
Multi-Stage Dantzig Selector: Supplemental Material
Theorem 1 is fundamental for the rest of the theorems. We first highlight a brief architecture for its
proof. Theorem 1 estimates ‖β̂ − β∗‖p, which is bounded by the sum of two parts: ‖β̂ − β∗‖p ≤
‖β̂ − β̄‖p + ‖β̄ − β∗‖p. We use the upper bounds of these two parts to estimate the bound of
‖β̂ − β∗‖p. The analysis in Section 3.2 shows that the first term ‖β̂ − β̄‖p may be much larger
than the second term ‖β̄ − β∗‖p. In Lemma 1, we estimate the bound of ‖β̄ − β∗‖p and its holding
probability. The remaining part of the proof focuses on the estimation of the bound of ‖β̂ − β̄‖p.
For convenience, we use h to denote β̂ − β̄. h can be divided into hF̄1−T1

and hF1+T1 , where
F0 ⊂ F1 ⊂ F . Lemma 3 studies the relationship between hF̄1−T1

and hF1+T1 , if β̄ is feasible
(Lemma 2 computes its holding probability). Then, Lemma 5 shows that ‖h‖p can be bounded in
term of ‖hF1+T1‖p. In Theorem 7, we estimate the bound of ‖hF1+T1‖p. Finally, letting F1 = F ,
we prove Theorem 1.

Lemma 1. With probability larger than 1− η(π log(s/η))−1/2, the following holds:

‖β̄ − β∗‖p ≤ s1/pσ
√

2 log(s/η)

µ
(p)

(XT
F XF )1/2,s

(13)

Proof. According to the definition of β̄, we have

β̄F = (XT
F XF )−1XT

F y = (XT
F XF )−1XT

F (Xβ∗ + ε) = (XT
F XF )−1XT

F (XF β∗F + ε)

= β∗F + (XT
F XF )−1XT

F ε.
(14)

It follows that
β̄F − β∗F = (XT

F XF )−1XT
F ε ∼ N(0, (XT

F XF )−1σ2).
Since ‖β̄ − β∗‖p = ‖β̄F − β∗F ‖p, we only need to consider the bound for ‖β̄F − β∗F ‖p. Let
Z = (XT

F XF )1/2(β∗F − β̄F )/σ ∼ N(0, I). We have

P (‖Z‖p ≥ t) =(2π)−s/2

∫

‖Z‖p≥t

e−ZT Z/2dZ

≤ (2π)−s/2

∫

s1/p‖Z‖∞≥t

e−ZT Z/2dZ (due to ‖Z‖p ≤ s1/p‖Z‖∞)

= 1− (2π)−s/2

∫

‖Z‖∞≤s−1/pt

e−ZT Z/2dZ

= 1−
[
(2π)−1/2

∫

|Zi|≤s−1/pt

e−Z2
i /2dZi

]s

= 1−
[
1− 2(2π)−1/2

∫ ∞

s−1/pt

e−Z2
i /2dZi

]s

≤ s

[
2(2π)−1/2

∫ ∞

s−1/pt

e−Z2
i /2dZi

]

≤ 2s1+1/p

t(2π)1/2
exp

[ −t2

2s2/p

]

Thus the following bound holds with probability larger than 1− 2s1+1/p

t(2π)1/2 exp
[
−t2

2s2/p

]
:

P (‖Z‖p ≤ t) = P (‖(XT
F XF )1/2(β∗F − β̄F )‖p ≤ tσ)

≤ P (µ(p)

(XT
F XF )1/2,s

‖β∗F − β̄F ‖p ≤ tσ) = P (‖β∗F − β̄F ‖p ≤ tσ/µ
(p)

(XT
F XF )1/2,s

)

Taking t =
√

2 log(s/η)s1/p, we prove the claim. Note that the presented bound holds for any
p ≥ 1. ¤
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Lemma 2. With probability larger than 1− η(π log m−s
η )−1/2, the following bound holds:

‖XT
F̄ (Xβ̄ − y)‖∞ ≤ λ, (15)

where λ = σ
√

2 log(m− s)/η.

