Dimensionality Reduction Using the Sparse Linear
Model: Supplementary Material

loannis Gkioulekas Todd Zickler
Harvard SEAS Harvard SEAS
Cambridge, MA 02138 Cambridge, MA 02138
i gki ou@eas. harvard. edu zi ckl er @eas. harvard. edu
Abstract

In this supplementary material, we report results from @il experiments,
and provide complete proofs for the mathematical statesmaide in the paper.
Specifically, we provide larger scale versions of the vigadibn results on the
CMU PIE dataset presented in the paper, as well as the comédspy visualiza-
tion when using PCA. We also perform further experimentsriegn facial images
using the Extended Yale B. Furthermore, we present the ateiv of the opti-
mization problems for the general dictionary and sparsealirmodels and their
closed-form solutions, presented in Sections 3.1 and 3eopéper, respectively.
For the nonlinear extension of Section 3.2, we discuss annative generaliza-
tion of the sparse linear model than that discussed in therpand rigorously
derive the optimization problem and representer theoremsed the kernel case.
We use the same notation as in the paper. To avoid confustoen weferring to
sections, figures, and equations in the main paper, we alegygitly indicate
Sso.

1 Visualization of CMU PIE

In Figure 1 of the paper, we show two-dimensional projeciohall samples in the CMU PIE
dataset, as well as identity-averaged faces across thsetldta various illuminations, poses, and
expressions, produced using LPP and the proposed methdegures 1-2, we show larger scale
versions of these projections, so that details are bets#iolei Furthermore, in Figure 3, we show
the corresponding projections produced by using PCA.

2 Experimentson Extended Yale B Dataset

We report additional experimental results on facial imaigethe linear case, this time using the
Extended Yale B [1] dataset (specifically, the subset us¢@]jnWe pre-normalize face images to
be unit-length vectors, and use the same settings for dentyolearning as for the experiments on
CMU PIE.

We repeat the recognition experiments on facial images cti®e4 of the paper. Due to the much
smaller size of the Extended Yale B dataset when comparedvtd €IE, we only consider the
cases of 50 and 40 training samples for each of the 38 indilédn the dataset. Other than that, we
use the same experimental setting as with CMU PIE. In Figureedshow the average recognition
accuracy versus the number of projections achieved bywarimethods, and for different numbers
of training samples.

The main conclusions drawn from the experiments on CMU Pidyalpere as well, with the pro-
posed method outperforming competing methods. Note, hesvélat in this case performance



Figure 1:Two-dimensional projection of CMU PIE dataset, colored by identity, obthinsing LPP. Shown
at high resolution and at their respective projections are identity-as@riages across the dataset for various
illuminations, poses, and expressions. Insets show projections ofesminpm only two distinct identities.
(Best viewed in color.)

for all methods deteriorates faster as the training sang@eindividual decrease, due to the much
smaller dataset.

3 Derivation of optimization problem for the general and sparselinear
models

We begin by deriving equation (10) of the paper for the momgegal dictionary model. We denote
for convenienceE = D7 SD — I, and therefore equation (5) of the paper (which holds for the
general dictionary model as well) becomes

min Ea, gy .60 [(alTEag +el'SDay + el SDa, + 5{552)2} 7 (1)

Lyxn

which, after expanding the square, can be written as

min E g, as.e1.e0 [ (alTEag)2 + (elTSDa2)2 + (e:QTSDm)2 + (elTSEQ)Q

Laxn
+2aT Ease? SDay + 2aT Easel SDay + 2aT Easel Se,
+ 2e{ SDasel SDa; + 2] SDase? Se,
+ 252TSDa151TS52} . 2
Due to the zero-mean and independence assumptions fak, €1, 2, it is straightforward to show

that the expectation of the summands corresponding to tes-¢erms is equal to zero. Therefore,
(2) can be reduced to

min Eg, q, {(alTEag)Q} +Ea,e |:(€,{'S_Da2)2:|

Lyx N

Y B, [(sgspalﬂ Y Ee, ., [(slTs@)g}. 3)



Figure 2: Two-dimensional projection of CMU PIE dataset, colored by identity, obthimsing the proposed
method. Shown at high resolution and at their respective projectionisl@méty-averaged faces across the
dataset for various illuminations, poses, and expressions. Insetspbfections of samples from only two
distinct identities. (Best viewed in color.)

Figure 3: Two-dimensional projection of CMU PIE dataset, colored by identity, obthinsing PCA. Shown
at high resolution and at their respective projections are identity-as@rfages across the dataset for various
illuminations, poses, and expressions. Insets show projections ofesinpm only two distinct identities.
(Best viewed in color.)
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Figure 4:Results on Extended YaleB. Left: Classification accuracy of variousadsttfor different values

of the number of projectiond/, using 50 training samples per individual. Right: Classification accurbcy o
proposed and best alternative method, for different values of thebauof training samples per individual
(color) and projectiond/.

