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Proposition 1. Eq. (2) is the dual problem of Eqg. (1).
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wherel(z) = max(0,1 — z) and H(p) is a Reproducing Kernel Hilbert Space endowed with kerigl x'; p) =
> P Ra(x,X).
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whereQ; = {a = (a!,...,a™):a* € [0,C]", k=1,...,m}.

Proof. We first rewrite/(z) as
¢(z) = max (x — zz),
z€[0,1]

Using the above expression fé(z), the second term aff;, can be rewritten as,

n
Z max (af—afyffk(xi))’
i=1

— akel0,0]

According to von Newman'’s lemma, we can swith minimizationgf f;) with maximization (ovekx). By taking the
minimization overf; first, we have

(@) =" yFakn(ai, ).
=1
Finally the problem becomes

min max {E(p7 a) = Z {[ak]Tl — %(ak o yk)TK(p)(ak ) yk)}} .
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Proposition 2. Eq. (4) is the dual problem of (3).
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where

k=1

B = {(ﬁl,...,ﬁm);ﬁ’fem,kzL...,m,ﬁk € [0,CA]" sit. Zxk=1}.

Proof. We start by formulating (3) as,

min min min ¢ (5)
pPEP {f€H(P)} i,
subjecttoHy, <t, fork=1,...,m, (6)

with extra variablg € R. Introducing the multiplien\;, for H;, < ¢, and using Proposition 1, the Lagrangian is
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wherea € [0, C]™. So, the dual function is
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where3,, = a* \;,. Then the dual problem is

minmaxmax{ (p, B, A Z{ Tl—*ﬂ Oyk)TK/\(:)(ﬁkoyk)}}y
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where
={@...8M B eRLE=1,..,m B € 0,ON]"}.
Let min max(8" o y*) TK(p)(8* o y*) = p*. To eliminateX, we rewrite the dual problem as maximization oder

peP BeB
for optimal p*. Then, the Lagrangian becomes

r}r\leaf\(ffZ— +v Zl)\k —1).
Maximizing over, we get
1
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By eliminating A\, we obtain the following dual of (3):
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Proposition 3. We define potential functioris, = Z—: > p*Inp® forpand®., =Y 4 In~* for v, and have
the following equations for updating; and-, as

a

k
Pit1 = gp exp(—1pVpa L(Pt; V1)), 'Vf+1 exp(—1n kﬁ(Pta’Yt)) (1)

Z’Y
whereZ} and Z; are normalization factors that ensurg’ 1 = v,/ 1 = 1.

Proof. We denote byDs, (p,p’) : P x P — Ry andDs_(v,7') : I' x I — R, the Bregman distance functions for
p and~ that are induced by, and®.,, respectively. Note that the Bregman distance betweand >’ induced by
the strictly convex functio®, denoted byD4 (2, '), is defined as

Dg(z,2') = ®(2) — (') = V() (2 — 2)
Using the Bregman distance function, we introduce two taje operatorsA,(gp; P) that projects solutiop into
domain’ along the directiorg, € R® and B,(g.;I') that projects solutiory into domainI’ along the direction
g, € R™. These two operators are defined as follows:

. T . T
Ap(gp) = min g, p' + Ds,(p',p), By(gy) = ming, Y + Do, (v, 7)

Based on the mirror prox method, we can solve the optiminadfoblem in Eq. (5) on the paper iteratively. Given the
solutionp; and~, of the current iteration, the new solution, denotedpy; and~, , , is computed as

DPt+1 = Apt (npvp[’(pta 7t’ at)) ) ’Yt-‘,-l = C’Yt (_n7v7£(pta 7ta at)) ) (8)

wheren, > 0 andn, > 0 are the step sizes. The two gradients are computed as

9i(p) = wg;D%:—Z’yka oy TKi(a®oy®),i=1,...,s 9)
gk(Y) M(g’;’) =[af]T1~ %(ak oy")'K(p)(@" oy )i=Fk,....m (10)
(11)

