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Abstract

Recently, batch-mode active learning has attracted a latteftion. In this pa-
per, we propose a novel batch-mode active learning apptbatiselects a batch
of queries in each iteration by maximizing a natural mutn&bimation criterion
between the labeled and unlabeled instances. By employ(Bgussian process
framework, this mutual information based instance sedaqgbiroblem can be for-
mulated as a matrix partition problem. Although matrix i is an NP-hard
combinatorial optimization problem, we show that a goodlalution can be
obtained by exploiting an effective local optimizationha@ue on a relaxed con-
tinuous optimization problem. The proposed active learm@ipproach is indepen-
dent of employed classification models. Our empirical gsdhow this approach
can achieve comparable or superior performance to disuaitme batch-mode ac-
tive learning methods.

1 Introduction

Active learning is well-motivated in many supervised léagnscenarios where unlabeled instances
are abundant and easy to retrieve but labels are difficaig-tonsuming, or expensive to obtain.
For example, it is easy to gather large amounts of unlabededrdents or images from the Inter-
net, whereas labeling them requires manual effort from g&peed human annotators. Randomly
selecting unlabeled instances for labeling is inefficiamniany situations, since non-informative or
redundant instances might be selected. Aiming to reduaditepeffort, active learning (i.e., selec-
tive sampling) methods have been adopted to control théitahgrocess in many areas of machine
learning. Given a large pool of unlabeled instances, adtigening provides a way to iteratively
select the most informative unlabeled instances—the gatetiom the pool to label.

Many researchers have addressed the active learning prablearious ways [13]. Most have fo-
cused on selecting a single most informative unlabeledivts to query each time. The ultimate
goal for most such approaches is to select instances thht kxad to a classifier with low gener-
alization error. Towards this, a few variants of a mutuabiniation criterion have been employed
in the literature to guide the active instance sampling @gec The approaches In [4][10] select the
instance to maximize the increase of mutual information tlledmutual information, respectively,
between the selected set of instances and the remaindat baggaussian process models. The
approach proposed inl[5] seeks the instance whose optinastel provides maximum mutual in-
formation about the labels of the remaining unlabeled icta. The mutual information measure
used is discriminative, computed using their trained di@sst that point. This approach implicitly
exploits the clustering information contained in the uelal data in an optimistic way.

The single instance selection active learning methodsmetgedious retraining with each single in-
stance being labeled. When the learning task is sufficieotiyptex, the retraining process between
gueries can become very slow. This may make highly intaradéarning inefficient or imprac-
tical. Furthermore, if a parallel labeling system is avalga e.g., multiple annotators working on



different labeling workstations at the same time on a ndtywarsingle instance selection system
can make wasteful use of the resource. Thus, a batch-mone &rning strategy that selects
multiple instances each time is more appropriate undeetbiesumstances. The challenge in batch-
mode active learning is how to properly assemble the optguaty batch. Simply using a single
instance selection strategy to select a batch of querieadh #eration does not work well, since
it fails to take the information overlap between the mudtipistances into account. Principles for
batch mode active learning need to be developed to addmessithi-instance selection specifically.
Several sophisticated batch-mode active learning methade been proposed for classification.
Most of these approaches use greedy heuristics to ensupgehal informativeness of the batch by
taking both the individual informativeness and the divgrsf the selected instances into account.
Schohn and Cohn [12] select instances according to thekimpity to the dividing hyperplane for
a linear SVM. Brinker|[2] considers an approach for SVMs #agtlicitly takes the diversity of the
selected instances into account, in addition to individotdrmativeness. Xu et al. [14] propose a
representative sampling approach for SVM active learnirigch also incorporates a diversity mea-
sure. Specifically, they query cluster centroids for instanthat lie close to the decision boundary.
Hoi et al. [7/8] extend the Fisher information frameworkte batch-mode setting for binary logistic
regression. Hoi et al. [9] propose a novel batch-mode aktamning scheme on SVMs that exploits
semi-supervised kernel learning. In particular, a kernatfion is first learned from a mixture of
labeled and unlabeled examples, and then is used to e#fgciilentify the informative and diverse
instances via a min-max framework. Instead of using heaniseasures, Guo and Schuurmans [6]
treat batch construction for logistic regression as a giignative optimization problem, and at-
tempt to construct the most informative batch directly. @llethese batch-mode active learning
approaches all make batch selection decisions directlydas the classifiers employed.

