word assignments are integrated
out. We show that this problem is also NP-hard. Finally, we briefly discuss
the problem of sampling from the posterior, showing that this is NP-hard
in one restricted setting, but leaving open the general question.

1 Introduction

Probabilistic models of text and topics, known as topic models, are powerful tools for ex-
ploring large data sets and for making inferences about the content of documents. Topic
models are frequently used for deriving low-dimensional representations of documents that
are then used for information retrieval, document summarization, and classification [Blei
and McAuli↵e, 2008; Lacoste-Julien et al., 2009]. In this paper, we consider the computa-
tional complexity of inference in topic models, beginning with one of the simplest and most
popular models, Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. The LDA model is
arguably one of the most important probabilistic models in widespread use today.

Almost all uses of topic models require probabilistic inference. For example, unsupervised
learning of topic models using Expectation Maximization requires the repeated computation
of marginal probabilities of what topics are present in the documents. For applications in
information retrieval and classification, each new document necessitates inference to deter-
mine what topics are present.

Although there is a wealth of literature on approximate inference algorithms for topic mod-
els, such Gibbs sampling and variational inference [Blei et al., 2003; Gri�ths and Steyvers,
2004; Mukherjee and Blei, 2009; Porteous et al., 2008; Teh et al., 2007], little is known
about the computational complexity of exact inference. Furthermore, the existing inference
algorithms, although well-motivated, do not provide guarantees of optimality. We choose
to study LDA because we believe that it captures the essence of what makes inference easy
or hard in topic models. We believe that a careful analysis of the complexity of popular
probabilistic models like LDA will ultimately help us build a methodology for spanning the
gap between theory and practice in probabilistic AI.

Our hope is that our results will motivate discussion of the following questions, guiding
research of both new topic models and the design of new approximate inference and learning
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algorithms. First, what is the structure of real-world LDA inference problems? Might there
be structure in “natural” problem instances that makes them di↵erent from hard instances
(e.g., those used in our reductions)? Second, how strongly does the prior distribution bias
the results of inference? How do the hyperparameters a↵ect the structure of the posterior
and the hardness of inference?

We study the complexity of finding assignments of topics to words with high posterior
probability and the complexity of summarizing the posterior distributions on topics in a
document by either its expectation or points with high posterior density. In the former case,
we show that the number of topics in the maximum a posteriori assignment determines the
hardness. In the latter case, we quantify the sense in which the Dirichlet prior can be seen
to enforce sparsity and use this result to show hardness via a reduction from set cover.

2 MAP inference of word assignments

We will consider the inference problem for a single document. The LDAmodel states that the
document, represented as a collection of wordsw = (w1, w2, . . . , wN

), is generated as follows:
a distribution over the T topics is sampled from a Dirichlet distribution, ✓ ⇠ Dir(↵); then,
for i 2 [N ] := {1, . . . , N}, we sample a topic z

i

⇠ Multinomial(✓) and word w
i

⇠  
zi , where

 
t

, t 2 [T ] are distributions on a dictionary of words. Assume that the word distributions
 

t

are fixed (e.g., they have been previously estimated), and let l
it

= log Pr(w
i

|z
i

= t) be
the log probability of the ith word being generated from topic t. After integrating out the
topic distribution vector, the joint distribution of the topic assignments conditioned on the
words w is given by

Pr(z1, . . . , zN |w) /
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Pr(w
i
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i

), (1)

where n
t

is the total number of words assigned to topic t.

In this section, we focus on the inference problem of finding the most likely assignment of
topics to words, i.e. the maximum a posteriori (MAP) assignment. This has many possible
applications. For example, it can be used to cluster the words of a document, or as part of
a larger system such as part-of-speech tagging [Li and McCallum, 2005]. More broadly, for
many classification tasks involving topic models it may be useful to have word-level features
for whether a particular word was assigned to a given topic. From both an algorithm design
and complexity analysis point of view, this MAP problem has the additional advantage of
involving only discrete random variables.

