
Self-Paced Learning for Latent Variable Models

M. Pawan Kumar Benjamin Packer Daphne Koller
Computer Science Department

Stanford University
{pawan,bpacker,koller}@cs.stanford.edu

Abstract
Latent variable models are a powerful tool for addressing several tasks in machine
learning. However, the algorithms for learning the parameters of latent variable
models are prone to getting stuck in a bad local optimum. To alleviate this prob-
lem, we build on the intuition that, rather than considering all samples simulta-
neously, the algorithm should be presented with the training data in a meaningful
order that facilitates learning. The order of the samples is determined by how easy
they are. The main challenge is that often we are not provided with a readily com-
putable measure of the easiness of samples. We address this issue by proposing a
novel, iterative self-paced learning algorithm where each iteration simultaneously
selects easy samples and learns a new parameter vector. The number of samples
selected is governed by a weight that is annealed until the entire training data has
been considered. We empirically demonstrate that the self-paced learning algo-
rithm outperforms the state of the art method for learning a latent structural SVM

on four applications: object localization, noun phrase coreference, motif finding
and handwritten digit recognition.

1 Introduction
Latent variable models provide an elegant formulation for several applications of machine learning.
For example, in computer vision, we may have many ‘car’ images from which we wish to learn a
‘car’ model. However, the exact location of the cars may be unknown and can be modeled as latent
variables. In medical diagnosis, learning to diagnose a disease based on symptoms can be improved
by treating unknown or unobserved diseases as latent variables (to deal with confounding factors).
Learning the parameters of a latent variable model often requires solving a non-convex optimization
problem. Some common approaches for obtaining an approximate solution include the well-known
EM [8] and CCCP algorithms [9, 23, 24]. However, these approaches are prone to getting stuck in a
bad local minimum with high training and generalization error.

Machine learning literature is filled with scenarios in which one is required to solve a non-convex
optimization task, for example learning perceptrons or deep belief nets. A common approach for
avoiding a bad local minimum in these cases is to use multiple runs with random initializations
and pick the best solution amongst them (as determined, for example, by testing on a validation
set). However, this approach is adhoc and computationally expensive as one may be required to
use several runs to obtain an accurate solution. Bengio et al. [3] recently proposed an alternative
method for training with non-convex objectives, called curriculum learning. The idea is inspired
by the way children are taught: start with easier concepts (for example, recognizing objects in
simple scenes where an object is clearly visible) and build up to more complex ones (for example,
cluttered images with occlusions). Curriculum learning suggests using the easy samples first and
gradually introducing the learning algorithm to more complex ones. The main challenge in using
the curriculum learning strategy is that it requires the identification of easy and hard samples in a
given training dataset. However, in many real-world applications, such a ranking of training samples
may be onerous or conceptually difficult for a human to provide — even if this additional human
supervision can be provided, what is intuitively “easy” for a human may not match what is easy for
the algorithm in the feature and hypothesis space employed for the given application.

To alleviate these deficiencies, we introduce self-paced learning. In the context of human education,
self-paced learning refers to a system where the curriculum is determined by the pupil’s abilities
rather than being fixed by a teacher. We build on this intuition for learning latent variable models by

1

designing an iterative approach that simultaneously selects easy samples and updates the parameters
at each iteration. The number of samples selected at each iteration is determined by a weight that is
gradually annealed such that later iterations introduce more samples. The algorithm converges when
all samples have been considered and the objective function cannot be improved further. Note that,
in self-paced learning, the characterization of what is “easy” applies not to individual samples, but
to sets of samples; a set of samples is easy if it admits a good fit in the model space.

We empirically demonstrate that our self-paced learning approach outperforms the state of the art
algorithm for learning a recently proposed latent variable model, called latent structural SVM, on
four standard machine learning applications using publicly available datasets.