In this paper, we propose a novel batch-mode active leamgppgoach that makes query selection
decisions independent of the classification model employbd idea is to select a batch of queries
in each iteration by maximizing a genemalitual informatiormeasure between the labeled instances
and the unlabeled instances. By employing a Gaussian @@@esework, this mutual information
maximization problem can be further formulated as a matitifion problem. Although the matrix
partition problem is an NP-hard combinatorial optimizatiit can first be relaxed into a continuous
optimization problem and then a good local solution can lainbd by exploiting an effective local
optimization. The local optimization method we use is depet by combining a local lineariza-
tion of the objective function based on its first-order Tayeries expansion, and a straightforward
backtracking line search. Unlike most active learning radt¢hstudied in the literature, our query
selection method does not require knowledge of the emplolgadifier. Our empirical studies show
that the proposed batch-mode active learning approachataeva superior or comparable perfor-
mance to discriminative batch-mode active learning meghbdt have been optimized on specific
classifiers.

The remainder of the paper is organized as follows. SectiproZides preliminaries on Gaussian
processes. Section 3 introduces the proposed matrixipariipproach for batch-mode active learn-
ing. Empirical studies are presented in Section 4, and &ebtconcludes this work.

2 Gaussian Processes

A Gaussian process is a generalization of the Gaussian gtitypdistribution. Although Gaussian
processes have a long history in statistics, their potemtis.only become widely appreciated in the
machine learning community during the past decade [11hikection, we provide an overview of
Gaussian processes and some of their important propettiies wwe will exploit later to construct
our active learning approach.

2.1 Multivariate Gaussian Distribution

The Gaussian, also known as the normal distribution, is a&hvidsed model for the distribution
of continuous variables. In the case of multiple randomalaés, the joint multivariate Gaussian
distribution for ad x 1 vectorx is given in the form

1 1 )
P(x) = @m)is[2 exp (—2(X —p) 'S (x - N))
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where . is a d-dimensional mean vectob; is ad x d covariance matrix, an¢®| denotes the
determinant ob2. Whend = 1, we obtain the standard one-variable Gaussian distributio

2.2 Gaussian Processes

A Gaussian process is a generalization of a multivariates&an distribution over a finite vector
space to a function space of infinite dimension. Given a setstncesX = [x/ ;xJ;--- ;%/ ],

a data modeling functiofi(-) can be viewed as a single sample from a Gaussian distribwitbn

a mean functionu(-), and a covariance functiof(-,-). In particular,i(x;) denotes the mean of
the function variablef (x;) at pointx;, andC(x;,x;) expresses the expected covariance between
functionsf at pointx; andx;. A Gaussian process is defined as a Gaussian distributiorspace

of functionsf which can be written in the form

PUG)= 5 oxp (-5 (0 -n(0) 57 (7)) )

wherepu(x) is the mean functiony. is defined using the covariance functiéh andZ denotes the
normalization factor. One typical choice for the covarmrfonctionC' is a symmetric positive-
definite kernel functiorC, e.g. a Gaussian kernel

L 12
K (i, %) = exp (—“'XX”) M)
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One important property of Gaussian processes is that foy évite set (or subset) of instancXs,
with indices@), the joint distribution over the corresponding random fiorcvariabled = £(X)

is a multivariate Gaussian distribution with a mean vegtgr= 1(X¢) and a covariance matrix
Y@, Where each entry; ; is defined using the covariance kernel functiofx;, x;)

P(fQ):%eXP (—;(fQ—MQ)TEZQég(fQ—MQ)> (2

Here Z = (2m)%/%|Xqq|'/?, andq is the size of sef). We can assume the the mean function
u(-) = 0. Nevertheless, it is irrelevant in this paper.

3 Batch-mode Active Learning via Matrix Partition

Given a small set of labeled instandgx;, y;) }:cz, and a large set of unlabeled instanégs},cu,
our task is to iteratively select the most informative seb afistances fronU and add them into
the labeled sel after querying their labels from a labeling system. In tldst®n, we propose to
conduct instance selective sampling using a maximum miré@mation strategy which can then
be formulated into a matrix partition problem.

