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Abstract

We introduce a new Bayesian nonparametric approach to identification of sparse
dynamic linear systems. The impulse responses are modeled as Gaussian pro-
cesses whose autocovariances encode the BIBO stability constraint, as defined by
the recently introduced “Stable Spline kernel”. Sparse solutions are obtained by
placing exponential hyperpriors on the scale factors of such kernels. Numerical
experiments regarding estimation of ARMAX models show that this technique
provides a definite advantage over a group LAR algorithm and state-of-the-art
parametric identification techniques based on prediction error minimization.

1 Introduction

Black-box identification approaches are widely used to learn dynamic models from a finite set of
input/output data [1]. In particular, in this paper we focus on the identification of large scale linear
systems that involve a wide amount of variables and find important applications in many different
domains such as chemical engineering, economic systems and computer vision [2]. In this scenario
a key point is that the identification procedure should be sparsity-favouring, i.e. able to extract from
the large number of subsystems entering the system description just that subset which influences
significantly the system output. Such sparsity principle permeates many well known techniques
in machine learning and signal processing such as feature selection, selective shrinkage and com-
pressed sensing [3, 4].

In the classical identification scenario, Prediction Error Methods (PEM) represent the most used
approaches to optimal prediction of discrete-time systems [1]. The statistical properties of PEM
(and Maximum Likelihood) methods are well understood when the model structure is assumed to be
known. However, in real applications, first a set of competitive parametric models has to be postu-
lated. Then, a key point is the selection of the most adequate model structure, usually performed by
AIC and BIC criteria [5, 6]. Not surprisingly, the resulting prediction performance, when tested on
experimental data, may be distant from that predicted by “standard” (i.e. without model selection)
statistical theory, which suggests that PEM should be asymptotically efficient for Gaussian innova-
tions. If this drawback may affect standard identification problems, a fortiori it renders difficult the
study of large scale systems where the elevated number of parameters, as compared to the number
of data available, may undermine the applicability of the theory underlying e.g. AIC and BIC.
Some novel estimation techniques inducing sparse models have been recently proposed. They in-
clude the well known Lasso [7] and Least Angle Regression (LAR) [8] where variable selection is
performed exploiting the ¢; norm. This type of penalty term encodes the so called bi-separation
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feature, i.e. it favors solutions with many zero entries at the expense of few large components. Con-
sistency properties of this method are discussed e.g. in [9, 10]. Extensions of this procedure for
group selection include Group Lasso and Group LAR (GLAR) [11] where the sum of the Euclidean
norms of each group (in place of the absolute value of the single components) is used. Theoreti-
cal analyses of these approaches and connections with the multiple kernel learning problem can be
found in [12, 13]. However, most of the work has been done in the “static” scenario while very little,
with some exception [14, 15], can be found regarding the identification of dynamic systems.

In this paper we adopt a Bayesian point of view to prediction and identification of sparse linear sys-
tems. Our starting point is the new identification paradigm developed in [16] that relies on nonpara-
metric estimation of impulse responses (see also [17] for extensions to predictor estimation). Rather
than postulating finite-dimensional structures for the system transfer function, e.g. ARX, ARMAX
or Laguerre [1], the system impulse response is searched for within an infinite-dimensional space.
The intrinsical ill-posed nature of the problem is circumvented using Bayesian regularization meth-
ods. In particular, working under the framework of Gaussian regression [18], in [16] the system
impulse response is modeled as a Gaussian process whose autocovariance is the so called stable
spline kernel that includes the BIBO stability constraint.

In this paper, we extend this nonparametric paradigm to the design of optimal linear predictors for
sparse systems. Without loss of generality, analysis is restricted to MISO systems so that we inter-
pret the predictor as a system with m 4+ 1 inputs (given by past outputs and inputs) and one output
(output predictions). Thus, predictor design amounts to estimating m + 1 impulse responses mod-
eled as realizations of Gaussian processes. We set their autocovariances to stable spline kernels with
different (and unknown) scale factors which are assigned exponential hyperpriors having a common
hypervariance. In this way, while GLAR uses the sum of the /1 norms of the single impulse re-
sponses, our approach favors sparsity through an ¢; penalty on kernel hyperparameters. Inducing
sparsity by hyperpriors is an important feature of our approach. In fact, this permits to obtain the
marginal posterior of the hyperparameters in closed form and hence also their estimates in a robust
way. Once the kernels are selected, the impulse responses are obtained by a convex Tikhonov-type
variational problem. Numerical experiments involving sparse ARMAX systems show that this ap-
proach provides a definite advantage over both GLAR and PEM (equipped with AIC or BIC) in
terms of predictive capability on new output data.

