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Proposition 1. Eq. (2) is the dual problem of Eq. (1).

min
p∈P

min
{fk∈H(p)}m

k=1

{
m∑

k=1

Hk =
m∑

k=1

{
1

2
|fk|2H(p) +

n∑

i=1

`
(
yki fk(xi)

)
}}

, (1)

where`(z) = max(0, 1 − z) andH(p) is a Reproducing Kernel Hilbert Space endowed with kernelκ(x,x′;p) =∑s
a=1 p

aκa(x,x
′).

min
p∈P

max
α∈Q1

{
L(p,α) =

m∑

k=1

{
[αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)

}}
, (2)

whereQ1 =
{
α = (α1, . . . ,αm) : αk ∈ [0, C]n, k = 1, . . . ,m

}
.

Proof. We first rewritè (z) as
`(z) = max

x∈[0,1]
(x− xz),

Using the above expression for`(z), the second term ofHk can be rewritten as,
n∑

i=1

max
αk

i
∈[0,C]

(
αk
i − αk

i y
k
i fk(xi)

)
,

According to von Newman’s lemma, we can swith minimization (overfk) with maximization (overα). By taking the
minimization overfk first, we have

fk(x) =

n∑

i=1

yki α
k
i κ(xi, x).

Finally the problem becomes

min
p∈P

max
α∈[0,C]

{
L(p,α) =

m∑

k=1

{
[αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)

}}
.
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Proposition 2. Eq. (4) is the dual problem of (3).

min
p∈P

min
{fk∈H(p)}m

k=1

max
1≤k≤m

Hk, (3)

min
p∈P

max
β∈B



L(p,β) =

{
m∑

k=1

{
[βk]>1− 1

2
(βk ◦ yk)>K(p)(βk ◦ yk)

} 1

2

}2


 . (4)

where

B =

{
(β1, . . . ,βm) : βk ∈ R

n
+, k = 1, . . . ,m,βk ∈ [0, Cλk]

n s.t.
m∑

k=1

λk = 1

}
.

Proof. We start by formulating (3) as,

min
p∈P

min
{fk∈H(p)}m

k=1

min t (5)

subject toHk ≤ t, fork = 1, . . . ,m, (6)

with extra variablet ∈ R. Introducing the multiplierλk for Hk ≤ t, and using Proposition 1, the Lagrangian is

t+

m∑

k=1

λk

{
[αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)− t

}
= (1−1Tλ)t+

m∑

k=1

λk

{
[αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)

}
,

whereα ∈ [0, C]n. So, the dual function is

g(p,β,λ) =

{∑m
k=1

{
[βk]>1− 1

2 (β
k ◦ yk)>K(p)

λk
(βk ◦ yk)− t

}
1>λ = 1

−∞ otherwise
,

whereβk = αkλk. Then the dual problem is

min
p∈P

max
β∈B

max
λ∈Λ

{
L(p,β,λ) =

m∑

k=1

{
[βk]>1− 1

2
(βk ◦ yk)>

K(p)

λk
(βk ◦ yk)

}}
,

where
B =

{
(β1, . . . ,βm) : βk ∈ R

n
+, k = 1, . . . ,m,βk ∈ [0, Cλk]

n
}
.

Let min
p∈P

max
β∈B

(βk ◦ yk)>K(p)(βk ◦ yk) = ρk. To eliminateλ, we rewrite the dual problem as maximization overλ

for optimalρk. Then, the Lagrangian becomes

max
λ∈Λ

−1

2

m∑

k=1

ρk

λk
+ υ(

m∑

k=1

λk − 1).

Maximizing overλ, we get

υ =
1

2

{
m∑

k=1

√
ρk

}2

λk =

√
ρk∑m

j=1

√
ρj

By eliminatingλ, we obtain the following dual of (3):

min
p∈P

max
β∈B



L(p,β) =

{
m∑

k=1

{
[βk]>1− 1

2
(βk ◦ yk)>K(p)(βk ◦ yk)

} 1

2

}2


 .
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Proposition 3. We define potential functionsΦp =
ηp

ηγ

∑s
a=1 p

a ln pa for p andΦγ =
∑m

i=1 γ
i ln γi for γ, and have

the following equations for updatingpt andγt as

pat+1 =
pat
Zp
t

exp(−ηp∇paL(pt, γt)), γ
k
t+1 =

γk
t

Zγ
t

exp(−ηγ∇γkL(pt, γt)), (7)

whereZp
t andZγ

t are normalization factors that ensurep>
t 1 = γ>

t 1 = 1.

