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Abstract

In discrete undirected graphical models, the conditiondependence of node
labelsY is specified by the graph structure. We study the case where th
another input random vectdf (e.g. observed features) such that the distribution
P(Y | X) is determined by functions oX that characterize the (higher-order)
interactions among th&’s. The main contribution of this paper is to learn the
graph structure and the functions conditionedXorat the same time. We prove
that discrete undirected graphical models with featkirare equivalent to mul-
tivariate discrete models. The reparameterization of thtergial functions in
graphical models by conditional log odds ratios of the fattfers advantages
in representation of the conditional independence stracithe functional spaces
can be flexibly determined by kernels. Additionally, we imp@ Structure Lasso
(SLasso) penalty on groups of functions to learn the grapicisire. These groups
with overlaps are designed to enforce hierarchical funcsielection. In this way,
we are able to shrink higher order interactions to obtainsasspgraph structure.

1 Introduction

In undirected graphical models (UGMs), a graph is define@ as (V, E), whereV = {1,--- | K}

is the set of nodes anl C V' x V is the set of edges between the nodes. The graph structure spe
ifies the conditional independence among nodes. Much priok Wwas focused on graphical model
structure learning without conditioning oki. For instance, Meinshausen andtmann [1] and
Penget al. [2] studied sparse covariance estimation of Gaussian MaRandom Fields. The co-
variance matrix fully determines the dependence strudtuttee Gaussian distribution. But it is not
the case for non-elliptical distributions, such as therdiscUGMs. Ravikumaet al.[3] and Hofling
and Tibshirani [4] studied variable selection of Ising misdzased ori; penalty. Ising models are
special cases of discrete UGMs with (usually) only pairvitgeractions, and without features. We
focused on discrete UGMs with both higher order interactiand features. It is important to note
that the graph structure may change conditioned on diffekgs, thus our approach may lead to
better estimates and interpretation.

In addressing the problem of structure learning with fezgutiuet al. [5] assumed Gaussian dis-
tributedY given X, and they partitioned the space &finto bins. Schmidet al. [6] proposed a
framework to jointly learn pairwise CRFs and parameter$ wibck+; regularization. Bradley and
Guestrin [7] learned tree CRF that recovers a max spanreegfra complete graph based on heuris-
tic pairwise link scores. These methods utilize only paseinformation to scale to large graphs.
The closest work is Schmidt and Murphy [8], which examineg hiigher-order graphical structure
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learning problem without considering features. They useddive set method to learn higher order
interactions in a greedy manner. Their model is over-patarized, and the hierarchical assumption
is sufficient but not necessary for conditional independeéncdhe graph.

To the best of our knowledge, no previous work addressedstheiof graph structure learning of
all orders while conditioning on input features. Our cdmitions include a reparemeterization of
UGMs with bivariate outcomes into multivariate BernouMYB) models. The set of conditional
log odds ratios in MVB models are complete to represent tfectsf of features on responses and
their interactions at all levels. The sparsity in the seuwictions are sufficient and necessary for the
conditional independence in the graph, i.e., two nodesarditionally independent iff the pairwise
interaction is constant zero; and the higher order intemaetmong a subset of nodes means none of
the variables is separable from the others in the jointibigtion.

To obtain a sparse graph structure, we impose Structur@l(&&ssso0) penalty on groups of func-
tions with overlaps. SLasso can be viewed as group lassoowvéHaps. Group lasso [9] leads to
selection of variables in groups. Jacebal. [10] considered the penalty on groups with arbitrary
overlaps. Zhaet al.[11] set up the general framework for hierarchical variagkction with over-
lapping groups, which we adopt here for the functions. Ooupgs are designed to shrink higher
order interactions similar to hierarchical inclusion reston in Schimdt and Murphy [8]. We give
a proximal linearization algorithm that efficiently leath® complete model. Global convergence is
guaranteed [12]. We then propose a greedy search algoritisoate our method up to large graphs
as the number of parameters grows exponentially.