The paper is organized as follows. In Section 2, the nonparametric approach to system identification
introduced in [16] is briefly reviewed. Section 3 reports the statement of the predictor estimation
problem while Section 4 describes the new Bayesian model for system identification of sparse linear
systems. In Section 5, a numerical algorithm which returns the unknown components of the prior
and the estimates of predictor and system impulse responses is derived. In Section 6 we use simu-
lated data to demonstrate the effectiveness of the proposed approach. Conclusions end the paper.

2 Preliminaries: kernels for system identification

2.1 Kernel-based regularization

A widely used approach to reconstruct a function from indirect measurements {y; } consists of min-
imizing a regularization functional in a reproducing kernel Hilbert space (RKHS) H associated with
a symmetric and positive-definite kernel K [19]. Given N data points, least-squares regularization
in ‘H estimates the unknown function as

N
- , B 2 2
h = arg min E (yr — Te[R])™ +nllRl% 1)

t=1

where {I';} are linear and bounded functionals on # related to the measurement model while the
positive scalar 7 trades off empirical error and solution smoothness [20].

Under the stated assumptions and according to the representer theorem [21], the minimizer of (1)
is the sum of N basis functions defined by the kernel filtered by the operators {I';}, with coeffi-
cients obtainable solving a linear system of equations. Such solution enjoys also an interpretation
in Bayesian terms. It corresponds to the minimum variance estimate of f when f is a zero-mean
Gaussian process with autocovariance K and {y; — I';[f]} is white Gaussian noise independent of
f [22]. Often, prior knowledge is limited to the fact that the signal, and possibly some of its deriva-
tives, are continuous with bounded energy. In this case, f is often modeled as the p-fold integral of
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Figure 1: Realizations of a stochastic process f with autocovariance proportional to the standard
Cubic Spline kernel (left), the new Stable Spline kernel (middle) and its sampled version enriched
by a parametric component defined by the poles —0.5 £ 0.6+/—1 (right).

white noise. If the white noise has unit intensity, the autocorrelation of f is W, where
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This is the autocovariance associated with the Bayesian interpretation of p-th order smoothing
splines [23]. In particular, when p = 2, one obtains the cubic spline kernel.

Wp(s,t) :/0 Gp(s,u)Gp(t,u)du, Gp(r,u) =

2.2 Kernels for system identification

In the system identification scenario, the main drawback of the kernel (2) is that it does not account
for impulse response stability. In fact, the variance of f increases over time. This can be easily
appreciated by looking at Fig. 1 (left) which displays 100 realizations drawn from a zero-mean
Gaussian process with autocovariance proportional to W5. One of the key contributions of [16] is
the definition of a kernel specifically suited to linear system identification leading to an estimator
with favorable bias and variance properties. In particular, it is easy to see that if the autocovariance
of f is proportional to W, the variance of f(¢) is zero at ¢ = 0 and tends to co as ¢ increases.
However, if f represents a stable impulse response, we would rather let it have a finite variance at
t = 0 which goes exponentially to zero as ¢ tends to co. This property can be ensured by considering
autocovariances proportional to the class of kernels given by

Kp(s,t) = W]g(e_’gs7 e_'gt), s, t e RT 3)
where (3 is a positive scalar governing the decay rate of the variance [16]. In practice, 3 will be
unknown so that it is convenient to treat it as a hyperparameter to be estimated from data.

In view of (3), if p = 2 the autocovariance becomes the Stable Spline kernel introduced in [16]:

e—ﬁ(t+T)e—ﬂ max(t,T) 6—3,8 max(t,T)

Ks(t,7) = 5 - 5 “4)

Proposition 1 [16] Let f be zero-mean Gaussian with autocovariance K. Then, with probability
one, the realizations of f are continuous impulse responses of BIBO stable dynamic systems.

The effect of the stability constraint is visible in Fig. 1 (middle) which displays 100 realizations
drawn from a zero-mean Gaussian process with autocovariance proportional to K with 8 = 0.4.