We consider the first term in (3E 4, .a, [(alTEag)2 . If we perform the vector-matrix-vector

multiplication and expand the square, the resulting sdalaqual to a linear combination of terms
of the formay;aizasjag, fori, j, k.l =1,..., K, wherea; = (ai1,...,a1x) and similarly foras,
and with constant coefficients that depend on the entriekeofrtatrix E. From the independence
and zero-mean assumptions for the components of the vett@sda., the expectation of all the
terms withi # k or j # [ is equal to zero. Therefore, we have that

K K
2
Eaia, {(%TEaz) } =YY cijata3;, (4)
i=1 j=1
and by evaluating the vector-matrix-vector product anedyty, it is easy to see that
cij = (B);.- (5)

Using the fact that, for any matrixV, its Frobenius norm can be written a\jsMHfD =
i (M 2], along with equations (4) and (5), we get directly that

Eara: |(a] Eas)’| = HE\/W1HF, (W), = E[a3a3;] . ®)

Using derivations analogous to the above, it is easy to atseegthat

2
Ease, [(675Da2)’| +Eaye. [(675Dar)’] = | (SD) 0 VW[ . )
2
Ec, e, [(5?552)2} = HS@ \/WSHF’ (8)
with

(W2)ij =E [511%7] +E [52#13} ) 9
(W3)ij = [5%16%] (10)

Combining the above, we obtain equation (10) of the paper.

In the case of the sparse linear model, from the assumptairitth components af ande are i.i.d.
Laplace and Gaussian respectively, we have foir atid 7,

E [a3;03;] = E [a},] E [a3;] = 474, (11)
[511a2]] = [{—:i] E [agj] = 20272, (12)
[ahez?] = [a%i] E [62.7-] = 9202 2, (13)
[5115%] =E[¢}]E [5%} =gt (14)

Using these, equation (10) of the paper is simplified intoagign (6) of the paper, which is the
optimization problem we consider for the case of the spamsat model.



4 Derivation of solution for the sparselinear model case

We introduce some notation. The singular value decomjpositf L is
L=UxZz", (15)

whereU is aM x M orthogonal matrixX is an invertibleM x M diagonal matrix, and? is a
N x M matrix with orthonormal columns, that 87 Z = I. Similarly, the eigendecomposition of
the positive semidefinite matriw D’ is

DD? =VAVT, (16)
whereV isaN x N orthogonal matrix, ané is a N x N diagonal matrix.
We re-write below for convenience the objective functionhad optimization problem of equation
(6) of the paper,
2 2 2
F(L) =47 HDTLTLD - IHF +47%0° HLTLDHF npe HLTLHF . 17)
We can obtain the stationary points of (17) by solving
OF

— =0. 18
L (18)

Using standard matrix differentiation tools, we can write tlerivative ofF with respect tal as
g% — AL (4T4DDTLTLDDT —4r*DDT + 40’ LTLDDT + a4LTL) . (19)

From (18) and (19), we firstly obtain the trivial solutidn= 0. All other solutions of (18) corre-
spond to the case when all of the columns of the matrix

4r*DDTLTLDD" — 47*DD” + 40?7*L"LDD” + +*L"L (20)
belong to in the null space dt. From basic linear algebra, this condition can be equitblen
expressed as

Z7 (4T4DDTLTLDDT —47*DD” + 4022 LTLDD” + a4LTL) —0. (21

—1
By multiplying the above from the right with D D™ Z>~2, with some basic matrix manipu-
lation and using the orthogonality properties of the magimvolved, the above becomes
47 ZTVAVTZ 4+ 0*22ZTVATIWVTZE 72 = 474872 — 40%7°]. (22)

We notice that the right-hand part of (18) is always symmetfor the left-hand part of (18) to
be symmetric, it is easy to check that one of the followingditons must be true® must be the
identify matrix; or the off-diagonal elements of the mat@xV must be zero. The first condition
can be rejected, as it is easy to check that then it is not lplesfsir both (18) and the requirement

Z'Z = I to be true. The second condition, and the fact tais orthogonal, imply thaZ is
formed from anyM columns ofV, thatisZ = V';,;. Then, (22) becomes

AT Ay + o' 2PN BT = 4t s do? (23)

whereA ,, is the diagonal matrix formed from th& eigenvalues oD D? corresponding to the
M columns of V' used to formZ. This is an equation involving only diagonal matrices and ca
be solved trivially for its diagonal elements. Combining @bove, we obtain that the solutions of
(18), and therefore the stationary points of (17), are eilhe- 0, or of the form (up to an arbitrary
rotation corresponding to the matix in (15))