2 Conditional Independence in Discrete Undirected Graphical Models

In this section, we first discuss the relationship betweenntlultivariate Bernoulli (MVB) model
and the UGM whose nodes are binary, i¥e.= 0 or 1. At the end, we will give the representation
of the general discrete UGM whelé takes value if0, - - - ,m — 1}. In UGMs, the distribution of
multivariate discrete random variabl¥s, . .., Y given X is:

P(Y1=y1,-..,YK=yK\X)=%H@c(yc;X) @
ceC

where Z(X) is the normalization factor. The distribution is factodzaccording to the cliques in
the graph. Acliqgue& C Q = {1,..., K} is the set of nodes that are fully connectéd;(yc; X) is
the potential function o, indexed byyc = (y;):cc. This factorization follows from the Markov
property: any two nodes not in a cliqgue are conditionallyejpeindent given others [13]. $odoes
not have to comply with the graph structure, as long as itfficgent. For example, the most general
choice for any given graph &= {Q2}. See Theorem 2.1 and Example 2.1 for details.
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Figure 1: Graphical model examples.

Given the graph structure, the potential functions charam the distribution on the graph. But if
the graph is unknown in advance, estimating the potentiatfans on all possible cliques tends
to be over-parameterized [8]. Furthermoleg ¢« (yc; X) = 0 is sufficient for the conditional
independence among the nodes but not necessary (see Exafjpléo avoid these problems, we
introduce the MVB model that is equivalent to (1) with binagdes, i.e.Y; = 0 or 1. The MVB
distribution is:

PMVi=yi,.... Yk =X =2) =exp{ Y y“f*—b(f)} 2

weV g
=exp{yifi(x) + - Ay @)+ F g2 @) + gy SR (@) = 0() )



Here, we use the following notations. L&ty be the power set of2 = {1,...,K}, and
use Uy = Wg — {0} to index the2® — 1 f“’s in (2). Letw denotes a set inVx, de-
finey = (y',---,y*,--,y) be the augmented response with = [[,. v.. And f =
(fY,..., e, ..., f?)is the vector of conditional log odds ratios [14]. We assyfriés in a Repro-
ducing Kernel Hilbert Space (RKH3)“ with kernel K [15]. For example, in our simulation we
choosef“ to be B-spline (see supplementary mateiral). We focus dmashg the set off“(x)
with featurex where the sparsity in the set specifies the graph structure.

We present the following lemma and theorem which show thé/atpince between UGM and MVB:
Lemma2.1. Ina MVB model, define the odd-even partition of the powerfsetas: V%, , = {x C

w | |k| = |w| — k,wherek is odd}, and¥¥ . = {k C w | |k| = |w| — k, wherek is ever}. Note
|ow | = [P« | = 2I“I=1. The following property holds:
Hm yw P(EZLZEK,,}/]:O,!]EQ\IﬂX) Z(x
£ = log S bf) =log D (3)

Mecus,, P0G =Li€mY; =05 € QlX) [oec 2c(0:7)
Theorem 2.1. A UGM of the general form (1) with binary nodes is equivalena tMVB model of
(2). In addition, the following are equivalent: 1) There ig |€'|-order interaction in{Y;,i € C};
2) There is no cliqu&’ € ¥ in the graph; 3)f“ = 0 for all w such that”' C w.

A proof is given in Appendix. It states that there is a cliqtiein the graph, iff there isv D
C, f¥ # 0in MVB model. The advantage of modeling by MVB is that the sjtgirin f“’s is
sufficient and necessary for the conditional independendéé graph, thus fully specifying the
graph structure. Specifically;, Y; are conditionally independent iff* = 0,w 2 {7,j}. This
showed the interaction is non-zero iff all the nodes invdlaee not conditionally independent.
Example 2.1. WhenK = 2, Q = {1,2},C = {Q}, denotedn(Y; = 1,Y> = 1;X) as &3
for simplicity, thenP(Y; = 1,Y, = 1|X) = %@11. Define @1, g1, Do Similarly, then the
distribution with UGM parameterization is determined. Thkation between UGM and MVB is
P Py - P
Lolog -2, f2=log—-2, fl2o]og—1 %0

! & Do / & Do f & Doy - Prg
Note, the independence betwagrandY; implies: f12 = 0 or ®;; - g9 = g1 - $19. Therefore,
%2 being zero in MVB model is sufficient and necessary for thelitional independence in the
model. On the other hanthg - = 0 is a sufficient condition but not necessary.