3 Statement of the system identification problem

In what follows, vectors are column vectors, unless other is specified. We denote with {y: }tez,
y+ € R and {ut}tez, ur € R™ a pair of jointly stationary stochastic processes which represent,
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Figure 2: Bayesian network describing the new nonparametric model for identification of sparse
linear systems where 4’ := [y;_1,%;_2, . ..] and, in the reduced model, \ := \; = ... = A\q1.

respectively, the output and input of an unknown time-invariant dynamical system. With some
abuse of notation, y; will both denote a random variable (from the random process {y; }+cz) and its
sample value. The same holds for u;. Our aim is to identify a linear dynamical system of the form

Yy = Z fiug—s + Z gi€t—i (5
i=1 i=0

from {us, ye}em1,.. . n. In (5), fi € R'™™ and ¢g; € R are matrix and scalar coefficients of the
unknown system impulse responses while e; is the Gaussian innovation sequence.

Following the Prediction Error Minimization framework, identification of the dynamical system (5)
is converted in estimation of the associated one-step-ahead predictor. Letting h* := {h¥};cy denote
the predictor impulse response associated with the k-th input {uf };cz, one has

Yo = D pe [221 hfuf_z] + 31 Ry + e (6)

where K11 = {h’twrl }en is the impulse response modeling the autoregressive component of the
predictor. As is well known, if the joint spectrum of {y; } and {u,} is bounded away from zero, each
h* is (BIBO) stable. Under such assumption, our aim is to estimate the predictor impulse responses,
in a scenario where the number of measurements [V is not large, as compared with m, and many
measured inputs could be irrelevant for the prediction of y;. We will focus on the identification of
ARMAX models, so that the zeta-transforms of {h*} are rational functions all sharing the same
denominator, even if the approach described below immediately extends to general linear systems.

4 A Bayesian model for identification of sparse linear systems

4.1 Prior for predictor impulse responses

We model {h*} as independent Gaussian processes whose kernels share the same hyperparameters
apart from the scale factors. In particular, each h* is proportional to the convolution of a zero-
mean Gaussian process, with autocovariance given by the sampled version of K5, with a parametric
impulse response r, used to capture dynamics hardly represented by a smooth process, e.g. high-
frequency oscillations. For instance, the zeta-transform R(z) of r can be parametrized as follows

222

R(2)= =, Py(2)=2"+6012+6,, 0HcOCR? (7)

Py(2)
where the feasible region © constraints the two roots of Py(z) to belong to the open left unit
semicircle in the complex plane. To better appreciate the role of the finite-dimensional compo-
nent of the model, Fig. 1 (right panel) shows some realizations (with samples linearly interpolated)
drawn from a discrete-time zero-mean normal process with autocovariance given by K5 enriched by
6 =[1 0.61]in (7). Notice that, in this way, an oscillatory behavior is introduced in the realizations



by enriching the Stable Spline kernel with the poles —0.5 + 0.6+/—1.
The kernel of h* defined by K and (7) is denoted by K : N x N — R and depends on 3, §. Thus,
letting [E[-] denote the expectation operator, the prior model on the impulse responses is given by

E[hjhi] = MK (5,4:0,8), k=1,...,m+1, ijeN

4.2 Hyperprior for the hyperparameters

The noise variance o2 will always be estimated via a preliminary step using a low-bias ARX model,

as described in [24]. Thus, this parameter will be assumed known in the description of our Bayesian

model. The hyperparameters 3, 6 and {)\} are instead modeled as mutually independent random

vectors. 3 is given a non informative probability density on RT while # has a uniform distribution

on ©. Each )\, is an exponential random variable with inverse of the mean (and SD) v € R, i.e.
pP(Ak) = vexp (—yAk) x(Ax > 0), E=1,....m+1

with x the indicator function. We also interpret y as a random variable with a non informative prior
on R™. Finally, ¢ indicates the hyperparameter random vector, i.e. ¢ := [A1, ..., Ama1, 01,02, 3,7].

4.3 The full Bayesian model

Let A;, € RV*° where, forj = 1,..., N and i € N, we have:

[Akbl = u?_i fOI' k = ]., e,y [Am—o—l}ji = yj—i (8)

In view of (6), using notation of ordinary algebra to handle infinite-dimensional objects with each
hk interpreted as an infinite-dimensional column vector, it holds that

vt o= D) AW 4 A ()R e ©)
k=1

Where y+ = [y17y2a"'ayN]T7 y- = [y07y—17y—2a"']T7 €= [617627"'a6N]T (10)

In practice, y~ is never completely known and a solution is to set its unknown components to zero,
see e.g. Section 3.2 in [1]. Further, the following approximation is exploited:

p(y* {1,710 = eyt IR}y, QPR HOP(Y) (1D

i.e. the past y~ is assumed not to carry information on the predictor impulse responses and the
hyperparameters. Our stochastic model is described by the Bayesian network in Fig. 2 (left side).