2 Related Work
Self-paced learning is related to curriculum learning in that both regimes suggest processing the
samples in a meaningful order. Bengio et al. [3] noted that curriculum learning can be seen as a type
of continuation method [1]. However, in their work, they circumvented the challenge of obtaining
such an ordering by using datasets where there is a clear distinction between easy and hard samples
(for example, classifying equilateral triangles vs. squares is easier than classifying general triangles
vs. general quadrilaterals). Such datasets are rarely available in real world applications, so it is not
surprising that the experiments in [3] were mostly restricted to small toy examples.

Our approach also has a similar flavor to active learning, which chooses a sample to learn from at
each iteration. Active learning approaches differ in their sample selection criteria. For example,
Tong and Koller [21] suggest choosing a sample that is close to the margin (a “hard” sample),
corresponding to anti-curriculum learning. Cohn et al. [6] advocate the use of the most uncertain
sample with respect to the current classifier. However, unlike our setting, in active learning the labels
of all the samples are not known when the samples are chosen.

Another related learning regime is co-training, which works by alternately training classifiers such
that the most confidently labeled samples from one classifier are used to train the other [5, 17].
Our approach differs from co-training in that in our setting the latent variables are simply used to
assist in predicting the target labels, which are always observed, whereas co-training deals with a
semi-supervised setting in which some labels are missing.

3 Preliminaries
We will denote the training data as D = {(xi,yi), · · · , (xn,yn)}, where xi ∈ X are the observed

variables (which we refer to as input) for the ith sample and yi ∈ Y are the unobserved variables
(which we refer to as output), whose values are known during training. In addition, latent variable
models also contain latent, or hidden, variables that we denote by hi ∈ H. For example, when
learning a ‘car’ model using image-level labels, x represents an image, the binary output y indicates
the presence or absence of a car in the image, and h represents the car’s bounding box (if present).

Given the training data, the parameters w of a latent variable model are learned by optimizing an
objective function, for example by maximizing the likelihood of D or minimizing the risk over D.
Typically, the learning algorithm proceeds iteratively, with each iteration consisting of two stages:
(i) the hidden variables are either imputed or marginalized to obtain an estimate of the objective
function that only depends on w; and (ii) the estimate of the objective function is optimized to
obtain a new set of parameters. We briefly describe two such well-known algorithms below.

EM Algorithm for Likelihood Maximization. An intuitive objective is to maximize likelihood:

max
w

∑

i

log Pr(xi,yi;w) = max
w

(

∑

i

log Pr(xi,yi,hi;w)−
∑

i

log Pr(hi|xi,yi;w)

)

. (1)

A common approach for this task is to use the EM method [8] or one of its many variants [12].
Outlined in Algorithm 1, EM iterates between finding the expected value of the latent variables h
and maximizing objective (1) subject to this expectation. We refer the reader to [8] for more details.

CCCP Algorithm for Risk Minimization. Given the true output y, we denote the user-specified
risk of predicting ŷ(w) as ∆(y, ŷ(w)). The risk is usually highly non-convex in w, and therefore
very difficult to minimize. An efficient way to overcome this difficulty is to use the recently proposed
latent structural support vector machine (hereby referred to as latent SSVM) formulation [9, 23] that
minimizes a regularized upper bound on the risk. Latent SSVM provides a linear prediction rule of

2

Algorithm 1 The EM algorithm for parameter estimation by likelihood maximization.

input D = {(x1,y1), · · · , (xn,yn)}, w0, ǫ.
1: t← 0
2: repeat
3: Obtain the expectation of objective (1) under the distribution Pr(hi|xi,yi;wt).
4: Update wt+1 by maximizing the expectation of objective (1). Specifically,

wt+1 = argmaxw

∑

i Pr(hi|xi,yi;wt) log Pr(xi,yi,hi;w).
5: t← t + 1.
6: until Objective function cannot be increased above tolerance ǫ.

the form fw(x) = argmaxy∈Y,h∈H w⊤Φ(x,y,h). Here, Φ(x,y,h) is the joint feature vector. For
instance, in our ‘car’ model learning example, the joint feature vector can be modeled as the HOG [7]
descriptor extracted using pixels in the bounding box h.