3.1 Maximum Mutual Information | nstance Selection

Since the ultimate goal of active learning is to achieve asifeer with good generalization perfor-
mance on unseen test data, it makes sense to select instaatean produce a labeled set that is
most informative about the unseen test instances. Appwieig not possible to access thmseen
test data. Nevertheless, in active learning setting, we laalarge number of unlabeled instances
available that come from the same distribution as the fuieseinstances. Thus we can select in-
stances that lead to a labeled set which is most informativatahe large set of unlabeled instances
instead. We propose to use a mutual information criterioméasure the informativeness of the
labeled sef. over the unlabeled sét

IXp,Xy)=HX.)+ HXy) — HX,Xy) 3

whereX; and Xy denotes the labeled set of instances and the unlabeled setafices respec-
tively, H(-) denotes the entropy term.

Both the mutual information measure and the entropy measereefined on probability distribu-
tions [3]. We thus employ a Gaussian process frameworko@iiced in the previous section) to



model the joint probability distribution over all the instaes. We first associate each instarge
with a random variablg;. Then the joint distribution over a finite number of instasid&, can be
represented using the joint multivariate Gaussian distiob over variablegg, which is given in
(@). Thus the entropy terfi (X) = H(fg) can be computed using a closed-form solution

H(fq) = 5 n ((2n)" Sqal) @

wherem is the number of variables, i.e., the sizeifY¥ o is the covariance matrix computed over
X using a kernel functiorlC given in [1). Within this Gaussian process framework, theual
information criterion in[(B) can be rewritten as

I(Xp,Xy) = H(fr)+H(fv)— H(fL, fv) )
%m (2re)|SL]) + %m ((2re)*|Suu]) — %m (2re)'[Svv )

whereV is the union ofL andU:; [, u, t denote the sizes df, U, V' respectively such thaty- u = t.
Note that for a given data set, the overall number of instanta®es not change during the active
learning process. We simply moveinstances from the unlabeled détinto the labeled seL

in each iteration. Thus the s&t and the entropy ternf{ (f;,, fi/) are irrelevant to the instance
selection. Based on this observation, our maximum mutdairmation instance selection strategy
can be formulated as

* = I(X100, X - |2 ]+ In Sy 6
Q argmax (Xrug, Xng) ‘Qrég’lggl]nl rr| 4+ Xy (6)

wherel’ = LUQ andU’ = U\ Q. This also suggests the mutual information criterion dejgemly
on the covariance matrices computed using the kernel fumetver the instances. Our maximum
mutual information strategy attempts to select the batdhinétances from the unlabeled gétto
label, to maximize the log determinants of the covarianceio®s over the produced sdtsandU’.

3.2 Matrix Partition

Let X be the covariance matrix over all the instances indexe#by L UU = L' U U’. Then
the covariance matrices; r, Yy, X/ andX .y are all submatrices of. Without losing any
generality, we assume the instances are arranged in theafridé L], such that

Yuu XuL
Y= 7

{ Yw X 0
The instance selection problem formulatedn (6) selecttbaet ofb instances indexed b from U
and moves them into the labeled #etThis problem is actually equivalent partitioning matrix>
into submatrice& ./, Yyry, Xy andXyq . by reordering the instancesin Sincel is fixed,
the actual matrix partition is conduct on covariance mallpjx,. Now we define a permutation
matrix M € {0,1}*** such that

Mi1=1, M'1=1
wherel denotes a vector of allentries. We lef\/; denote the first. — b rows of M, and, denote
the lasth rows of M, such that
MEZUUMBT =Yuw, MySuoM, = Yoq 8)

Obviously M, selects instances front/ to form Q. Let
My, Oy

9
Oixu 1 ©)

whereO,, «,, denotes an x n matrix with all 0 entries, and/; denotes d x [ identity matrix.
According to [8) we then have
Sy =TETT, S = BEBT (10)

Finally, the maximum mutual information problem given[i) (&n be equivalently formulated into
the following matrix partition problem

max  In |IBEBT |+ In|TET | (12)

T =[M; Ow-nxi), B= [

st. Mc{0,1}** M1=1, M"1=1



After solving this problem to obtain an optim&f*, the instance selection can be determined from
the lastb rows of M*, i.e., M}.

However, the optimization problemi{11) is an NP-hard coratmrial optimization problem over an
integer matrix)M . To facilitate a convenient optimization procedure, waxehe integer optimiza-
tion problem[(I1) into the following upper bound optimizatiproblem

max  In |IBEBT| +1In|TXT"| (12)
st. 0<M<1, M1=1 M'1=1 (13)

Note a determinant is a log concave function on positive definatrices|[1]. Thu& | X | is concave
in X. However, the quadratic matrix functio = BX B is matrix convex given the matriX

is positive definite. Thus the composition functibn| BX. B " | is neither convex nor concave, but
differentiable. In general, this type of problems are diffigylobal optimization problems. We
develop an efficient local optimization technique to solwed reasonable local solution instead.