The dependence on y~ is hereafter omitted as well as dependence of the {A;} on y* or u*. We
start reporting a preliminary lemma, whose proof can be found in [17], which will be needed in
propositions 2 and 3.

Lemma 1 Let the roots of Py in (7) be stable. Then, if {y;} and {u;} are zero mean, finite variance
stationary stochastic processes, each operator { Ay} is almost surely (a.s.) continuous in H .

S Estimation of the hyper-parameters and the predictor impulse responses

5.1 Estimation of the hyper-parameters

We estimate the hyperparameter vector ( by optimizing its marginal posterior, i.e. the joint density
of ¥y, ¢ and {h*} where all the {h*} are integrated out. This is described in the next proposition
that derives from simple manipulations of probability densities whose well-posedness is guaranteed
by lemma 1. Below, I is the N x N identity matrix while, with a slight abuse of notation, K is
now seen as an element of R**>°_j.e. its i-th column is the sequence K (-,4), ¢ € N.

Proposition 2 Let {y;} and {u;} be zero mean, finite variance stationary stochastic processes.
Then, under the approximation (11), the maximum a posteriori estimate of ¢ given y™ is

é:argmgnj(y*;o st. €0, 4,5>0, \>0 (k=1,....m+1) (12



where J is almost surely well defined pointwise and given by

m—+1
J(y*i¢) = %log (det[27V [y ™)) + %(yJ’)T(V[yJ“D’lyJr +9 ) A —log(y)  (13)
k=1

with VyT] = oIy + S p ! A ALK AT

The objective (13), including the ¢; penalty on {\x}, is a Bayesian modified version of that con-
nected with multiple kernel learning, see Section 3 in [25]. Additional terms are log (det[V [y*]])
and log(~y) that permits to estimate the weight of the ¢; norm jointly with the other hyperparameters.
An important issue for the practical use of our numerical scheme is the availability of a good start-
ing point for the optimizer. Below, we describe a scheme that achieves a suboptimal solution just
solving an optimization problem in R* related to the reduced Bayesian model of Fig. 2 (right side).

i) Obtain {;\k}, 6 and 3 solving the following modified version of problem (12)

m+1

argmm Jy:0) fyZAk—Hog(v) st.de®, >0, M=...=X pt1 >0
k=1

ii) Set4 = 1/A\ and ¢ = [A1,..., Ami1,0,5,5]. Then, fork = 1,...,m+1: set ¢ =

except for the k-th component of ¢ which is set to 0; if J(y*; () < (y+; CA) set{ =C.

5.2 Estimation of the predictor impulse responses for known ¢

Let Hy be the RKHS associated with K, with norm || - ||;,. Let also h* = E[h*|yT,¢]. The
following result comes from the representer theorem whose applicability is guaranteed by lemma 1.

Proposition 3 Under the same assumptions of Proposition 2, almost surely we have

{hk m+1 = arg min ||y+ — mZ-HAkkaZ WZH ”fk”HK
{f H }771+1 P
where || - || is the Euclidean norm. Moreover, almost surely we also have fork =1,...,m+1
m-+1 -1
h* = XK ATc, c= <021N + Z AkAkKA£> yt (14)
k=1

After obtaining the estimates of the {h*}, simple formulas can then be used to derive the system
impulse responses f and ¢ in (5) and hence also the k-step ahead predictors, see [1] for details.

6 Numerical experiments

We consider two Monte Carlo studies of 200 runs where at any run an ARMAX linear system with
15 inputs is generated as follows

e the number of h* different from zero is randomly drawn from the set {0, 1,2, .., 8}.

e Then, the order of the ARMAX model is randomly chosen in [1,30] and the model is
generated by the MATLAB function drmodel . m. The system and the predictor poles are
restricted to have modulus less than 0.95 with the £, norm of each h* bounded by 10.

In the first Monte Carlo experiment, at any run an identification data set of size 500 and a test set
of size 1000 is generated using independent realizations of white noise as input. In the second
experiment, the prediction on new data is more challenging. In fact, at any run, an identification
data set of size 500 and a test set of size 1000 is generated via the MATLAB function idinput .m
using, respectively, independent realizations of a random Gaussian signal with band [0,0.8] and
[0,0.9] (the interval boundaries specify the lower and upper limits of the passband, expressed as
fractions of the Nyquist frequency). We compare the following estimators:
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Figure 3: Boxplots of the values of COD; obtained by PEM+Or, Stable Spline, GLAR and
PEM+BIC in the two experiments. The outliers obtained by PEM+BIC are not all displayed.