Proof. We denote byDΦp
(p,p′) : P × P 7→ R+ andDΦγ

(γ, γ′) : Γ× Γ 7→ R+ the Bregman distance functions for
p andγ that are induced byΦp andΦγ , respectively. Note that the Bregman distance betweenz andz′ induced by
the strictly convex functionΦ, denoted byDΦ(z, z

′), is defined as

DΦ(z, z
′) = Φ(z)− Φ(z′)−∇Φ(z′)>(z − z′)

Using the Bregman distance function, we introduce two projection operators:Ap(gp;P) that projects solutionp into
domainP along the directiongp ∈ R

s andBγ(gγ ; Γ) that projects solutionγ into domainΓ along the direction
gγ ∈ R

m. These two operators are defined as follows:

Ap(gp) = min
p′∈P

g>
pp

′ +DΦp
(p′,p), Bγ(gγ) = min

γ′∈Γ
g>
γ γ

′ +DΦγ
(γ′,γ)

Based on the mirror prox method, we can solve the optimization problem in Eq. (5) on the paper iteratively. Given the
solutionpt andγt of the current iteration, the new solution, denoted bypt+1 andγt+1, is computed as

pt+1 = Apt
(ηp∇pL(pt,γt,αt)) , γt+1 = Cγt

(−ηγ∇γL(pt,γt,αt)) , (8)

whereηp > 0 andηγ > 0 are the step sizes. The two gradients are computed as

gi(p) =
∂L(p,γ,α)

∂pi
= −1

2

m∑

k=1

γk(α
k ◦ yk)>Ki(α

k ◦ yk), i = 1, . . . , s (9)

gk(γ) =
∂L(p,γ,α)

∂γk
= [αk]>1− 1

2
(αk ◦ yk)>K(p)(αk ◦ yk)i = k, . . . ,m (10)

(11)

By choosing the potential functions as

Φp =
ηp
ηγ

s∑

a=1

pa ln pa, Φγ =

m∑

a=1

γa ln γa, (12)

we have the following updating rules forpt+1 = (p1t+1, . . . , p
s
t+1) andγt+1 = (γ1

t+1, . . . , γ
m
t+1)

pit+1 =
pit
Zp
t

exp (−ηγgi(pt)) , i = 1, . . . , s (13)

γi
t+1 =

γi
t

Zγ
t

exp (ηγgi(γt)) , i = 1, . . . ,m (14)

whereZp
t andZγ

t are defined as

Zp
t =

s∑

i=1

pit exp (−ηγgi(pt)) Zγ
t =

m∑

i=1

γi
t exp (ηγgi(γt))
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Theorem 1. After running Algorithm 1 overT iterations, we have the following inequality for the solution p̂ and γ̂
obtained by Algorithm 1

E [∆ (p̂, γ̂)] ≤ 1

ηγT
(lnm+ ln s) + ηγ

(
d
m2

2δ2
λ2
0n

2C4 + n2C2

)
,

whered is a constant term andE[·] stands for the expectation over the sampled task indices of all iterations.

Proof. Define

ĝp(pt, γt) = (ĝp1(pt, γt), . . . , ĝ
p
s (pt, γt)), ĝ

γ(pt, γt) = (ĝγ1 (pt, γt), . . . , ĝ
γ
m(pt, γt)).

Using the result of variation inequality [1], we have the following inequality for anyp ∈ P andγ ∈ Γ

∆(pt, γt) ≤ (pt − p)>∇pL(pt, γt)− (γt − γ)>∇γL(pt, γt). (15)

According to Proposition 1, we have

Et [ĝ
p(pt, γt)] = ∇pL(pt, γt), Et [ĝ

γ(pt, γt)] = ∇γL(pt, γt).

We therefore can rewrite Eq. (15) as

Et [∆ (pt, γt)] ≤ Et

[
(pt − p)>ĝp(pt, γt)− (γt − γ)>ĝγ(pt, γt)

]
.