Taking the logarithm of Eq. 1 and ignoring constants, finding the MAP assignment is seen
to be equivalent to the following combinatorial optimization problem:

� = max
xit2{0,1},nt

X

t

log�( n
t

+ ↵
t

) +
X

i,t

x
it

l
it

(2)

subject to
X

t

x
it

= 1,
X

i

x
it

= n
t

,

where the indicator variable x
it

= I[z
i

= t] denotes the assignment of word i to topic t.

2.1 Exact maximization for small number of topics

Suppose a document only uses ⌧ ⌧ T topics. That is, T could be large, but we are
guaranteed that the MAP assignment for a document uses at most ⌧ di↵erent topics. In this
section, we show how we can use this knowledge to e�ciently find a maximizing assignment
of words to topics. It is important to note that we only restrict the maximum number of
topics per document, letting the Dirichlet prior and the likelihood guide the choice of the
actual number of topics present.

We first observe that, if we knew the number of words assigned to each topic, finding the
MAP assignment is easy. For t 2 [T ], let n⇤

t

be the number of words assigned to topic t
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Figure 1: (Left) A LDA instance derived from a k-set packing instance. (Center) Plot of
F (nt) = log� (nt + ↵) for various values of ↵. The x-axis varies nt, the number of words assigned
to topic t, and the y-axis shows F (nt). (Right) Behavior of log�(nt + ↵) as ↵ ! 0. The function
is stable everywhere but at zero, where the reward for sparsity increases without bound.

in the MAP assignment. Then, the MAP assignment x is found by solving the following
optimization problem:

max
xit2{0,1}

X

i,t

x
it

l
it

(3)

subject to
X

t

x
it

= 1,
X

i

x
it

= n⇤
t

,

which is equivalent to weighted b-matching in a bipartite graph (the words are on one side,
the topics on the other) and can be optimally solved in time O(bm3), where b = max

t

n⇤
t

=
O(N) and m = N + T [Schrijver, 2003].

We call (n1, . . . , nT

) a valid partition when n
i

� 0 and
P

t

n
t

= N . Using weighted b-
matching, we can find a MAP assignment of words to topics by trying all

�
T

⌧

�
= ⇥ (T ⌧ )

choices of ⌧ topics and all possible valid partitions with at most ⌧ non-zeros.

for all subsets A ✓ [T ] such that |A| = ⌧ do

for all valid partitions n = (n1, n2, . . . , nT

) such that n
t

= 0 for t 62 A do

�
A,n  Weighted-B-Matching(A,n, l) +

P
t

log�( n
t

+ ↵
t

)
end for

end for

return argmax
A,n �A,n

There are at most N⌧�1 valid partitions with ⌧ non-zero counts. For each of these, we solve
the b-matching problem to find the most likely assignment of words to topics that satisfies
the cardinality constraints. Thus, the total running time is O((NT )⌧ (N + ⌧)3). This is
polynomial when the number of topics ⌧ appearing in a document is a constant.

2.2 Inference is NP-hard for large numbers of topics

In this section, we show that probabilistic inference is NP-hard in the general setting where a
document may have a large number of topics in its MAP assignment. Let WORD-LDA(↵)
denote the decision problem of whether� > V (see Eq. 2) for some V 2 R, where the
hyperparameters ↵

t

= ↵ for all topics. We consider both ↵ < 1 and ↵ � 1 because, as
shown in Figure 1, the optimization problem is qualitatively di↵erent in these two cases.

Theorem 1. WORD-LDA(↵) is NP-hard for all ↵ > 0.

Proof. Our proof is a straightforward generalization of the approach used by Halperin and
Karp [2005] to show that the minimum entropy set cover problem is hard to approximate.

The proof is done by reduction from k-set packing (k-SP), for k � 3. In k-SP, we are given
a collection of k-element sets over some universe of elements ⌃ with |⌃| = n. The goal
is to find the largest collection of disjoint sets. There exists a constant c < 1 such that
it is NP-hard to decide whether a k-SP instance has (i) a solution with n/k disjoint sets
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covering all elements (called a perfect matching), or (ii) at most cn/k disjoint sets (called a
(cn/k)-matching).