L = diag (f (Am)) Vi (24)

whereAy; = (A1,...,Ay) isaM x 1 vector composed of any subset &f eigenvalues of the

N x N matrix DDT, V', is the N x M matrix with the corresponding eigenvectors as columns,
f () is a function applied element-wise to the vechar;, equal to (as obtained by solving (23))

47’4>\1‘
) = , 25
F %) \/04 + 47202 )\; + 41402 (25)




anddiag (f (Aar)) istheM x M diagonal matrix withf (Ax) as its diagonal. Substituting the above
solution in (17), and using (15), (16) and the orthogonaglityperties of the matrices involved, it is
easy to see that the objective function evaluated at thiesgay points is equal to

) 1 2
) ot s a1

5 12 5112
diag (f (M) A2, F+04Hdiag(f()\M)) HF (26)

From the definition of the Frobenius norm, and some algebreinipulation, we can rewrite the
above as

+47%52 ’

M
F(L)=> h(N), @7)
=1
where do2rd (52 1 4y r2
B = ot (0% + 4NT?) 28)

(02 + 2)\1‘72)2
It is easy to see that (\) is a strictly decreasing function of for all positive values ot and
7. Consequently, the stationary point where the objectivetion 7 (L) has the lowest value is
obtained when thé/ largest eigenvalues are selected in (24), therefore agiat the solution
presented in equation (8) of the paper. We also see that fer0, the objective function has the
same value for all stationary points, which is the reasottHeisolution ambiguity we discuss in the
paper with regards to the noiseless case (see equationt{ paper).

5 Alternative model for the kernel case

We briefly discuss here an extension of the sparse linear Inbedbe kernel case different from
the one used in Section 3.2 of the paper. We denoté the subspace spanned by the atoms of
dictionaryD,

CEspan{di,izl,...7K}. (29)

C has finite dimensiod < K, and thus is closed. Therefore, it has an orthogonal congied*
and we can writé{ = C @ C*. We also denote by the orthogonal projection t6.

Denote by the sefé;,i = 1,...,d} the orthonormal basis af, and by the sefé;,i =d+1,...}

its extension to the rest of the spake Then, we assume a probabilistic model where samples are
generated from equation (12) of the paper, and under the aamenptions foa as in the paper.

We also still assume thatis a Gaussian process ovef’ with sample patchs ift.. However, we
assume that the covariance operator f defined as follows,

(€1,Ceej)y = 0%, 1 <y j < d, (30)
(6,Czéj),, =0,i>dorj>d. (31)

As the set{é;,i = 1, ...} is an orthonormal basis 6, the above offers a full characterization of
the operatoC;. It is easy to construct such an operator, and therefore #us$an process even

on infinite dimensional spaces. Equivalently, the operatiis as the identity (times a constant)
for the projections of signals in the subspdteand as the zero operator for the residuals. As a
consequence, the above model allows for Gaussian noise@ihzean and variance? along all

of the dimensions of the subspa€ebut does not allow for noise along any other dimension of
H (or alternatively, noise there has zero variance). If weotkeiby {b; € R, i =1,...,K} the
coordinates of the dictionary elements with respect to tiwsgace basige;, i = 1, ..., d}, then all
functions generated by the above model will also belong, tand their coordinates with respect to
the above basis will be

K
Cjzzbijai+€j7.j:17"'7d7 (32)
1=1
wheree;, j = 1,...,d are Gaussian random variables with mean zero and varighc€hen, for
such functions, it is easy to see that MAP estimation oéduces to the kernelized lasso of equation
(13) of the paper.



We note that, for any € #, the optimization problem (13) of the paper can be writtemeently
as

2 1 2 1
nin o—5 202 If = Pefllz + 55 1Fef = Dally + ~ llal, - (33)

As the partzls || f — Pcf||H does not depend am, the above is exactly equivalent to

Igﬁg}{ ~—5 | Pef — Dall3, + ||a||1 ) (34)
and asP¢f € C, the above optimization problem can be rewritten as MAPesion of the co-
ordinates (32) and be explained probabilistically by thedelove introduced above. Therefore,
the above model can be used for the projectiong @i all functions in?, and then kernel lasso
becomes MAP estimation of their projection’s coordinatesome basis. The terth — P f is
not explained by the above model, and in fact any non-zerb samponent occurs only with zero
probability. The fact thatls || f — Pcin cannot be the likelihood of some distribution for noise
is exactly the problem we run into when trying to extend thededlave used in the paper to the
infinite dimensional case. However, if one is willing to “désd” the componenf — P f for all
samples arising in practice, this alternative model carpipied to the infinite dimensional case for
all signals.