The parameters w are learned by solving the following optimization problem:

min
w,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi,

s.t. max
hi∈H

w⊤
(

Φ(xi,yi,hi)− Φ(xi, ŷi, ĥi)
)

≥ ∆(yi, ŷi)− ξi,

∀ŷi ∈ Y , ∀ĥi ∈ H, i = 1, · · · , n. (2)

For any given w, the value of ξi can be shown to be an upper bound on the risk ∆(yi, ŷi(w)) (where

ŷi(w) is the predicted output given w). The risk function can also depend on ĥi(w); that is, it can

be of the form ∆(yi, ŷi(w), ĥi(w)). We refer the reader to [23] for more details.

Problem (2) can be viewed as minimizing the sum of a convex and a concave function. This obser-
vation leads to a concave-convex procedure (CCCP) [24] outlined in Algorithm 2, which has been
shown to converge to a local minimum or saddle point solution [19]. The algorithm has two main
steps: (i) imputing the hidden variables (step 3), which corresponds to approximating the concave
function by a linear upper bound; and (ii) updating the value of the parameter using the values of
the hidden variables. Note that updating the parameters requires us to solve a convex SSVM learning
problem (where the output yi is now concatenated with the hidden variable h∗

i) for which several
efficient algorithms exist in the literature [14, 20, 22].

Algorithm 2 The CCCP algorithm for parameter estimation of latent SSVM.

input D = {(x1,y1), · · · , (xn,yn)}, w0, ǫ.
1: t← 0
2: repeat
3: Update h∗

i = argmaxhi∈H w⊤
t Φ(xi,yi,hi).

4: Update wt+1 by fixing the hidden variables for output yi to h∗
i and solving the corresponding

SSVM problem. Specifically,

wt+1 = argminw
1
2 ||w||

2 + C
n

∑

i max{0, ∆(yi, ŷi)+w⊤(Φ(xi, ŷi, ĥi)−Φ(xi,yi,h
∗
i))}.

5: t← t + 1.
6: until Objective function cannot be decreased below tolerance ǫ.

4 Self-Paced Learning for Latent Variable Models
Our self-paced learning strategy alleviates the main difficulty of curriculum learning, namely the
lack of a readily computable measure of the easiness of a sample. In the context of a latent variable
model, for a given parameter w, this easiness can be defined in two ways: (i) a sample is easy if
we are confident about the value of a hidden variable; or (ii) a sample is easy if it is easy to predict
its true output. The two definitions are somewhat related: if we are more certain about the hidden
variable, we may be more certain about the prediction. They are different in that certainty does not
imply correctness, and the hidden variables may not be directly relevant to what makes the output of
a sample easy to predict. We therefore focus on the second definition: easy samples are ones whose
correct output can be predicted easily (its likelihood is high, or it lies far from the margin).

3

In the above argument, we have assumed a given w. However, in order to operationalize self-
paced learning, we need a strategy for simultaneously selecting the easy samples and learning the
parameter w at each iteration. To this end, we note that the parameter update involves optimizing an
objective function that depends on w (for example, see step 4 of both Algorithms 1 and 2). That is,

wt+1 = argmin
w∈Rd

(

r(w) +

n
∑

i=1

f(xi,yi;w)

)

, (3)

where r(.) is a regularization function and f(.) is the negative log-likelihood for EM or an upper
bound on the risk for latent SSVM (or any other criteria for parameter learning). We now modify the
above optimization problem by introducing binary variables vi that indicate whether the ith sample
is easy or not. Only easy samples contribute to the objective function. Formally, at each iteration we
solve the following mixed-integer program:

(wt+1,vt+1) = argmin
w∈Rd,v∈{0,1}n

(

r(w) +

n
∑

i=1

vif(xi,yi;w)−
1

K

n
∑

i=1

vi

)

. (4)

K is a weight that determines the number of samples to be considered: if K is large, the problem
prefers to consider only “easy” samples with a small value of f(.) (high likelihood, or far from the
margin). Importantly, however, the samples are tied together in the objective through the parameter
w. Therefore, no sample is considered independently easy; rather, a set of samples is easy if a w
can be fit to it such that the corresponding values of f(.) are small. We iteratively decrease the value
of K in order to estimate the parameters of a latent variable model via self-paced learning. As K
approaches 0, more samples are included until problem (4) reduces to problem (3). We thus begin
with only a few easy examples, gradually introducing more until the entire training dataset is used.

To optimize problem (4), we note that it can be relaxed such that each variable vi is allowed to take
any value in the interval [0, 1]. This relaxation is tight; that is, for any value of w an optimum value
of vi is either 0 or 1 for all samples. If f(xi,yi;w) < 1/K then vi = 1 yields the optimal objective
function value. Similarly, if f(xi,yi;w) > 1/K then the objective is optimal when vi = 0.

Relaxing problem (4) allows us to identify special cases where the optimum parameter update can be
found efficiently. One such special case is when r(.) and f(.) are convex in w, as in the latent SSVM

parameter update. In this case, the relaxation of problem (4) is a biconvex optimization problem.
Recall that a biconvex problem is one where the variables z can be divided into two sets z1 and z2

such that for a fixed value of each set, the optimal value of the other set can be obtained by solving a
convex optimization problem. In our case, the two sets of variables are w and v. Biconvex problems
have a vast literature, with both global [11] and local [2] optimization techniques. In this work, we
use alternative convex search (ACS) [2], which alternatively optimizes w and v while keeping the
other set of variables fixed. We found in our experiments that ACS obtained accurate results.

Even in the general case with non-convex r(.) and/or f(.), we can use the alternative search strategy
to efficiently obtain an approximate solution for problem (4). Given parameters w, we can obtain
the optimum v as vi = δ(f(xi,yi;w) < 1/K), where δ(.) is the indicator function. For a fixed v,
problem (4) has the same form as problem (3). Thus, the optimization for self-paced learning is as
easy (or as difficult) as the original parameter learning algorithm.

Self-Paced Learning for Latent SSVM. As an illustrative example of self-paced learning, Algo-
rithm 3 outlines the overall self-paced learning method for latent SSVM, which involves solving a
modified version of problem (2). At each iteration, the weight K is reduced by a factor of µ > 1,
introducing more and more (difficult) samples from one iteration to the next. The algorithm con-
verges when it considers all samples but is unable to decrease the latent SSVM objective function
value below the tolerance ǫ. We note that self-paced learning provides the same guarantees as CCCP:
Property: Algorithm 3 converges to a local minimum or saddle point solution of problem (2).
This follows from the fact that the last iteration of Algorithm 3 is the original CCCP algorithm.

Our algorithm requires an initial parameter w0 (similar to CCCP). In our experiments, we obtained
an estimate of w0 by initially setting vi = 1 for all samples and running the original CCCP algorithm
for a fixed, small number of iterations T0. As our results indicate, this simple strategy was sufficient
to obtain an accurate set of parameters using self-paced learning.

5 Experiments
We now demonstrate the efficacy of self-paced learning in the context of latent SSVM. We show
that our approach outperforms the state of the art CCCP algorithm on four standard machine learning

4

Algorithm 3 The self-paced learning algorithm for parameter estimation of latent SSVM.

input D = {(x1,y1), · · · , (xn,yn)}, w0, K0, ǫ.
1: t← 0, K ← K0.
2: repeat
3: Update h∗

i = argmaxhi∈H w⊤
t Φ(xi,yi,hi).