We now describe how to construct a LDA inference problem from a k-SP instance. This
requires specifying the words in the document, the number of topics, and the word log
probabilities l

it

. Let each element i 2 ⌃ correspond to a word w
i

, and let each set correspond
to one topic. The document consists of all of the words (i.e., ⌃). We assign uniform
probability to the words in each topic, so that Pr(w

i

|z
i

= t) = 1
k

for i 2 t, and 0 otherwise.
Figure 1 illustrates the resulting LDA model. The topics are on the top, and the words
from the document are on the bottom. An edge is drawn between a topic (set) and a word
(element) if the corresponding set contains that element.

What remains is to show that we can solve some k-SP problem by using this reduction and
solving a WORD-LDA(↵) problem. For technical reasons involving ↵ > 1, we require that
k is su�ciently large. We will use the following result (we omit the proof due to space
limitations).

Lemma 2. Let P be a k-SP instance for k > (1 + ↵)2, and let P 0 be the derived WORD-
LDA(↵) instance. There exist constants C

U

and C
L

< C
U

such that, if there is a perfect
matching in P , then � � C

U

. If, on the other hand, there is at most a (cn/k)-matching in
P , then � < C

L

.

Let P be a k-SP instance for k > (3 + ↵)2, P 0 be the derived WORD-LDA(↵) instance,
and C

U

and C
L

< C
U

be as in Lemma 2. Then, by testing �< C
L

and� > C
U

we can
decide whether P is a perfect matching or at best a (cn/k)-matching. Hence k-SP reduces
to WORD-LDA(↵).

The bold lines in Figure 1 indicate the MAP assignment, which for this example corresponds
to a perfect matching for the original k-set packing instance. More realistic documents would
have significantly more words than topics used. Although this is not possible while keeping
k = 3, since the MAP assignment always has ⌧ � N/k, we can instead reduce from a k-set
packing problem with k � 3. Lemma 2 shows that this is hard as well.

3 MAP inference of the topic distribution

In this section we consider the task of finding the mode of Pr(✓|w). This MAP problem
involves integrating out the topic assignments, z

i

, as opposed to the previously considered
MAP problem of integrating out the topic distribution ✓. We will see that the MAP topic
distribution is not always well-defined, which will lead us to define and study alternative
formulations. In particular, we give a precise characterization of the MAP problem as one
of finding sparse topic distributions, and use this fact to give hardness results for several
settings. We also show settings for which MAP inference is tractable.

There are many potential applications of MAP inference of the document’s topic distribu-
tion. For example, the distribution may be used for topic-based information retrieval or
as the feature vector for classification. As we will make clear later, this type of inference
results in sparse solutions. Thus, the MAP topic distribution provides a compact summary
of the document that could be useful for document summarization.

Let ✓ = (✓1, . . . , ✓T ). A straightforward application of Bayes’ rule allows us to write the
posterior density of ✓ given w as

Pr(✓|w) /
 

TY

t=1

✓↵t�1
t

! 
NY

i=1

TX

t=1

✓
t

 
it

!
, (4)

where  
it

= Pr(w
i

|z
i

= t). Taking the logarithm of the posterior and ignoring constants,
we obtain

�(✓) =
TX

t=1

(↵
t

� 1) log(✓
t

) +
NX

i=1

log

 
TX

t=1

✓
t

 
it

!
(5)
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We will use the shorthand �(✓) = P (✓) + L(✓), where P (✓) =
P

T

t=1(↵t

� 1) log(✓
t

) and

L(✓) =
P

N

i=1 log(
P

T

t=1  it

✓
t

).

To find the MAP ✓, we maximize (5) subject to the constraint that
P

T

t=1 ✓t = 1 and ✓
t

� 0.
Unfortunately, this maximization problem can be degenerate. In particular, note that if
✓
t

= 0 for ↵
t

< 1, then the corresponding term in P (✓) will take the value1, overwhelming
the likelihood term. Thus, any feasible solution with the above property could be considered
‘optimal’.