3.3 First-order Local Optimization

The target optimizatio[ (12) is an optimization problemrome: x u matrix M, subject to the
linear inequality and equality constrainis13). Herés the number of unlabeled instances, and
we typically assume it is a large number. Therefore a secoddr optimization approach will be
space demanding. We develop a first-order local maximizatigorithm to conduct optimization,
which combines a gradient direction finding method with aigtrtforward backtracking line search
technique. This local optimization algorithm producedrpiging results in our experiments.

The algorithm is an iterative procedure, starting from atisihmatrix M (%), Let M(*) denote the
optimization variable values returned from the ttté iteration. At the(k + 1)th iteration, we
approximate the objective function [0{12) using its firstier Taylor series expansion at poivft(*)

g(M) = W|BEBT|+W|TET|
I [BOSBOT| 4 [ THSTET| 4 T (GaM)T (M - MB)) (14)

Q

WhereB*) andT(¥) denote the correspondirgandT matrices with theifl/ submatrices fixed to
values given byl ®); Tr denotes the trace operat@?{ M (*)) denotes the gradient matrix value at
point M (%), The gradient of the objective functigti}/) can be calculated using the matrix calculus,
which gives the following results

dg(M)

G(M;) = PITE =2[(TST) 7Ty 1 (15)
G(M;) = df}%) =2[(BEBT)7'BY],, ., (16)
G = [60%)".60m)T]" (7)

Note here we use notations in the matlab format wh&fe, ..., denotes th¢j —i+1) x (n—m+1)
submatrix ofX formed by entries between thith to thejth rows and thenth to thenth columns.

Given the gradient at poirdt/ (*), we maximize the local linearizatiof (114) to seek a gradikiretc-
tion regarding the constraints. This leads to a convex tinpéimization

M = argmax Tr (G(M(’“))TM) (18)
st. 0<M<1, M1=1 M'1=1
The gradient direction for th€: + 1)th iteration can be determined as

D=M-M®. (19)

We then employ a backtracking line search to seek the optimlale M *+1) to improve the
original objective functiong(M) with g(M*+D) > ¢(M®). The line search procedure,



Algorithm 1 Matrix Partition

Input: I: the number of labeled instancesg;the number of unlabeled instances;
¥: covariance matrix given in form of(7)b: batch size;
M©; e <le-8.
Output: M*
Initialize k = 0, NoChange = false.
repeat
SetT andB according to equationEl(9) using the curr@nt).
Compute gradien® (M *)) at pointM *) according to equations {1L5), (16) afd](17).
Solve the local linear optimization {IL8) for the given geatito getM.
Compute the gradient ascend directibrusing the equatioh (19).
ComputeM *+1) = linesearch(D, M®*)).
if | M %+ — M(R)||2 < ¢ then NoChange=trueend if

k = k+1.
until NoChange is true or maximum iteration number is reached.
M* = M®*),

Algorithm 2 Heuristic Greedy Rounding Procedure
Input: b, M € (0,1)>*%forb < u.
Output: M\,Q.
Initialize Let @ = (), setM as ab x u matrix with all O entries.
for k =1to bdo
Identify the largest value = max (M (:)).
Identify the indiceq(, j) of v in M.
SetQ = QU {j}, M(i,j) =1, M(i,:) = —Inf, M(:,j) = —Inf.
end for

linesearch(D, M(®)), seeks an optimal step size< s < 1, to update thel/ *) in the ascending
direction D given in [19), i.e.M(*+1) = M) 4 5D, guaranteeing the returnéd *+1) satisfies
the linear constraints if (13), and leads to an objectivaerab worse than before.