Proof. Let us first consider the probability of ‖XT
F̄

(Xβ̄ − y)‖∞ ≤ λ. For any j ∈ F̄ , define vj as

vj = XT
j (Xβ̄ − y)

= XT
j

(
XF (XT

F XF )−1XT
F (XF β∗F + ε)−XF β∗F − ε

)

= XT
j

(
XF (XT

F XF )−1XT
F − I

)
ε

∼ N(0, XT
j (I −XF (XT

F XF )−1XT
F )Xjσ

2)

Since (I−XF (XT
F XF )−1XT

F ) is a projection matrix, we have XT
j (I−XF (XT

F XF )−1XT
F )Xjσ

2 ≤
σ2. Thus,

P (‖XT
F̄ (Xβ̄ − y)‖∞ ≥ λ) = P (sup

j∈F̄

|vj | ≥ λ) ≤ 2(m− s)σ
λ(2π)1/2

exp{−λ2/2σ2}.

Taking λ = σ
√

2 log(m− s)/η in the inequality above, we prove the claim. ¤

It follows from the definition of β̄ that ‖XT
F (Xβ̄ − y)‖∞ = 0 always holds. In the following

discussion, we assume that the following assumption holds:

Assumption 2. β̄ is a feasible solution of the problem (6), if F0 ⊂ F .

Under the assumption above, both ‖XT
F̄

(Xβ̄ − y)‖∞ ≤ λ and ‖XT
F (Xβ̄ − y)‖∞ = 0 hold.

Note that this assumption is just used to simplify the description for following proofs. Our proof for
the final theorems will substitute this assumption by the probability it holds.

In the following, we introduce an additional set F1 satisfying F0 ⊂ F1 as in [20].

Lemma 3. Let F0 ⊂ F and h = β̂ − β̄. Assume that Assumption 2 holds. Given any index set F1

such that F0 ⊂ F1, we have the following conclusions:

‖hF̄0−F̄1
‖1 + 2‖β̄F̄1

‖1 ≥‖hF̄1
‖1

‖XT
F0

Xh‖∞ =0

‖XT
F̄ Xh‖∞ ≤2λ

‖XT
F̄0−F̄ Xh‖∞ ≤λ.

(16)

Proof. Since β̄ is a feasible solution, the following holds

‖β̂F̄0
‖1 ≤ ‖β̄F̄0

‖1
‖β̂F̄0−F̄1

‖1 + ‖β̂F̄1
‖1 ≤ ‖β̄F̄0−F̄1

‖1 + ‖β̄F̄1
‖1

‖β̂F̄1
‖1 ≤ ‖hF̄0−F̄1

‖1 + ‖β̄F̄1
‖1

‖hF̄1
+ β̄F̄1

‖1 ≤ ‖hF̄0−F̄1
‖1 + ‖β̄F̄1

‖1
‖hF̄1

‖1 ≤ ‖hF̄0−F̄1
‖1 + 2‖β̄F̄1

‖1
Thus, the first inequality holds. Since

XT
F0

Xh = XT
F0

X(β̂ − β̄) = XT
F0

(Xβ̂ − y)−XT
F0

(Xβ̄ − y),

the second inequality can be obtained as follows:

‖XT
F0

Xh‖∞ ≤ ‖XT
F0

(Xβ̂ − y)‖∞ + ‖XT
F0

(Xβ̄ − y)‖∞ = 0.
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The third inequality holds since

‖XT
F̄ Xh‖∞ ≤ ‖XT

F̄ (Xβ̂ − y)‖∞ + ‖XT
F̄ (Xβ̄ − y)‖∞ ≤ 2λ.

Similarly, the fourth inequality can be obtained as follows:

‖XT
F̄0−F̄ Xh‖∞ ≤ ‖XT

F̄0−F̄ (Xβ̂ − y)‖∞ + ‖XT
F̄0−F̄ (Xβ̄ − y)‖∞ ≤ λ.

¤
Lemma 4. Given any v ∈ Rm, its index set T is divided into a group of subsets Tj’s without
intersection such that

⋃
j Tj = T . If maxj |Tj | ≤ l and maxi∈Tj+1 vTj+1 [i] ≤ ‖vTj‖1/l hold for all

j’s, then we have
‖vT̄1

‖p ≤ ‖v‖1l1/p−1. (17)

Proof. Since |vTj+1 [i]| ≤ ‖vTj‖1/l, we have

‖vTj+1‖p
p =

∑
i∈Tj+1

vp
Tj+1

[i] ≤ ‖vTj
‖p
1l

1−p,

‖vTj+1‖p ≤ ‖vTj
‖1l1/p−1.