By choosing the potential functions as

by =1 > palnps, 5= yalnqa, (12)
el a=1 a=1
we have the following updating rules fpr 1 = (p; 1., p{ 1) @ndyerr = (Vs oo, 97%)
i pi .
pt+1 = Zp eXp( nti(pt))7Z: 17"',8 (13)
i _ L
’Yt-&-l - Z’y exp (77’)’91(/%))77’ - 17"'am (14)

whereZ? andZ; are defined as

zZP = Zpi exp (—ny9:(pt))  Z] = Z’YZ exp (1,9: (7))
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Theorem 1. After running Algorithm 1 ovef iterations, we have the following inequality for the sabutip and~
obtained by Algorithm 1

~ ~ 1 2
E [A (pa ’Y)] S 7T (hlm + hl 3) + 7),)/ (d;n(sz)\gn?C‘l 4 n202> 7
Ty

whered is a constant term anfl[-] stands for the expectation over the sampled task indicek itérations.

Proof. Define

gp(pn%) = (@\{)(pb’yﬁ)a s agg(pta’yt))a g\’y(pta/yt) = (/g\iy(pta’yt)v e 7%(}3%%))-

Using the result of variation inequality [1], we have thddaling inequality for anyp € P andy € I'
A(pe, 1) < (Pt —P) T VpL(Pe, 1) — (v = 1) T VA L(Pt: 7). (15)

According to Proposition 1, we have
E¢ [6° (P, v¢)] = Ve L(Pt, ), Ee[37(Pe, )] = Vo L(Pe, 7).
We therefore can rewrite Eq. (15) as
E; [A (ps,70)] < Bt [(pe — P) T8 (Pesve) — (3 —7) "8 (Pes )] -

From [2] (chapter 11), we know that

1, (pe — P) "8 (Pe, ) < KL(P[[p+) — KL (pl|Pet1) + KL (Pel|Pet1),
and

=1 (7 =) "8 (Prs 1) < KL(Y[[9) = KL (v[ve1) + KL (e[ ve41)-

Therefore, we have
T

T
My YA (P, 7e) < KL(PIp1) + KL () + > {KL(pellper1) + KL (vl ves1)} -

t=1 t=1

We are going to bound each of the three terms on the right haedo$ the inequality. First, it is obvious that
KL(p[p1) < Ins and KL(y[v1) < Inm given bothv; and p; are uniform distributions. Second, we bound
KL (p¢|/p¢+1) as follows

KL(pdper) = 03 piln (p)} :%{nglnge}{p{mg})}

)
pt+1 Ty i=1

{Zpinwﬁf(pn W+ > p; ln(Zf)}

i=1 i=1

pimﬁf(pt, ) + ZP; In Zpg €xXp [_nw/g\f(pu %)]
i=1 i=1 j=1
{= (= E[g7]) +In (E [exp (=047 (Pr,70))]) }
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n n, . 2 CTly |~ 2
< {27 max [97 (pe, 7)) } = 5 [87(pe, 7).

where the inequality follows directly from the Hoeffidingeiuality, and: is a constant such thaf = cn.,,. Similarly,
2
we have KL [|vi41) < %Ww(Pt,%)‘go-



By combining the above results together, we have

T
E ZA(pm%)} <lnm+1Ins+n2 Y E[clg’(pr,7)|% + 87 (Pe, 1) I%]
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Using Eqg. (8) on the paper, we can boyg#(p:, v:)| as follows

8" (P W)loo = max Gu(pe,ve)
1 ) ,
= — (Pt o vIYTK(alt o vit
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>
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< 57102/\0,

whereK = VDV ! s the eigendecomposition of the PSD maiifx Ay = 1max Amax(K%), and .« (Z) stands

for the maximum eigenvalue of matri& Similarly, by using Eg. (9) on the paper we can bolgt p;, V+)|-c as

X (nC’, )\207?,C’Q> .

%\S

187 (Pt Vt) oo =  max gy (pe, ) <

Next, we have the bound simplified as

242

1
ZA Ptv%] < n*(lnm+lns)+m (d/\ 204+n202),

whered is a constant. We complete the proof by using the fa@h, ) is jointly convex in bothp and~ and therefore
Z?:] A (ptv ’Yt) 2 TA (ﬁ7 :Y\) U

Corollary 1. Withd = m3 andn, = Im~ 3,/(Inm) /T, after running Algorithm 1 (on the paper) ové&riterations,
we haveE[A(p,7)] < O(m!'/3/(Inm)/T) in terms ofm andT.
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