A similar problem arises during the maximum-likelihood estimation of a normal mixture
model, where the likelihood diverges to infinity as the variance of a mixture component
with a single data point approaches zero [Biernacki and Chrétien, 2003; Kiefer and Wol-
fowitz, 1956]. In practice, one can enforce a lower bound on the variance or penalize such
configurations. Here we consider a similar tactic.

For ✏ > 0, let TOPIC-LDA(✏) denote the optimization problem

max
✓

�(✓) subject to
X

t

✓
t

= 1, ✏  ✓
t

 1. (6)

For ✏ = 0, we will denote the corresponding optimization problem by TOPIC-LDA. When
↵
t

= ↵, i.e. the prior distribution on the topic distribution is a symmetric Dirichlet,
we write TOPIC-LDA(✏,↵ ) for the corresponding optimization problem. In the follow-
ing sections we will study the structure and hardness of TOPIC-LDA, TOPIC-LDA(✏) and
TOPIC-LDA(✏,↵ ).

3.1 Polynomial-time inference for large hyperparameters (↵
t

� 1)

When ↵
t

� 1, Eq. 5 is a concave function of ✓. As a result, we can e�ciently find ✓⇤ using a
number of techniques from convex optimization. Note that this is in contrast to the MAP
inference problem discussed in Section 2, which we showed was hard for all choices of ↵.

Since we are optimizing over the simplex (✓ must be non-negative and sum to 1), we can
apply the exponentiated gradient method [Kivinen and Warmuth, 1995]. Initializing ✓0 to
be the uniform vector, the update for time s is given by

✓s+1
t

=
✓s
t

exp(⌘5s

t

)P
t̂

✓s
t̂

exp(⌘5s

t̂

)
, 5s

t

=
↵
t

� 1

✓s
t

+
NX

i=1

 
itP

T

t̂=1 ✓
s

t̂

 
it̂

, (7)

where ⌘ is the step size and 5s is the gradient.

When ↵ = 1 the prior disappears altogether and this algorithm simply corresponds to
optimizing the likelihood term. When ↵ � 1, the prior corresponds to a bias toward a
particular ✓ topic distribution.

3.2 Small hyperparameters encourage sparsity (↵ < 1)

On the other hand, when ↵
t

< 1, the first term in Eq. 5 is convex whereas the second term is
concave. This setting, of ↵ much smaller than 1, occurs frequently in practice. For example,
learning a LDA model on a large corpus of NIPS abstracts with T = 200 topics, we find
that the hyperparameters found range from ↵

t

= 0.0009 to 0.135, with the median being
0.01. Although in this setting it is di�cult to find the global optimum (we will make this
precise in Theorem 6), one possibility for finding a local maximum is the Concave-Convex
Procedure [Yuille and Rangarajan, 2003].

In this section we prove structural results about the TOPIC-LDA(✏,↵ ) solution space for
when ↵ < 1. These results illustrate that the Dirichlet prior encourages sparse MAP so-
lutions: the topic distribution will be large on as few topics as necessary to explain every
word of the document, and otherwise will be close to zero.

The following lemma shows that in any optimal solution to TOPIC-LDA(✏,↵ ), for every
word, there is at least one topic that both has large probability and gives non-trivial prob-
ability to this word. We use K(↵, T, N) = e�3/↵N�1T�1/↵ to refer to the lower bound on
the topic’s probability.
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Lemma 3. Let ↵ < 1. All optimal solutions ✓⇤ to TOPIC-LDA(✏,↵ ) have the following
property: for every word i, ✓⇤

t̂

� K(↵, T, N) where t̂ = argmax
t

 
it

✓⇤
t

.

Proof sketch. If ✏ � K(↵, T, N) the claim trivially holds. Assume for the purpose of contra-
diction that there exists a word î such that ✓⇤

t̂

< K(↵, T, N), where t̂ = argmax
t

 
ît

✓⇤
t

.