Thus,
‖vT̄1

‖p ≤
∑

j≥1

‖vTj+1‖p ≤
∑

j≥1

‖vTj
‖1l1/p−1 = ‖v‖1l1/p−1,

which proves the claim. ¤

Note that similar techniques as those in Lemma 4 have been used in the literature [7, 20].
Lemma 5. Assume that F0 ⊂ F and F0 ⊂ F1. We divide the index set F̄1 into a group of subsets
Tj’s such that they satisfy all conditions in Lemma 4. Then the following holds:

‖hF̄1−T1
‖p ≤l1/p−1

(
|F̄0 − F̄1|1−1/p‖hF̄0−F̄1

‖p + 2‖β̄F̄1
‖1

)
,

‖h‖p ≤
[
1 +

( |F̄0 − F̄1|
l

)p−1
]1/p

‖hF1+T1‖p +
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1,

‖h‖p ≤
[
1 +

( |F̄0 − F̄1|
l

)1−1/p
]
‖hF1+T1‖p + 2l1/p−1‖β̄F̄1

‖1.

(18)

Proof. Using Lemma 4 with T = F̄1, the first inequality can be obtained as follows using the first
inequality in lemma 3 :

‖hF̄1−T1
‖p ≤l1/p−1‖hF̄1

‖1 ≤ l1/p−1
(‖hF̄0−F̄1

‖1 + 2‖β̄F̄1
‖1

)

≤l1/p−1
(
|F̄0 − F̄1|1−1/p‖hF̄0−F̄1

‖p + 2‖β̄F̄1
‖1

)
.

For any x ≥ 0, y ≥ 0, p ≥ 1, and a > 0, it can be easily verified that

(xp + (ax + y)p)1/p ≤ (1 + ap)1/px + (1 + a−p)1/py. (19)
First we consider the case F0 6= F1. In this case, we have

‖h‖p =
[‖hF1+T1‖p

p + ‖hF̄1−T1
‖p

p

]1/p

≤
[
‖hF1+T1‖p

p +

[( |F̄0 − F̄1|
l

)1−1/p

‖hF̄0−F̄1
‖p + 2l1/p−1‖β̄F̄1

‖1
]p]1/p

≤
[
1 +

( |F̄0 − F̄1|
l

)p−1
]1/p

‖hF1+T1‖p +

[
1 +

( |F̄0 − F̄1|
l

)1−p
]1/p

2l1/p−1‖β̄F̄1
‖1

≤
[
1 +

( |F̄0 − F̄1|
l

)p−1
]1/p

‖hF1+T1‖p +
[
2l1/p−1 + 2|F̄0 − F̄1|1/p−1

]
‖β̄F̄1

‖1.
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The first inequality is due to the first claim in this lemma; the second inequality is due to
‖hF̄0−F̄1

‖p ≤ ‖hF1+T1‖p and (19); the third inequality holds since p ≥ 1 . Next, we consider
the case F0 = F1. We have

‖h‖p =
[‖hF1+T1‖p

p + ‖hF̄1−T1
‖p

p

]1/p ≤
[
‖hF1+T1‖p

p +
[
2l1/p−1‖β̄F̄1

‖1
]p]1/p

≤‖hF1+T1‖p + 2l1/p−1‖β̄F̄1
‖1.

Considering two cases above simultaneously, we obtain the second claim as follows:

‖h‖p ≤
[
1 +

( |F̄0 − F̄1|
l

)p−1
]1/p

‖hF1+T1‖p +
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1

The third claim can be obtained by using the first claim as follows:

‖h‖p ≤‖hF1+T1‖p + ‖hF̄1−T1
‖p ≤ ‖hF1+T1‖p + l1/p−1

(
|F̄0 − F̄1|1−1/p‖hF̄0−F̄1

‖p + 2‖β̄F̄1
‖1

)

=

[
1 +

( |F̄0 − F̄1|
l

)1−1/p
]
‖hF1+T1‖p + 2l1/p−1‖β̄F̄1

‖1.