The distribution of a general discrete UGM whéfge {0, --- ,m — 1} can be extended from (2).
Lemma22. LetV ={1,...,m —1},y, = (¥i)icw, then

Q
P(Y1=y17"',YKZ?JK|X)=GXP{Z Z I(yo =) fy —b(f)} “4)
\

w=1ypeVlw

wherel is an indicator function and’™ is the tensor product of V’s. Eachf“ is a|V|l*! vector.

3 Structure Penalty

In many applications, the assumption is that the graph hgsfee large cliques. Similar to the
hierarchical inclusion restriction in Schmidt and Murp®}, [we will include a higher order inter-
action only when all its subsets are included. Our modeliig flexible in thatf“ (x) can be in an
arbitrary RKHS.

Lety(i) = (y1(4),...,yx(?)), (i) = (z1(4),...,x,(¢)) be theith data point. There an@ x| =
2K _ 1 functions in total. We first consider learning the full moaeien K is small, and later
propose a greedy search algorithm to scale to large grapiesp@nalized log likelihood model is:

minIy(f) = L(f) + M (f) = 3 (= YO F@0) +5(8)) + A () (5)

i=1



whereL(f) is the negative log likelihood andl(-) is the structure penalty. The hierarchical assump-
tion is that if there is no interaction on cliga& then allf“ should be zero, fov O C'. The penalty

is designed to shrink sucft’ toward zero. We consider the Structure Lasso (SLasso)yenaded

by the lattice in Figure 2. The latticE has2 — 1 nodes:1,...,w,...,Q. There is an edge from
w1 tows ifand only ifwy C wg and|w; |+ 1 = |ws|. Jenattoret al.[16] discussed how to define the
groups to achieve different nonzero patterns.

OO
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G

Figure 2: Hierarchical lattice for penalty

Let T, = {w € Uk|v C w} be the subgraph rooted atin 7, including all the descendants
of v. DenotefT" = (f“),er,. All the functions are categorized into groups with oveslas

(Ty,...,Tq). The SLasso penalty on the grotipis: J(f7+) = pu\/> e, /<13, Wherep, is

the weight for the penalty ofi,, empirically chosen a%. Then, the objective is:

min L) =L+ XY po | D 113 (6)
v weT,

The following theorem shows that by minimizing the objeet{®), f«* will enter the model before
fe2if wy C wy. Thatis to say, iff“! is zero, there will be no higher order interactionsuagn It is
an extension of Theorem 1 in Zhabtal.[11] and the proof is given in Appendix.

Theorem 3.1. Objective (6) is convex, thus the minimal is attainable. dgtw, € ¥ andw, C
wo. If f is the minimizer of (6) given the observations, thadis, 01, (f) which is the subgradient
of I, at f, thenf“2 = 0 almost surely iff“* = 0.

Example3.1. If K =3, f = (fY, f2, £, f42, f43, 23, f12:3). The group at node in Figure 2
is fT = (F%, 22, f13, F223) and J (™) = po /ISR + 172217 + [F53]2 + 7232,

4 Parameter Estimation

In this section, we discuss parameter estimation wheresthdunction space is linear a4“ =
{1} & H¢ for simplicity. {1} refers to the constant function space, &tdis a RKHS with a linear
kernel. The functions ifi{” have the formf* (z) = ¢ +>__, ¢fx;. Its normis| £« |3 = [l
where|| - || stands for Euclideah, norm. Here, we denote’ = (7, ..., cs)" € RP™! as a vector

of lengthp + 1 andc = (¢¥).cw, € RP is the concatenated vector of all parameters of length
p=(p+1) Vx| Letc?” = (¢*),er, be a(p+ 1) - |TV| vector, then the objective (6) is now:

min Iy(c) = L(e) + A > pollc™ | 7

4.1 Estimating the complete model on small graphs

Many applications do not involve a large amount of respors®# is desirable to learn the complete
model when the graph is small for consistency reasons. Weopeoa method to optimize (7) of the