4: Update wt+1 by using ACS to minimize the objective 1
2 ||w||

2 + C
n

∑n

i=1 viξi −
1
K

∑n

i=1 vi

subject to the constraints of problem (2) as well as v ∈ {0, 1}n.
5: t← t + 1, K ← K/µ.
6: until vi = 1, ∀i and the objective function cannot be decreased below tolerance ǫ.

(a) (b) (c)
Figure 1: Results for the noun phrase coreference experiment. Top: MITRE score. Bottom: Pairwise score. (a)
The relative objective value computed as (objcccp−objspl)/objcccp, where objcccp and objspl are the objective
values of CCCP and self-paced learning respectively. A green circle indicates a significant improvement (greater
than tolerance Cǫ), while a red circle indicates a significant decline. The black dashed line demarcates equal
objective values. (b) Loss over the training data. Minimum MITRE loss: 14.48 and 14.02 for CCCP and self-
paced learning respectively; Minimum pairwise loss: 31.10 and 31.03. (c) Loss over the test data. Minimum
MITRE loss: 15.38 and 14.91; Minimum pairwise loss: 34.10 and 33.93.

applications. In all our experiments, the initial weight K0 is set such that the first iteration selects
more than half the samples (as there are typically more easy samples than difficult ones). The
weight is reduced by a factor µ = 1.3 at each iteration and the parameters are initialized using
T0 = 2 iterations of the original CCCP algorithm.

5.1 Noun Phrase Coreference

Problem Formulation. Given the occurrence of all the nouns in a document, the goal of noun
phrase coreference is to provide a clustering of the nouns such that each cluster refers to a single
object. This task was formulated within the SSVM framework in [10] and extended to include latent
variables in [23]. Formally, the input vector x consists of the pairwise features xij suggested in [16]
between all pairs of noun phrases i and j in the document. The output y represents a clustering
of the nouns. A hidden variable h specifies a forest over the nouns such that each tree in the forest
consists of all the nouns of one cluster. Imputing the hidden variables involves finding the maximum
spanning forest (which can be solved by Kruskal or Prims algorithm). Similar to [23], we employ
two different loss functions, corresponding to the pairwise and MITRE scores.

Dataset. We use the publicly available MUC6 noun phrase coreference dataset, which consists of
60 documents. We use the same split of 30 training and 30 test documents as [23].

Results. We tested CCCP and our self-paced learning method on different values of C; the average
training times over all 40 experiments (20 different values of C and two different loss functions)
for the two methods were 1183 and 1080 seconds respectively. Fig. 1 compares the two methods in
terms of the value of the objective function (which is the main focus of this work), the loss over the
training data and the loss over the test data. Note that self-paced learning significantly improves the
objective function value in 11 of the 40 experiments (compared to only once when CCCP outperforms
self-paced learning; see Fig. 1(a)). It also provides a better training and testing loss for both MITRE

and pairwise scores when using the optimal value of C (see Fig. 1(b)-(c)).

5.2 Motif Finding

Problem Formulation. We consider the problem of binary classification of DNA sequences, which
was cast as a latent SSVM in [23]. Specifically, the input vector x consists of a DNA sequence of
length l (where each element of the sequence is a nucleotide of type A, G, T or C) and the output
space Y = {+1,−1}. In our experiments, the classes correspond to two different types of genes:

5

those that bind to a protein of interest with high affinity and those that do not. The positive sequences
are assumed to contain particular patterns, called motifs, of length m that are believed to be useful
for classification. However, the starting position of the motif within a gene sequence is often not
known. Hence, this position is treated as the hidden variable h. For this problem, we use the joint
feature vector suggested by [23]. Here, imputing the hidden variables simply involves a search for
the starting position of the motif. The loss function ∆ is the standard 0-1 classification loss.

