Supplementary materials for the paper:
Sparse Recovery with Brownian Sensing

Proof of Proposition 1

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 1 Let us consider M independent Brownian motions (B, ..., BM) on X, and define the
M x K matrix A with elements

A i = \/LM(/CgOk(x)dBm(a:)).

Then A is a centered Gaussian matrix where each row A, . is i.i.d. from N (0, ﬁVC), where V¢ is
the K x K covariance matrix of the basis, defined by its elements Vj, j» = fc or(z)pr (x)d.

Proof:  Indeed, from the definition of stochastic integrals, each A,,  ~ N (0, ﬁ fc o3 (z)dz),
and Cov(Am k, Ami) = 77 Jo ©r(2)ew (x)dx. Thus each row Ap,. ~ N(0,5;Ve) and are
independent by independence of the Brownian motions. Additionally, we have

M
E[(ATA)g ] = E[% Z Am,kAm,k/i| = Viw c-
=1

]

Now let us define B = AVCA/ ?. Since each row of A is an independent draw of A'(0, V), then

each row of B is an independent draw of A'(0, 7). Thus B is a matrix with elements i.i.d. from
N(0,1). We thus can use the following result (as stated in [9], see also [14, 1]):

Theorem 5 For p' > 0 and any integer t > 0, when M > C'§72(tlog(K /t) + log 1/p')), with C"
being a universal constant, see [14, 1], then with probability at least 1 — p/, there exists §; < 6 (J;
is the RIP constant of B for t-sparse vectors) such that for all t—sparse vectors x € RX,

(1 =0¢)[[zll2 < |Bzll2 < (1+6:)|z]2.
Since V¢ is symmetric, it is possible to write Vo = UDU?T with U an orthogonal matrix and

D a diagonal matrix with the eigenvalues of V' as diagonal elements (SVD decomposition). Thus,
V1/2 = UDY2UT where D'/? is the diagonal matrix with the square roots of the diagonal elements

of D (i.e., the eigenvalues of Vcl/z).

Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B (see [7] for the
preservation of the RIP property to a change of orthonormal basis). Applying this and Theorem 5
with 6 = 1/2 for 2¢-sparse vectors, we have that whenever M > 4C”(2t1log(K/2t) +1log1/p’), the
RIP constant d9; < 1/2, i.e. for all 2t—sparse vectors z,

1 3
Slialle < 1BUzlz < Slala

Now if we consider a 2t—sparse vector , then D'/2z is also 2t—sparse with same support as z, and
we also have that Vi c||zll2 < |DY22|s < Vmaz.c||2||l2- Thus the matrix BUD'/? satisfies

Vmin,C 3v, C
P gy < | BUDY 2y < 25 .

As mentioned before, the preservation of the RIP property to a change of orthonormal base (see [7])
can be applied with U and thus as A = BV'/2 = BUD/?UT to obtain:

1 3
iymin,C”x”Q < ||A{EH2 < il/max,C”x”I
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Proof of Proposition 2

We prove here without loss of generality (because of we can always parametrize the curve) the result
for X = [0,1]. Let us recall that f is (L, 5)-Holder and that we write ¢ = ||5||2. The estimation error

€m = by — by, given the samples (z,, Y )n, follows a centered Gaussian distribution (w.r.t. the
choice of the Brownian B™) with variance

e < (o Eoi. )

= [ (F@) = () + )L yn)) de

0 n

1 (7l+1)

- MZ / J(@) = F155) = mn)Pd
MNZ +|nn|)

2/ L%%8
- MN(N?B 1+Z|’7” )

< 2 L?1%8 9
= MN(N%—1+”)'

IN

We now wish to apply Bernstein’s inequality in order to bound ||¢||2 in high probability. We recall
the following result (see e.g. [2]):

Theorem 6 (Bernstein’s inequality) Let (X1,....X5s) be independent real valued random vari-

ables and assume that there exist two positive numbers v and d such that: Z%Zl E(X2) <wvand
for all integers r > 3,

M 7! 9
> E[(Xn)}] < Sud >,

m=1
Let S = Z%ZI(XM —E(X,,)), then for any x > 0, we have P(S > v/2vx + dz) < exp(—x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice v =
8M(V(e m))2 and d = 2V(e,,). Indeed, since the ¢, are i.i.d. centered Gaussian, by writing