Let Y denote the set of topics t 6= t̂ such that ✓⇤
t

� 2✏. Let �1 =
P

t2Y

✓⇤
t

and �2 =P
t 62Y,t6=t̂

✓⇤
t

. Note that �2 < 2T ✏. Consider

✓̂
t̂

=
1

n
, ✓̂

t

=

✓
1� �2 � 1

n

�1

◆
✓⇤
t

for t 2 Y, ✓̂
t

= ✓⇤
t

for t 62 Y, t 6= t̂. (8)

It is easy to show that 8t, ✓̂
t

� ✏, and
P

t

✓̂
t

= 1. Finally, we show that �(✓̂) > �(✓⇤),
contradicting the optimality of ✓⇤. The full proof is given in the supplementary material.

Next, we show that if a topic is not su�ciently “used” then it will be given a probability very
close to zero. By used, we mean that for at least one word, the topic is close in probability
to that of the largest contributor to the likelihood of the word. To do this, we need to define
the notion of the dynamic range of a word, given as 

i

= max
t,t

0: it>0, it0>0
 it

 it0
. We let

the maximum dynamic range be  = max
i


i

. Note that  � 1 and, for most applications,
it is reasonable to expect  to be small (e.g., less than 1000).

Lemma 4. Let ↵ < 1, and let ✓⇤ be any optimal solution to TOPIC-LDA(✏,↵ ). Suppose

topic t̂ has ✓⇤
t̂

< (N)�1K(↵, T, N). Then, ✓⇤
t̂

 e
1

1�↵+2✏.

Proof. Suppose for the purpose of contradiction that ✓⇤
t̂

> e
1

1�↵+2✏. Consider ✓̂ defined as

follows: ✓̂
t̂

= ✏, and ✓̂
t

=
⇣

1�✏
1�✓⇤

t̂

⌘
✓⇤
t

for t 6= t̂. We have:

�(✓̂)� �(✓⇤) = (1� ↵) log
✓
✓⇤
t̂

✏

◆
+ (T � 1)(1� ↵) log

✓
1� ✓⇤

t̂

1� ✏

◆
+

NX

i=1

log

 P
t

✓̂
t

 
itP

t

✓⇤
t

 
it

!
.

Using the fact that log(1� z) � �2z for z 2 [0, 1
2 ], it follows that

(T � 1)(1� ↵) log
✓
1� ✓⇤

t̂

1� ✏

◆
� (T � 1)(1� ↵) log

�
1� ✓⇤

t̂

�
� 2(T � 1)(↵� 1)✓⇤

t̂

(9)

� 2(T � 1)(↵� 1)(N)�1K(↵, T, N) � 2(↵� 1). (10)

We have ✓̂
t

� ✓⇤
t

for t 6= t̂, and so

P
t

✓̂
t

 
itP

t

✓⇤
t

 
it

=

P
t 6=t̂

✓̂
t

 
it

+ ✏ 
it̂P

t6=t̂

✓⇤
t

 
it

+ ✓⇤
t̂

 
it̂

�
P

t6=t̂

✓⇤
t

 
itP

t6=t̂

✓⇤
t

 
it

+ ✓⇤
t̂

 
it̂

. (11)

Recall from Lemma 3 that, for each word i and t̃ = argmax
t

 
it

✓⇤
t

, we have ✓
t̃

> K(↵, T, N).
Necessarily t̃ 6= t̂. Therefore, using the fact that log 1

1+z

� �z,

log

 P
t 6=t̂

✓⇤
t

 
itP

t 6=t̂

✓⇤
t

 
it

+ ✓⇤
t̂

 
it̂

!
� �

✓⇤
t̂

 
it̂P

t 6=t̂

✓⇤
t

 
it

� � (N)�1K(↵, T, N) 
it̂

K(↵, T, N) 
it̃

� � 1

n
. (12)

Thus,�( ✓̂)� �(✓⇤) > (1� ↵) log e
1

1�↵+2 + 2(↵� 1)� 1 = 0, completing the proof.