The overall algorithm for optimizing the matrix partitiomgblem [I2) is given in Algorithni]1.
In our implementation, the constrained linear optimizat{@8) can be efficiently solved using an
optimization software package CPLEX. When the number ofhaléd instances;, is large, com-
puting the log-determinant of the: — b) x (u — b) matrix, ST T, is likely to run into overflow
or underflow. Instead of computing the log-determinantaliye we choose to compute it in an
alternative efficient way. The key idea is based on the maditieal fact that the determinant of a
triangular matrix equals the product of its diagonal eletsehlence, the matrix's log-determinant
is equal to the sum of their logarithm values. By keeping athputations in log-scale, the problem
of underflow/overflow caused by product of many numbers caafteetively circumvented. For
positive definite matrices, such as the matrices we havecameise Cholesky factorization to first
produce a triangular matrix and then compute the log-detenmt of the original matrix using the
logarithms of the diagonal values of the triangular matfike computation of log-determinants or
matrix inverse in our algorithm are all conducted on matriaesumed to be positive definite. How-
ever, in order to increase the robustness of the algorithdrasoid numerical problems, we can add
an additionalb term to the matrices to guarantee the positive definite ptppélered is a very
small value and is an identity matrix.

By solving the matrix partition problem i (112) using Algtimn[d, an optimal matri®/* is returned.
However, thisM* contains continuous values. In order to determine whictofétinstances to

select, we need to rountd* to a{O,l}-vaIued@, while maintaining the permutation constraints

M1=1 andZ\/f*Tl = 1. We use a simple heuristic greedy procedure to conduct theling. In
this procedure, we focused on rounding the tagiws, M}, since they are the ones used to pick
instances for labeling. The procedure is described in Allgar2, which returns the indices of the
selected instances as well.



4 Experiments

To investigate the empirical performance of the proposechbanode active learning algorithm, we
conducted two sets of experiments on a few UCI datasets an2tmewsgroups dataset. Note the
proposed active learning method is in general independehecspecific classification model em-
ployed. For the experiments in this section, we used lagistiression as its classification model to
evaluate the informativeness of the selected labeledriosta We compared the proposed approach,
denoted adatrix, with three discriminative batch-mode active learning met proposed in the
literature: svmD an approach that incorporates diversity in active legrmiith SVMs [2]; Fisher,

an approach that uses Fisher information matrix based astiogegression classifiers for instance
selection |[B];Discriminative a discriminative optimization approach based on logistgression
classifiers|[6]. We have also compared our approach to onsduztive experimental design method
which is formulated from regression problems and whoseirts selection process is independent
of evaluation classification models [15]. We used the setiglestesign code downloaded from the
authors’ webpage and denote this metho®asign

First, we conducted experiments on seven UCI datasets. Wedmr a hard case of active learning,
where we start active learning from only a few labeled instsn In each experiment, we start with
two randomly selected labeled instances, one in each clagsthen randomly select 2/3 of the
remaining instances as the unlabeled set, using all the ioistances for testing. All the algorithms
start with the same initial labeled set, unlabeled set astihgp set. For a fixed batch sizeeach
algorithm repeatedly seleétinstances to label each time and evaluate the producedfidass
testing data after each new labeling, with maximLiri instances to select in total. The experiments
were repeated 20 times. In Table 1, we report the experirherstalts witho = 10, comparing the
proposedViatrix algorithm with each of the three batch-mode alternativegh W= 10, there are
totally 11 evaluation points, with 20 results on each of th&ve therefore run a 2-sided paired t-test
at each evaluation point to compare the performance of eaicbflgorithms. The “win%” denotes
the percentage of evaluation points whereNtarix algorithm outperforms the specified algorithm
using a 2-sided paired t-test at the level ef(p05; the “lose%” denotes the percentage of evaluation
points where the specified algorithm outperformsMuarix algorithm. The “overall” nevertheless
show the comparison results using a single 2-sided paitest ton all 220 results. These results
show that the proposed active learning methddirix, overperformedvmD FisherandDesignon
most data sets, except an oveladleto svmDon pima, aie with FisherandDesignon hepatitis, and
atie with Designon flare. Matrix is mostly tied withDiscriminativeon all data sets, with a slight
pointwisewin on crx and a slight overalbse on german. AlthoughtMatrix and Discriminative
demonstrated similar performance, the propdgedtix is more efficient regarding running time on
relatively big data sets. The comparison in running timess @@ repeats are reported in Table 2.

Table 1: Comparison of the active learning algorithms on d&ta with batch size = 10. These
results are based on 2-sided paired t-test at the levet @.p5.