X,, = €2, we have X,,, > 0 and for any integer r > 2, E(X") = (V(en))" (22;)!!. This gives
Zm:l E[Xﬁl] =3M(V(en))? < wv,and forr > 3,

(2r)!
27yl

M
Z E[X"] = M(V(ey))" <M(V(em))" x 27! < 2' vd" 2.

m=1

We thus apply Bernstein’s inequality (and recall that V(e,,) < MQN ( ]62 [lfﬂl +o )) to obtain that

with probability at least 1 — p,

e[ <2(L212’3 02)(1+4 log(1/p) +210g(1/p)).

N2 TN M M

11



Proof of Theorem 4

Following [10], we define iy > 0 (respectively 3; > 0) as the maximal (resp. minimal) values such
that for all z € RX which are t—sparse,

aiflzlls < [[Azllz < Billz]lo- )

We now define v; = @ and use Theorem 3.1 of [10] applied to sparse vectors, in the case of ¢;

minimization, remmded below:

Theorem 7 (Foucart, Lai) For any integer S > 0, fort > S, whenever oy — 1 < 4(\/5 — 1)\/%
the solution Q to the ¢1-minimization problem
min ||al|;, under the constraint | Aa — b||3 < ||||2,

satisfies ||a— alla < % where Do is a constant which depends on 7o, S and t defined in [10].

In order to apply this results, we now provide conditions such that (4) holds, as well as an upper
bound on the noise ||c?||, and a lower bound on f25.

Step 1. Recovery Condition: We recall the results of Proposition 1 and have that (4) holds with
Qo > %Vminyc and By < %Vmax’c with probability 1 — p’ as long as M > %(t log(K/t) +

log1/p’)). Thus v2; < 31;;7:2 = 3kec.

A sufficient condition for (7) is that 3k¢ — 1 < 4(v/2 — 1) \/% .

By defining 7 = [(3rc — 1)(5 \/%_ o)) ? (note that 7 only depends on V¢), condition (7) holds when-

ever t > Sr, thus with probability 1 — p’, whenever

M > 4C"(2[Sr] log —— S +log1/p'). )

Note that this condition holds when the number of Brownian motions M (which can be chosen
arbitrarily) is large enough (and does not depend on the number of observations V).

Step 2. Upper bound on ||c2||: This is the result of Proposition 2.

Step 3. Lower bound on 325 In order to apply Theorem 7, we now provide a lower bound on f325.

Lemma 2 [f
M > C'"log1/u, (6)
>

1/ 2
34/ maxy [, ¢

Proof: Let us define i = argmax;, [, c ¢2(x)dz. Let us now consider the 1—sparse vector a such
that a; = 1 and a;, = 0 otherwise. We have: (Aa), = [, ¢i(x)dB™(x). So each (Aa), is a
sample drawn independently from N (0, f c o2 (z)dx).

then with probability 1 — u we have: PBag

By applying Theorem 5, with S = = land 6 = 1/2, when M > C'log1/u, then with

probability 1 — u,
2 3 2
¢ (z)dzl|allz < [[Aall2 < 5 ¢ (z)dz|a]2-

And since [og is the minimal constant such that for every 2.5 —sparse vector x (in particular for a)
we have || Azl < B2s]|z||2, we deduce that

Bas > ;\/ /c 3 (x)dz = ;\/mkax /C 3 (x)dx
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We now apply Theorem 7 and deduce that when M satisfies (5) (which implies that (6) also holds)
using Lemma 2, with probability 1 — p’ — u,

2D55(N, M, p)
VN /maxy, Jo e

Thus from Proposition 2, with probability 1 — p — p’ — u,

(7

la = aflz <

803 (k=% +0°) (1 + c(p, M))
N (maxy fc ©7) ’

and from [10], we deduce that if we are able to recover 4S—sparse vectors, i.e., if M >
4C' (4Srlog /&= + log1/p’) then Dy < Ck2 where C can be loosely bounded by 90, see [10]
(note that this numerical constant can be greatly improved). The result follows with the choice

p=p =u

o —alf3 <
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