Algorithm 1 Proximal Linearization Algorithm
Input: cg, g, > 1,tol >0
repeat
Choosevy;, € [min, ¥maz)
Solve Eq (8) ford, = ¢ — ¢
while oy, = In(cx) — In(cx + di) < ”dkH3 do
/I Insufficient decrease
Setay, = max(amin, (o)
Solve Eq (8) fordy,
end while
Setaj+1 = ag/¢
Setck+1 = cp + dg
until d; < tol

complete model with all interaction levels by iterativebhsng the following proximal linearization
problem as discussed in Wright [12]:

mcinLk—l—VLkT.(c—ck)—F %HC—CHF—F)\J(C) (8)

where L, = L(ci), anday, is a positive scalar chosen adaptivelyk#it step. With slight abuse
of notation, we denotey as the value of at kth step. Algorithm 1 summarized the framework of
solving (7). Following the analysis in Wright [12], we can aresthat the proximal linearization
algorithm will converge for the negative log-likelihoodsfunction with the SLasso penalty.

However, solving group lasso with overlaps is not triviakda the non-smoothness at the singular
point. In recent years, several papers have addressedthikem. Jacolet al. [10] duplicated the
design matrix columns that appear in group overlaps, thimedthe problem as group lasso without
overlaps. Kim and Xing [17] reparameterized the group norith \@dditional dummy variables.
They alternatively optimized the model parameters and timendy ones at each step. It is efficient
for the quadratic loss function on Gaussian data, but mighsoale well in our case. Instead, we
solve (8) by its smooth and convex dual problem [18].Theitset@e in the supplementary material.

4.2 Estimating large graphs

The above algorithm is efficient on small graplas & 20). It usually terminates within 20 iterations
in our experiments. However, the issue of estimating a cetaphodel is the exponential number
of f«’s and the same amount of groups involved in objective (7)s ihtractable when the graph
becomes large. The hierarchical assumption and the SLassity lend themselves naturally to a
greedy search algorithm:
1. Start from the set of main effects dg = {f!, -, fX}.
2. In stepi, remove the nodes that are notdp from the lattice in Figure 2. Obtain a sparse
estimation of the functions irl; by algorithm (1). Denote the resulting sparse 4gt
3. LetA;;; = A,. Keep adding a higher order interaction intg, if all its subsets of
interactions are included iA;. And also add this node into the lattice in Figure 2.

Iterate stef® and3 until convergence. The algorithm is similar to the activersethod in Schmidt
and Murphy [8]. It has multiple runs of algorithm (1) to enferthe hierarchical assumption. It is
not guaranteed to converge to the global optimum. Nonethetir empirical experiments show its
ability to scale to large graphs.

5 Experiments

51 Toy Data

In the simulation, we create 6 toy graphs. The first four gsaqte depicted in Figure 1. Graph 5
has 100 nodes where the first 8 nodes have the same structar€igare 1(c) and the others are
independent. Graph 6 also has 100 nodes where the first 18 hasle the same connection as in
Figure 1(d) and the others are independent. We generateat@8atis for each structure to evaluate



the performance. The sample size of each dataset is 1008.idHeow the first data set is generated:
The length of the feature vectay, is set to 5 in our experiment, i.eX = (Xi,...,X;). Each
fex) =5 + Z?Zlg;#(xj) whereg? (z;) = E,?Zl ¢4 Bi(x;) is spanned by the B-spline basis
functions{By(-) }x=1,...,p (See the supplementary material), whérés chosen to be 5. The true
set of the model parameter; , is uniformly sampled froM{—5,—4,--- ,5}. We set the intercepts
c¢§ in main effects tal, and those in second or higher order interactior tdhe featuresX;, are
i.i.d uniform on [-1, 1]. ThenY is sampled according to the probability in equation (2).