Data set . Matrix vs svmD _ Matrix vs Fisher M_atrix vs Discriminativ .Matrix vs Design
win% lose% overalwin% lose% overalwin% lose% overall|win% lose% overall
cleve 63.6 0 win | 455 0 win 0 0 te 90.9 0 win
crx 27.3 0 win 9.1 0 win 9.1 0 tie 90.9 0 win
flare 54.5 0 win |100.0 0 win 0 0 tie 36.4 9.1 tie
german| 81.8 0 win 9.1 0 win 0 0 lose | 72.7 0 win
heart 63.6 0 win| 36.4 0 win 0 0 tie |100.0 0 win
hepatitis 100.0 0 win| 33.3 0 tie 0 0 tie 0 0 tie
pima 0 0 lose [100.0 0 win 0 0 tie 81.8 0 win
Table 2: Average running time (in minutes)
Method cleve crx flare german heart hepatitis pima
Matrix 8.37 6.14 9.53 22.08 5.68 0.12 60.11
Discriminative| 3.33 61.44 220.12 285.65 2.40 0.08 68.27




Table 3: Comparison of the active learning algorithms on digeup data with batch size = 20.
These results are based on 2-sided paired t-test at theoligwel 0.05.

Matrix vs svmD Matrix vs Fisher | Matrix vs Random| Matrix vs Design
win% lose% overallwin% lose% overallwin% lose% overallwin% lose% overall
Autos 86.7 0 win | 20.0 6.6 tie | 73.3 6.6 win| 80.0 6.7 win
Hardware 100.0 0 win 0 0 tie 13.3 0 win | 86.7 0 win
Sport 86.7 6.6 win| 20.0 13.3 tie | 46.7 0 win| 80.0 6.7 win

Data set

Next we conducted experiments on 20 newsgroups datasebéontent categorization. We build
three binary classification tasks: (1) Autos: rec.autog &uments) vs. rec.motorcycles (993 doc-
uments); (2) Hardware: comp.sys.ibm.pc.hardware (97@meats) vs. comp.sys.mac.hardware
(958 documents); (3) Sport: rec.sport.baseball (991 deatsh vs. rec.sport.hockey (997 docu-
ments). Each document is first minimally processed into .@ftfvector. We then select the top
400 features to use according to their total “tf.idf” freqaes in all the documents for the consid-
ered task. In each experiment, we start with four randonllgcsed labeled instances, two in each
class. We then randomly select 1000 instances (500 fromaas$) from the remaining ones as the
unlabeled set, using all the other instances for testingth&lalgorithms start with the same initial
labeled set, unlabeled set and testing set. For a fixed biateh, £ach algorithm repeatedly seléct
instances to label each time with maxima360 instances to select in total. In this section, we report
the experimental results with= 20 averaged over 20 times repetitions. There#@/20 = 15
evaluation points in this case.

Note the unlabeled sets used for this set of experiments awh farger than the ones used for
experiments on UCI datasets. This substantially incredmesearching space of instance selection.
One consequence in our experiments is thattiseriminativealgorithm becomes very slow. Thus
we were not able to produce comparison results for this glgor The proposed/atrix method
was affected as well. However, we coped with this problemaisi subsampling assisted method,
where we first select a subset of 400 instances from the uelhbet and then restrain our instance
selection to this subset. This is equivalent to solving ttarix partition optimization in[(12) with
additional constraints o/, such that the columns af/, corresponding to instances outside of
this subset of 400 instances are all set to 0. For the expetanee chose the 400 instances as
the ones with top entropy terms under the current classdicanodel. The same subsampling was
used for the metho®esignas well. Tablé B shows the comparison results on the threendert
categorization tasks, compariidatrix to svmQ Fisher, Designand a baseline random selection,
Random These results show the propogédtrix outperformedsvmD DesignandRandom It tied
with Fisherregarding overall measure, but had a sligit regarding pointwise measure.

These empirical results suggest that selecting unlabekdrices independent of the classification
model using the proposed matrix partition method can aehieasonable performance, which is
better than a transductive experimental design method amgarable to the discriminative batch-

mode active learning approaches. However, our approachféencertain conveniences in some

circumstances where one does not know the classificatiomhotbe employed for classification.

5 Conclusions

In this paper, we propose a novel batch-mode active leamgppgoach that makes query selection
decisions independent of the classification model employée proposed approach is based on a
generalmaximum mutual informatioprinciple. It is formulated as a matrix partition optimiiat
problem under a Gaussian process framework. To tackle thaufated combinatorial optimization
problem, we developed an effective local optimization teghe. Our empirical studies show the
proposed flexible batch-mode active learning approach chieee comparable or superior perfor-
mance to discriminative batch-mode active learning methbdt have been optimized on specific
classifiers. A future extension for this work is to considatdh-mode active learning with structured
data by exploiting different kernel functions.
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