6 Derivation of solution for the nonlinear case

Firstly, we derive equation (14) of the paper. We have
2

Sp* = ((vqm) (Voas) — alTa2> (35)
= (VOzy, VOus) g — alay)’ (36)
= (<(I)JJ1,V V(I)$2> — a?ag) (37)
= ((Pz1,SPa2)y, — alTag)2 , (38)
where we have used th&t= V*V. Then, using equation (12) of the paper, the above becomes
op? = ((Dal + 61,8 (Daz +&2))y — airag)2 (39)
=< (Day, S (Da2)>H + <E~1,S (’Da2)>% + <Da2785~2>7_{
2
+ <€~1,SE~2>7_[ — a{a2> (40)
K K B B
:(ZZQUQQJ- <<d“8d > ) ZQQJ <51,Sd >
i=1j=1
K _ 2
+ Z a1 <di, 852>’H + <<§17 S§2>H — a?a@) . (41)

«
Il
i

whered;; is the Kronecker delta. From the equivalence of Gaussiaregses with sample paths on
Hilbert spaces and Gaussian measures [3, 4], we have that

E Kél, f>7j —0,Yf €, (42)

and similarly fors,. Furthermore, from the properties of the covariance opetat, = C:, = %7,
we have that

E[(a1.f), Guah]=(Cefid), =0 (F3) Vigen. (43)

and similarly foré,. If in (41) we expand the square and take the expectation,ubimg (42), (43),
and an analysis similar to that presented before for degigouation (10) of the paper, we arrive at

E[5p2]=474§:§:(<di,8dj>ﬂ— ”) +dr 022<Sd2,8d> +ISI4e,  (44)

i=1 i=1



which corresponds to equation (14) in the paper.

We now need to prove that the minimizer of (44) over the setoofigact, positive semi-definite,
self-adjoint, and linear operato&of rank M has the form of equation (15) of the paper. For this
purpose, we use and extend the representer theorem pisesd. The first and third term of
the objective function (44) along with the rank constraimtrespond to the conditions of Theorem
3 of [5]. Here, we have additionally the constraint tisabe self-adjoint, and also the second term
of the objective function that violates the conditions adtttheorem. Extending the theorem to the
case wherd is also required to be positive semi-definite is straightfod. In order to handle terms

of the form <Sdi,8di>H, fori = 1,..., K, note that due to the Hilbert-Schmidt norm term in

the objective function (44), its minimize¥ has finite Hilbert-Schmidt norm and thus is a Hilbert-
Schmidt operator. Therefore, we can consider its deconiposisS = S° + S+, whereS? is the

projection ofS onto the linear span oﬁcii ®dj, i,j=1,... ,K},

K K
§% = ZZ%J&: ®d;, (45)
i=1 j=1
andS+ is orthogonal to each element of the above set,
<Ji,sl&j> =0,i,j=1,..., K. (46)
H

As S is compact and self-adjoin§,® andS+ are also compact and self-adjoint. Therefore, from the
spectral theoren§+ admits an eigendecomposition

St = Z)\kf)k R Vg, (47)
k

where?;, € H is an orthonormal set ang, are positive. Combining (47) with (46) for= j, i =
1,..., K, we obtain

<5k,d>H —0,Vi=1,..., K, Vk such that\;, # 0. (48)
Foreach =1,..., K, we have
<sdi7scii> - Ji,ssdi> (49)
H H

I
P Ny

d;, (S5 +8) (8% +8Y) di>H (50)

<Ji,SSSSCZi> + <Ji,SSSlCZi>
H H
+ <Ji,5L$SJi> + <Ji,SL5LcL> : (51)
H H

where we have used linearity and self-adjointness. Howessémg (45), (47) and (48), it is easy to
see that the terms involving® S+, S+S° andS+S+ are equal to zero. Therefore we conclude that

(Sdi,sdi) = (S5d;,5%d;) . (52)

H H

From (52) and equation (20) of the proof of Theorem 3 of [SH asing the full rank assumption
for Kpp, we can deduce that the minimizer of (44) can be written irfone

K K
=)D vdi®d;. (53)
i=1 j=1
The matrix~y formed by the coefficients;; is related to the matrixx of Theorem 3 of [5] through
the equation (again assuming tl&t>p has full rank)

o= K%D'YK%D (54)
as proved in the proof of Theorem 3 of [5] (see fifth equatiopage 824) and applied to our case
where the set of elements in the optimizer{iéi ® Jj, L,j=1,... ,K}. The eigenvalues aofr

are the same of those 6f as shown in the proof of Theorem 3 of [5], and therefares positive
semi-definite and of ranR/. Under the assumption that the matéi&pyp is full rank, we deduce
that~ is also positive-semidefinite and of rank. Combining this with (53), we conclude that the
minimizer of (44) has the form of equation (15) of the paper.
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