We use GACV (generalized approximate cross validation) BBACV (B-type GACV) [19] to
choose the regularization paramekefor the complete model (graphs 1-4). We call these variants
of SLasso Complete-GACV and Complete-BGACV. We use AIC fiaegly search (Greedy-AIC)

in graphs 5 and 6 due to computational consideration. Thgerah) is chosen according to Koh

et al. [20]. The details of the tuning methods are discussed in tipplementary material. The R
package, BMN, is used as a baseline [4].

Table 1: Number of true positive and false positive function

Graph Method f1,2 f1,3 f2,3 f3’4 f1,2,3 f5’7’8 f5,6,7,8 FP
BMN 60 76 70 0 0 - - 162
1 Complete-GACV | 100 100 100 94 84 - - 136
Complete-BGACV| 86 83 83 72 14 - - 11
BMN 44 50 38 58 0 - - 412
2 Complete-GACV | 100 99 100 99 83 - - 341
Complete-BGACV| 88 91 88 78 33 - - 64
BMN 72 64 60 60 0 0 0 830
3 Complete-GACV | 91 87 81 92 62 71 33 412
Complete-BGACV| 36 22 23 93 0 39 0 162
BMN 48 34 37 29 0 0 - 774
4 Complete-GACV | 92 98 94 90 54 45 - 693
Complete-BGACV| 68 68 71 62 0 0 - 144
5 BMN 38 28 26 22 0 0 0 9476
Greedy-AIC 99 99 98 97 22 21 0 1997
6 BMN 28 26 14 26 0 0 - 9672
Greedy-AIC 100 100 100 99 24 15 - 3458

In Table 1, we count, for each functigft’, the number of runs out of 100 whef¢ is recovered
(lle“|l # 0). If a recovered function is in the true model, it is cons@tka true positive, otherwise a
false positive. The main effects are always detected cityrélous are not listed in the table. SLasso
is more effective compared to BMN which only considers paeanteractions.

In Figure 3, we show the learning results in terms of truetpasiate (TPR) as sample size increases
from 100 to 1000. The experimental setting is the same asdefte TPRs improve with increas-
ing sample size. GACV achieves better TPR, but higher FPRpeoed to BGACV. Our method
outperforms BMN in all six graphs.

5.2 Case Study: CensusBureau County Data

We use the county data from U.S. Census Butéawalidate our method. We remove the counties
that have missing values and obtain 2668 entries in totad.olitcomes of this study are summarized
in Table 2. “Vote” [21] is coded as 1 if the Republican candiédaon in the 2004 presidential
election. To dichotomize the remaining outcomes, the natimean is selected as a threshold. The
data is standardized to mean 0 and variance 1. The follovéatufes are included: Housing unit
change in percent from 2000-2006, percent of ethnic gropgsent foreign born, percent people
over 65, percent people under 18, percent people with a hibbot education, percent people
with a bachelors degree; birth rate, death rate, per capitargment expenditure in dollars. By
adjusting\, we observe new interactions enter the model. The graphtsteiof A\ = 0.1559 is

1http://www.census;.gov/s;tatab/www/ccd b.html
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Figure 3: The True Positive Rate (TPR) of graph structurenieg methods with increasing sam-
ple size. The percentage in the bracket is the upper bounaleé FPositive Rate (FPR) in each
experiment. BMN always has larger FPR compared to SLasso.

Table 2: Selected response variables

Responsg Description Positive%
\ote 2004 votes for Republican presidential candidate 81.11
Poverty | Poverty Rate 52.70
VCrime | Violent Crime Rate, eg. murder, robbery 23.09
PCrime | Property Crime Rate, eg. burglary 6.82
URate Unemployment Rate 51.35
PChange | Population change in percent from 2000 to 2006 64.96

shown in Figure 4(a). The results of BMN (the tuning paramitd.015) is in Figure 4(b). The
unemployment rate plays an important role as a hub as dismbby SLasso, but not by BMN.