¤

Theorem 7. Under the assumption 1, taking F0 ⊂ F and λ = σ

√
2 log

(
m−s
η1

)
into the optimiza-

tion problem (6), for any given index set F1 satisfying F0 ⊂ F1 ⊂ F , if there exists some l such that

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

> 0 holds where s1 = |F1|, then with probability larger than

1− η′1, the lp-norm (1 ≤ p ≤ ∞) of the difference between the optimizer of the problem (6) and the
oracle solution is bounded as

‖β̂ − β̄‖p ≤

[
1 +

(
|F̄0−F̄1|

l

)p−1
]1/p (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

+
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1

(20)

and

‖β̂ − β̄‖p ≤

[
1 +

(
|F̄0−F̄1|

l

)1−1/p
] (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

+ 2l1/p−1‖β̄F̄1
‖1

(21)

and with probability larger than 1 − η′1 − η′2, the lp-norm (1 ≤ p ≤ ∞) of the difference between
the optimizer of the problem (6) and the true solution is bounded as

‖β̂ − β∗‖p ≤

[
1 +

(
|F̄0−F̄1|

l

)p−1
]1/p (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

+
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1 +
s1/p

µ
(p)

(XT
F XF )1/2,s

σ
√

2 log(s/η2)

(22)

and

‖β̂ − β∗‖p ≤

[
1 +

(
|F̄0−F̄1|

l

)1−1/p
] (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

+ 2l1/p−1‖β̄F̄1
‖1 +

s1/p

µ
(p)

(XT
F XF )1/2,s

σ
√

2 log(s/η2)

(23)
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Proof. First, we assume the Assumption 2 and the inequality (13) hold. Divide F̄1 into a group of
subsets Tj’s without intersection such that

⋃
j Tj = F̄1, maxj |Tj | ≤ l and maxi∈Tj+1 hTj+1 [i] ≤

‖hTj‖1/l hold. Note that such a division always exists. Simply, let T1 be the index set of the largest
l elements in h, T2 be the index set of the largest l elements among the remaining elements, and so
on (the size of the last set may be less than l). It is easy to verify that this group of sets satisfy all
conditions above. For convenience of presentation, we denote T0 = F̄0 − F̄1 and T01 = T0 + T1.
Since

‖XT
T01+F0

Xh‖p

=‖XT
T01+F0

XT01+F0hT01+F0 +
∑

j≥2

XT
T01+F0

XTj
hTj

‖p

≥µ
(p)
A,s1+l‖hT01+F0‖p −

∑

j≥2

θ
(p)
A,s1+l,l‖hTj

‖p

≥µ
(p)
A,s1+l‖hT01+F0‖p − θ

(p)
A,s1+l,l

∑

j≥2

‖hTj
‖p

≥µ
(p)
A,s1+l‖hT01+F0‖p − θ

(p)
A,s1+l,ll

1/p−1‖hF̄1
‖1 (due to lemma 4)

≥µ
(p)
A,s1+l‖hT01+F0‖p − θ

(p)
A,s1+l,ll

1/p−1
(‖hT0‖1 + 2‖β̄F̄1

‖1
)

(due to lemma 3)

≥µ
(p)
A,s1+l‖hT01+F0‖p − θ

(p)
A,s1+l,l

(
l

|T0|
)1/p−1

‖hT0‖p − 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

≥
(

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
l

|T0|
)1/p−1

)
‖hT01+F0‖p − 2θ

(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

and

‖XT
T01+F0

Xh‖p
p

=‖XT
F0

Xh‖p
p + ‖XT

T01∩F Xh‖p
p + ‖XT

T01∩F̄ Xh‖p
p

≤|T01 ∩ F |λp + |T01 ∩ F̄ |(2λ)p (due to lemma 3)

≤|T0 ∩ F |λp + |T1 ∩ F |λp + |T0 ∩ F̄ |(2λ)p + |T1 ∩ F̄ |(2λ)p (due to F1 ⊂ F )

≤|T0|λp + l(2λ)p, (due to T0 ∩ F̄ = ∅)

we have

‖hF1+T1‖p =‖hT01+F0‖p ≤
(|T0|+ 2pl)1/pλ + 2θ

(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
l
|T0|

)1/p−1

=
(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ

(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

Due to the second inequality in Lemma 5, we have

‖h‖p ≤
[
1 +

( |F̄0 − F̄1|
l

)p−1
]1/p

‖hF1+T1‖p +
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1

=

[
1 +

(
|F̄0−F̄1|

l

)p−1
]1/p (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p
+

[
2l1/p−1 + 2

]
‖β̄F̄1

‖1
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Thus, we can bound ‖β̂ − β∗‖p as