From [2] (chapter 11), we know that

ηγ(pt − p)>ĝp(pt, γt) ≤ KL(p‖pt)− KL(p‖pt+1) + KL(pt‖pt+1),

and
−ηγ(γt − γ)>ĝγ(pt, γt) ≤ KL(γ‖γt)− KL(γ‖γt+1) + KL(γt‖γt+1).

Therefore, we have

ηγ

T∑

t=1

∆(pt, γt) ≤ KL(p‖p1) + KL(γ‖γ1) +
T∑

t=1

{KL(pt‖pt+1) + KL(γt‖γt+1)} .

We are going to bound each of the three terms on the right hand side of the inequality. First, it is obvious that
KL(p‖p1) ≤ ln s and KL(γ‖γ1) ≤ lnm given bothγ1 andp1 are uniform distributions. Second, we bound
KL(pt‖pt+1) as follows

KL(pt|pt+1) =
ηp
ηγ

{
s∑

i=1

pit ln

(
pit

pit+1

)}
=

ηp
ηγ

{
s∑

i=1

pit ln (Z
p
t exp{ηγ ĝpi })

}

=
ηp
ηγ

{
s∑

i=1

pitηγ ĝ
p
i (pt, γt) +

s∑

i=1

pit ln(Z
p
t )

}

=
ηp
ηγ





s∑

i=1

pitηγ ĝ
p
i (pt, γt) +

s∑

i=1

pit ln




s∑

j=1

pjt exp
[
−ηγ ĝ

p
j (pt, γt)

]






=
ηp
ηγ

{
− (−ηγE [ĝpi ]) + ln

(
E
[
exp

(
−ηγ ĝ

p
j (pt, γt)

)])}

≤ ηp
ηγ

{
η2γ
2

max
1≤i≤s

[ĝpi (pt, γt)]
2

}
=

cη2γ
2

|ĝp(pt, γt)|2∞,

where the inequality follows directly from the Hoeffiding inequality, andc is a constant such thatηp = cηγ . Similarly,

we have KL(γt‖γt+1) ≤
η2

γ

2 |γ̂γ(pt, γt)|2∞.
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By combining the above results together, we have

ηγE

[
T∑

t=1

∆(pt, γt)

]
≤ lnm+ ln s+ η2γ

T∑

t=1

E
[
c|ĝp(pt, γt)|2∞ + |ĝγ(pt, γt)|2∞

]

Using Eq. (8) on the paper, we can bound|ĝp(pt, γt)|∞ as follows

|ĝp(pt, γt)|∞ = max
1≤a≤s

ĝpa(pt, γt)

= max
1≤a≤s

∣∣∣∣−
1

2
(αjt ◦ yjt)>Ka(αjt ◦ yjt)

∣∣∣∣

≤ 1

2
(C1)>VDV−1(C1)] ≤ λ0

2
(C1)>VIV−1(C1) =

λ0

2
(C1)>I(C1)

≤ 1

2
nC2λ0,

whereK = VDV−1 is the eigendecomposition of the PSD matrixK, λ0 = max
1≤a≤s

λmax(K
a), andλmax(Z) stands

for the maximum eigenvalue of matrixZ. Similarly, by using Eq. (9) on the paper we can bound|ĝγ(pt, γt)|∞ as

|ĝγ(pt, γt)|∞ = max
1≤k≤m

ĝγk (pt, γt) ≤
m

δ
max

(
nC,

λ0

2
nC2

)
.

Next, we have the bound simplified as

E

[
T∑

t=1

∆(pt, γt)

]
≤ 1

ηγ
(lnm+ ln s) + ηγT

(
d
m2

2δ2
λ2
0n

2C4 + n2C2

)
,

whered is a constant. We complete the proof by using the fact∆(p, γ) is jointly convex in bothp andγ and therefore∑T
t=1 ∆(pt, γt) ≥ T∆(p̂, γ̂).

Corollary 1. Withδ = m
2

3 andηγ = 1
nm

− 1

3

√
(lnm)/T , after running Algorithm 1 (on the paper) overT iterations,

we haveE[∆(p̂, γ̂)] ≤ O(m1/3
√
(lnm)/T ) in terms ofm andT .
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