PChange VCrime

3(0.9761)

Vote

PCrime

URate Poverty

(a) SLasso-Complete (b) BMN

Figure 4: Interactions of response variables in the Censusdl data. The first number on the edge
is the order at which the link is recovered. The number inketis the function norm on the clique
and the absolute value of the elements in the concentratainxnrespectively. We note SLasso
discovers at 7th step two third-order interactions whiehdisplayed by two circles in (a).

We analyze the link between “Vote” and “PChange”. Though rierginal correlation between
them (withoutX) is only 0.0389, which is the second lowest absolute pairwise correlatibae,



link is firstly recovered by SLasso. It has been suggesterthieze is indeed a connectfonThis
shows that after taking features into account, the depexdsinucture of response variables may
change and hidden relations could be discovered. The metior§ain this case are “percentage of
housing unit change”X;) and “population percentage of people over 6X%]. The part of the
fitted model shown below suggests that as housing unitsaesetehe counties are more likely to
have both positive results for “Vote” and “PChange”. Bustténdency will be counteracted by the
increase of people over 65: the responses are less likedkéaaoth positive values.

fVote = 0.2913 - X1 +0.3475 - Xo + - - -
frehange — 1 4796 - X, — 0.3709 - Xo + - - -
fVote,PChange — () 1358 . X; — 0.0458 - Xo + - - -

6 Conclusions

Our SLasso method can learn the graph structure that isfiguely the conditional log odds ratios
conditioned on input featureX, which allows the graphical model depending on featurese Th
modeling interprets well, sincég~ = 0 iff there is no such clique. An efficient algorithm is given
to estimate the complete model. A greedy approach is appliezh the graph is large. SLasso
can be extended to model a general discrete UGM, whgtakes value if{0,...,m — 1}. Also,
there exist rich selections of the function forms, which esmthe model more flexible and powerful,
though modification is needed in solving the proximal subfem for non-parametric families.

A Proof

A.1 Proof of Theorem 2.1

Proof. Given UGM (1), the corresponding parameterization in MVBdalois shown in (3) of
Lemma 2.1. Conversely, given the MVB model of (2), the clisjaan be determined by the nonzero
f¢: cligue C exists ifC = w and f“ # 0. Then the maximal cliqgues can be inferred from the
graph structure. And suppose they atg...,C,,. Letw;, = C;, fori = 1,...,m, andr; = 0,

ki =C;N(Cig U---UCY),i =2,...,m. Then the parameterization is:

De, (yo,; o) = exp (S (y;2) — S™ (y;)) and Z(z) = exp(b(f)) ©)
whereS“(y;x) =3, -, y" f"(x). Thus, UGM (1) with bivariate nodes is equivalent to MVB (2).

In the latter part of the theorem, = 2 and3 = 1 follow naturally from the Markov property of
graphical models. To sho® = 3, let y¢ be a realization ofjc such thaty = (y¢)icc Where
yy = 1if i € wandyy = 0 otherwise. Notice that whenevenC = x'NC, we haveyf. = yg'. For
any possible = kN C, k' € {k|k = vUu, s.t.u C w— v} will satisfy the conditionx’' N C' = v.
There are2l“—*| suchx’ in total due to the choice af. Also, they appear in the nominator and
denominator of equation (3) equally. So, for artye C,

I[[ @cwesa)= J] ®clew) (10)

RET REWS

even

It follows that f« = 0 by (3). O

A.2 Proof of Theorem 3.1

Proof. We give the proof for the linear case. The convexityl/gfis easy to check, sincé and
J(fT) are all convex ire. Suppose there is somg D w; S.t.é¥2 # 0 andév* = 0, by the groups

constructed through Figure 2¢7+|| = [|(é),cw|| # 0 for all v C w;. So the partial derivative of
the objective (7) with respect t&* até“ is
oL el
— + A Py =0 (11)
dcn w1 =¢w1 Ug] ||CT”

Thus, the probability of ¢~2 # 0} equals to the probability o{a‘i—fl = 0}, whichis0. O

‘c“l =¢wl

2http://www.ipsos-mori.com/researchpubIications/researcharchive/2545#bm£19puIation-change-turnout-the-eIection.aspx
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