Finally, putting together what we showed in the previous two lemmas, we conclude that
all optimal solutions to TOPIC-LDA(✏,↵ ) either have ✓

t

large or small, but not in between
(that is, we have demonstrated a gap). We have the immediate corollary:

Theorem 5. For ↵ < 1, all optimal solutions to TOPIC-LDA(✏,↵ ) have ✓
t


⇣
e

1
1�↵+2

⌘
✏

or ✓
t

� �1e�3/↵N�2T�1/↵.
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3.3 Inference is NP-hard for small hyperparameters (↵ < 1)

The previous results characterize optimal solutions to TOPIC-LDA(✏,↵ ) and highlight the
fact that optimal solutions are sparse. In this section we show that these same properties
can be the source of computational hardness during inference. In particular, it is possible to
encode set cover instances as TOPIC-LDA(✏,↵ ) instances, where the set cover corresponds
to those topics assigned appreciable probability.

Theorem 6. TOPIC-LDA(✏,↵ ) is NP-hard for ✏  K(↵, T, N)T/(1�↵)TN/(1�↵) and ↵ < 1.

Proof. Consider a set cover instance consisting of a universe of elements and a family of
sets, where we assume for convenience that the minimum cover is neither a singleton, all
but one of the family of sets, nor the entire family of sets, and that there are at least two
elements in the universe. As with our previous reduction, we have one topic per set and
one word in the document for each element. We let Pr(w

i

|z
i

= t) = 0 when element w
i

is
not in set t, and a constant otherwise (we make every topic have the uniform distribution
over the same number of words, some of which may be dummy words not appearing in the
document). Let S

i

✓ [T ] denote the set of topics to which word i belongs. Then, up to

additive constants, we have P (✓) = �(1� ↵)
P

T

t=1 log(✓t) and L(✓) =
P

N

i=1 log(
P

t2Si
✓
t

).

Let C
✓

⇤ ✓ [T ] be those topics t 2 [T ] such that ✓⇤
t

� K(↵, T, n), where ✓⇤ is an optimal
solution to TOPIC-LDA(✏,↵ ). It immediately follows from Lemma 3 that C

✓

⇤ is a cover.

Suppose for the purpose of contradiction that C
✓

⇤ is not a minimal cover. Let C̃ be a

minimal cover, and let ✓̃
t

= ✏ for t 62 C̃ and ✓̃
t

= 1�✏(T�|C̃|)
|C̃| > 1

T

otherwise. We will show

that �(✓̃) > �(✓⇤), contradicting the optimality of ✓⇤, and thus proving that C
✓

⇤ is in fact
minimal. This su�ces to show that TOPIC-LDA(✏,↵ ) is NP-hard in this regime.

For all ✓ in the simplex, we have
P

i

log(max
t2Si ✓t)  L(✓)  0. Thus it follows that

L(✓⇤)� L(✓̃)  N log T . Likewise, using the assumption that T � |C̃|+ 1, we have

P (✓̃)� P (✓⇤)

(1� ↵) � �(T � |C̃|) log ✏� (|C̃|+ 1) logK(↵, T, N) + (T � |C̃|� 1) log ✏ (13)

� log
1

✏
� T logK(↵, T, N), (14)

where we have conservatively only included the terms t 62 C̃ for P (✓̃) and taken ✓⇤ 2
{✏, K(↵, T, N)} with |C̃|+ 1 terms taking the latter value. It follows that
�
P (✓̃) + L(✓̃)

�
�
�
P (✓⇤) + L(✓⇤)

�
> (1� ↵) log 1

✏
� (T logK(↵, T, N) + N log T ). (15)

This is greater than 0 precisely when (1� ↵) log 1
✏

> log TNK(↵, T, N)T .

Note that although ✏ is exponentially small in N and T , the size of its representation in
binary is polynomial in N and T , and thus polynomial in the size of the set cover instance.

It can be shown that as ✏ ! 0, the solutions to TOPIC-LDA(✏,↵ ) become degenerate,
concentrating their support on the minimal set of topics C ✓ [T ] such that 8i, 9t 2 C s.t.
 
it

> 0. A generalization of this result holds for TOPIC-LDA(✏) and suggests that, while
it may be possible to give a more sensible definition of TOPIC-LDA as the set of solutions
for TOPIC-LDA(✏) as ✏! 0, these solutions are unlikely to be of any practical use.