Experiment PEM+Oracle Stable Spline  Subopt. Stable Spline GLAR
#1 100% 98.7% 97.5% 45.6%
#2 100% 98.4% 98.2% 52.4%

Table 1: Percentage of the h* equal to zero correctly set to zero by the employed estimator.

1. GLAR: this is the GLAR algorithm described in [11] applied to ARX models; the order
(between 1 and 30) and the level of sparsity (i.e. the number of null ~¥) is determined using
the first 2/3 of the 500 available data as training set and the remaining part as validation
data (the use of C), statistics does not provide better results in this case).

2. PEM+Oracle: this is the classical PEM approach, as implemented in the pem.m function
of the MATLAB System Identification Toolbox [26], equipped with an oracle that, at every
run, knows which predictor impulse response are zero and, having access to the test set,
selects those model orders that provide the best prediction performance.

3. PEM+BIC: this is the classical PEM approach that uses BIC for model order selection. The
order of the polynomials in the ARMAX model are not allowed to be different each other
since this would lead to a combinatorial explosion of the number of competitive models.

4. Stable Spline: this is the approach based on the full Bayesian model of Fig. 2. The first
40 available input/output pairs enter the { Ay} in (9) so that N = 460. For computational
reasons, the number of estimated predictor coefficients is 40.

5. Suboptimal Stable Spline: the same as above except that we exploit the reduced Bayesian
model of Fig. 2 complemented with the procedure described at the end of subsection 5.1.

The following performance indexes are considered:

1. Percentage of the impulse responses equal to zero correctly set to zero by the estimator.

2. k-step-ahead Coefficient of Determination, denoted by CO Dy, quantifying how much of
the test set variance is explained by the forecast. It is computed at each run as

RM52 1 1000
CODy = 1— 000, o ) RMSy, = | = > (yi**" = 4} ,)?
o S g i 2 4~

15)
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Figure 4: C'ODy, i.e. average coefficient of determination relative to k-step ahead prediction, ob-
tained during the Monte Carlo study #1 (top) and #2 (bottom) using PEM+Oracle (), GLAR (%)
Stable Spline based on the full (o) and the reduced (+4) Bayesian model of Fig. 2.

where '“** is the sample mean of the test set data {y} and ;&;lets_t . is the k-step

ahead prediction computed using the estimated model. The average index obtained during
the Monte Carlo study, as a function of k, is then denoted by CODy,.

est11000
}t:I

Notice that, in both of the cases, the larger the index, the better is the performance of the estimator.

In every experiment the performance of PEM+BIC has been largely unsatisfactory, providing
strongly negative values for CODy,. This is illustrated e.g. in Fig. 3 showing the boxplots of the
200 values of COD; obtained by 4 of the employed estimators during the two Monte Carlo studies.
We have also assessed that results do not improve using AIC. In view of this, in what follows other
results from PEM+BIC will not be shown.

Table 1 reports the percentage of the predictor impulse responses equal to zero correctly estimated as
zero by the estimators. Remarkably, in all the cases the Stable Spline estimators not only outperform
GLAR but the achieved percentage is close to 99%. This shows that the use of the marginal posterior
permits to effectively detect the subset of the {\x } equal to zero. Finally, Fig. 4 displays CO Dy, as a
function of the prediction horizon obtained during the Monte Carlo study #1 (top) and #2 (bottom).
The performance of Stable Spline appears superior than that of GLAR and is comparable with that
of PEM+Oracle also when the reduced Bayesian model of Fig. 2 is used.

7 Conclusions

We have shown how identification of large sparse dynamic systems can benefit from the flexibility
of kernel methods. To this aim, we have extended a recently proposed nonparametric paradigm to
identify sparse models via prediction error minimization. Predictor impulse responses are modeled
as zero-mean Gaussian processes using stable spline kernels encoding the BIBO-stability constraint
and sparsity is induced by exponential hyperpriors on their scale factors. The method compares
much favorably with GLAR, with its performance close to that achievable combining PEM with an
oracle which exploits the test set in order to select the best model order. In the near future we plan to
provide a theoretical analysis characterizing the hyperprior-based scheme as well as to design new
ad hoc optimization schemes for hyperparameters estimation.
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