‖β̂ − β∗‖p ≤‖β̂ − β̄‖p + ‖β̄ − β∗‖p

≤

[
1 +

(
|F̄0−F̄1|

l

)p−1
]1/p (

(|F̄0 − F̄1|+ 2pl)1/pλ + 2θ
(p)
A,s1+l,ll

1/p−1‖β̄F̄1
‖1

)

µ
(p)
A,s1+l − θ

(p)
A,s1+l,l

(
|F̄0−F̄1|

l

)1−1/p

+
[
2l1/p−1 + 2

]
‖β̄F̄1

‖1 +
s1/p

µ
(p)

(XT
F XF )1/2,s

σ
√

2 log(s/η2).

Similarly, by the third inequality in Lemma 5, we can get the bounds in (21) and (23).

Finally, taking λ = σ

√
2 log

(
m−s
η1

)
, Lemma 2 with η = η1 implies that the assumption 2 holds

with probability larger than 1−η′1 and Lemma 1 with η = η2 implies that (13) holds with probability
larger than 1 − η′2. Thus, these two bounds above hold with probabilities larger than 1 − η′1 and
1− η′1 − η′2, respectively. ¤
Remark 3. [7] provided a more general upper bound for the Dantzig selector solution in the order
ofO

(
k1/2σ

√
log m + r

(2)
k (β∗)

√
log m

)
, where 1 ≤ k ≤ s and r

(p)
k (β) =

(∑
i∈Lk

|βi|p
)1/p

(Lk is
the index set of the k largest entries in β). We argue that the result in Theorem 7 potentially implies a
tighter bound for Dantzig selector. Setting F0 = ∅ (equivalent to the standard Dantzig selector) and
l = k with k = |F̄1| in Theorem 7, it is easy to verify that the order of the bound for ‖β̂D − β̄‖p is

determined by O
(
k1/pσ

√
log m + k1/p−1r

(1)
k (β̄)

)
, or O

(
k1/pσ

√
log m + k1/p−1r

(1)
k (β∗)

)
due

to Lemma 1. This bound achieves the same order as the bound of the LASSO solution given by [20],
which is the sharpest bound for LASSO.

We are now ready to prove Theorem 1.
Proof of Theorem 1: Taking F1 = F in theorem 7, we conclude that

‖β̂ − β̄‖p ≤

[
1 +

(
|F̄0−F̄ |

l

)p−1
]1/p

(|F̄0 − F̄ |+ l2p)1/p

µ
(p)
A,s+l − θ

(p)
A,s+l,l

(
|F̄0−F̄ |

l

)1−1/p
σ

√
2 log

(
m− s

η1

)
(24)

holds with the probability larger than 1− η′1 and

‖β̂ − β∗‖p ≤‖β̂ − β̄‖p + ‖β̄ − β∗‖p ≤

[
1 +

(
|F̄0−F̄ |

l

)p−1
]1/p

(|F̄0 − F̄ |+ l2p)1/p

µ
(p)
A,s+l − θ

(p)
A,s+l,l

(
|F̄0−F̄ |

l

)1−1/p

σ

√
2 log

(
m− s

η1

)
+

s1/p

µ
(p)

(XT
F XF )1/2,s

σ
√

2 log(s/η2).

holds with the probability larger than 1− η′1 − η′2. ¤

Proof of Theorem 3: From the proof in Theorem 7, the bounds (7) and (8) in Theorem 1 hold with
probability 1 if Assumption 2 and the inequality (13) hold. It is easy to verify by Theorem 1 that for
any j ∈ J , the following holds: |β∗j | > α0 ≥ ‖β̂ − β̄‖∞ + ‖β̂ − β∗‖∞. For any j ∈ J , we have

|β̂j | ≥ |β∗j | − |β̂j − β∗j | > ‖β̂ − β̄‖∞ + ‖β̂ − β∗‖∞ − |β̂j − β∗j | ≥ ‖β̂ − β̄‖∞ ≥ ‖β̂F̄ ‖∞.