4 Sampling from the posterior

The previous sections of the paper focused on MAP inference problems. In this section, we
study the problem of marginal inference in LDA.

Theorem 7. For ↵ > 1, one can approximately sample from Pr(✓ | w) in polynomial time.

Proof sketch. The density given in Eq. 4 is log-concave when ↵ � 1. The algorithm given
in Lovasz and Vempala [2006] can be used to approximately sample from the posterior.
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Although polynomial, it is not clear whether the algorithm given in Lovasz and Vempala
[2006], based on random walks, is of practical interest (e.g., the running time bound has a
constant of 1030). However, we believe our observation provides insight into the complexity
of sampling when ↵ is not too small, and may be a starting point towards explaining the
empirical success of using Markov chain Monte Carlo to do inference in LDA.

Next, we show that when ↵ is extremely small, it is NP-hard to sample from the posterior.
We again reduce from set cover. The intuition behind the proof is that, when ↵ is small
enough, an appreciable amount of the probability mass corresponds to the sparsest possible
✓ vectors where the supported topics together cover all of the words. As a result, we could
directly read o↵ the minimal set cover from the posterior marginals E[✓

t

| w].

Theorem 8. When ↵ <
�
(4N + 4)TN�(N)

��1
, it is NP-hard to approximately sample from

Pr(✓ | w), under randomized reductions.

The full proof can be found in the supplementary material. Note that it is likely that one
would need an extremely large and unusual corpus to learn an ↵ so small. Our results
illustrate a large gap in our knowledge about the complexity of sampling as a function of ↵.
We feel that tightening this gap is a particularly exciting open problem.

5 Discussion

In this paper, we have shown that the complexity of MAP inference in LDA strongly depends
on the e↵ective number of topics per document. When a document is generated from a small
number of topics (regardless of the number of topics in the model), WORD-LDA can be
solved in polynomial time. We believe this is representative of many real-world applications.
On the other hand, if a document can use an arbitrary number of topics, WORD-LDA is
NP-hard. The choice of hyperparameters for the Dirichlet does not a↵ect these results.

We have also studied the problem of computing MAP estimates and expectations of the
topic distribution. In the former case, the Dirichlet prior enforces sparsity in a sense that
we make precise. In the latter case, we show that extreme parameterizations can similarly
cause the posterior to concentrate on sparse solutions. In both cases, this sparsity is shown
to be a source of computational hardness.

In related work, Seppänen et al. [2003] suggest a heuristic for inference that is also applicable
to LDA: if there exists a word that can only be generated with high probability from one of
the topics, then the corresponding topic must appear in the MAP assignment whenever that
word appears in a document. Miettinen et al. [2008] give a hardness reduction and greedy
algorithm for learning topic models. Although the models they consider are very di↵erent
from LDA, some of the ideas may still be applicable. More broadly, it would be interesting
to consider the complexity of learning the per-topic word distributions 

t

.

Our paper suggests a number of directions for future study. First, our exact algorithms
can be used to evaluate the accuracy of approximate inference algorithms, for example by
comparing to the MAP of the variational posterior. On the algorithmic side, it would be
interesting to improve the running time of the exact algorithm from Section 2.1. Also, note
that we did not give an analogous exact algorithm for the MAP topic distribution when
the posterior has support on only a small number of topics. In this setting, it may be
possible to find this set of topics by trying all S ✓ [T ] of small cardinality and then doing
a (non-uniform) grid search over the topic distribution restricted to support S.

Finally, our structural results on the sparsity induced by the Dirichlet prior draws connec-
tions between inference in topic models and sparse signal recovery. We proved that the MAP
topic distribution has, for each topic t, either ✓

t

⇡ ✏ or ✓
t

bounded below by some value
(much larger than ✏). Because of this gap, we can approximately view the MAP problem
as searching for a set corresponding to the support of ✓. Our work motivates the study of
greedy algorithms for MAP inference in topic models, analogous to those used for set cover.
One could even consider learning algorithms that use this greedy algorithm within the inner
loop [Krause and Cevher, 2010].
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