Thus, there exist at least |J | elements of β̂F larger than ‖β̂F̄ ‖∞. If we pick up the largest |J |
elements in β̂, then all of them correspond to the location of nonzero entries in the true solution β∗.
Since Assumption 2 and the inequality (13) hold, the bounds (7) and (8) in Theorem 1 hold with
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the probability larger than 1 − η′1 − η′2. Thus the claim above holds with probability larger than
1− η′1 − η′2. Note that the probability will not accumulate, as we only need the holding probability
of Assumption 2 and the inequality (13). The proofs below follow the same principle. ¤

Proof of Theorem 4: From the proof in Theorem 7, the bounds (7) and (8) in Theorem 1 hold with
probability 1 if assumption 2 and the inequality (13) hold. In the multi-stage algorithm, the problem
in (6) is solved N times. It is easy to verify that the following holds:

α0 ≥ ‖β̂(0) − β̄‖∞ + ‖β̂(0) − β∗‖∞.

Since |suppα0(β
∗
J)| > 0, there exists at least 1 element in β̂

(0)
J larger than ‖β̂(0)

F̄
‖∞. Thus, F

(1)
0

must be a subset of F . Then, we can verify that

α1 ≥ ‖β̂(1) − β̄‖∞ + ‖β̂(1) − β∗‖∞,

and |suppα1(β
∗
J)| > 1 guarantees that there exist at least 2 elements in β̂

(1)
J larger than ‖β̂(1)

F̄
‖∞.

Thus, F
(2)
0 must be a set of F . Similarly, we can show that F

(N)
0 is guaranteed to be a subset of F .

Since the bounds (7) and (8) in Theorem 1 hold with probability larger than 1− η′1 − η′2, the claim
F

(N)
0 ⊂ F holds with probability larger than 1− η′1 − η′2. ¤

Proof of Theorem 5: From Theorem 1, the first conclusion holds with probability larger than
1− η′1 − η′2 by choosing F0 = ∅ and l = s.

Assuming Assumption 2 and the inequality (13) hold, the bounds (7) and (8) in Theorem 1 hold
with probability 1. Since the conditions in Theorem 4 are satisfied, the |J | correct features can be
selected from the feature set, i.e., F

(|J|)
0 ⊂ F . Using the conclusion in (8) of Theorem 1, the bound

of the multi-stage method can be estimated by taking l = |F̄0 − F̄ | as follows:

‖β̂mul − β∗‖p ≤ (2p+1 + 2)1/p(s−N)1/p

µ
(p)
A,2s−N − θ

(p)
A,2s−N,s−N

σ

√
2 log

(
m− s

η1

)
+

s1/p

µ
(p)

(XT
F XF )1/2,s

σ
√

2 log(s/η2).

Note that since
µ

(p)
A,2s−N − θ

(p)
A,2s−N,s−N ≥ µ

(p)
A,2s − θ

(p)
A,2s,s,

the following always holds: µ
(p)
A,2s−N − θ

(p)
A,2s−N,s−N > 0. Since Assumption 2 and the inequality

(13) hold, the bounds (7) and (8) in Theorem 1 hold with probability larger than 1− η′1 − η′2. Thus
the claim above holds with probability larger than 1− η′1 − η′2. ¤

Proof of Theorem 6: First, we assume that Assumption 2 and the inequality (13) hold. In this case,
the claim in Theorem 4 holds with probability 1. Since all conditions in Theorem 4 are satisfied,
after s iterations, s correct features will be selected (i.e., F

(N)
0 = F ) with probability 1. Since all

correct features are obtained, the optimization problem in the last iteration can be formulated as:

min : ‖βF̄ ‖1
s.t. : ‖XT

F̄ (Xβ − y)‖∞ ≤ λ

‖XT
F (Xβ − y)‖∞ = 0.

(25)

The oracle solution minimizes the objective function to 0. Since Assumption 2 indeed implies that
the oracle is a feasible solution, the oracle solution is one optimizer. We can also show that it is the
unique optimizer. If there is another optimizer β 6= β̄, then βF̄ = 0 and βF = (XT

F XF )−1XT
F y,

which is identical to the definition of the oracle solution. Thus, we conclude that the oracle is the
unique optimizer for the optimization problem (25) with probability 1. Since the holding probability
of Assumption 2 and the inequality (13) is larger than 1−η′1−η′2, the oracle solution can be achieved
with the same probability. ¤
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