Dataset. We use the publicly available UniProbe dataset [4] that provides positive and negative
DNA sequences for 177 proteins. For this work, we chose five proteins at random. The total number
of sequences per protein is roughly 40, 000. For all the sequences, the motif length m is known
(provided with the UniProbe dataset) and the background Markov model is assumed to be of order
k = 3. In order to specify a classification task for a particular protein, we randomly split the
sequences into roughly 50% for training and 50% for testing.

(a) Objective function value

CCCP 92.77 ± 0.99 106.50 ± 0.38 94.00 ± 0.53 116.63 ± 18.78 75.51 ± 1.97
SPL 92.37 ± 0.65 106.60 ± 0.30 93.51 ± 0.29 107.18 ± 1.48 74.23 ± 0.59

(b) Training error (%)

CCCP 27.10 ± 0.44 32.03 ± 0.31 26.90 ± 0.28 34.89 ± 8.53 20.09 ± 0.81
SPL 26.94 ± 0.26 32.04 ± 0.23 26.81 ± 0.19 30.31 ± 1.14 19.52 ± 0.34

(c) Test error (%)
CCCP 27.10 ± 0.36 32.15 ± 0.31 27.10 ± 0.37 35.42 ± 8.19 20.25 ± 0.65
SPL 27.08 ± 0.38 32.24 ± 0.25 27.03 ± 0.13 30.84 ± 1.38 19.65 ± 0.39

Table 1: Mean and standard deviations for the motif finding experiments using the original CCCP algorithm
(top row) and the proposed self-paced learning approach (bottom row). The better mean value is highlighted in
bold. Note that self-paced learning provides an improved objective value (the primary concern of this work) for
all proteins. The improvement in objective value also translates to an improvement in training and test errors.

Results. We used five different folds for each protein, randomly initializing the motif positions for
all training samples using four different seed values (fixed for both methods). We report results for
each method using the best seed (chosen according to the value of the objective function). For all
experiments we use C = 150 and ǫ = 0.001 (the large size of the dataset made cross-validation
highly time consuming). The average time over all 100 runs for CCCP and self-paced learning are
824 and 1287 seconds respectively. Although our approach is slower than CCCP for this application,
as table 1 shows, it learns a better set of parameters. While improvements for most folds are small,
for the fourth protein, CCCP gets stuck in a bad local minimum despite using multiple random
initializations (this is indicated by the large mean and standard deviation values). This behavior is to
be expected: in many cases, the objective function landscape is such that CCCP avoids local optima;
but in some cases, CCCP gets stuck in poor local optimum. Indeed, over all the 100 runs (5 proteins,
5 folds and 4 seed values) CCCP got stuck in a bad local minimum 18 times (where a bad local
minimum is one that gave 50% test error) compared to 1 run where self-paced learning got stuck.

Fig. 2 shows the average Hamming distance between the motifs of the selected samples at each it-
eration of the self-paced learning algorithm. Note that initially the algorithm selects samples whose
motifs have a low Hamming distance (which intuitively correspond to the easy samples for this ap-
plication). It then gradually introduces more difficult samples (as indicated by the rise in the average
Hamming distance). Finally, it considers all samples and attempts to find the most discriminative
motif across the entire dataset. Note that the motifs found over the entire dataset using self-paced
learning provide a smaller average Hamming distance than those found using the original CCCP

algorithm, indicating a greater coherence for the resulting output.

5.3 Handwritten Digit Recognition

Problem Formulation. Handwritten digit recognition is a special case of multi-label classifica-
tion, and hence can be formulated within the SSVM framework. Specifically, given an input vector
x, which consists of m grayscale values that represent an image of a handwritten digit, our aim is
to predict the digit. In other words, Y = {0, 1, · · · , 9}. It is well-known that the accuracy of digit
recognition can be greatly improved by explicitly modeling the deformations present in each image,
for example see [18]. For simplicity, we assume that the deformations are restricted to an arbitrary
rotation of the image, where the angle of rotation is not known beforehand. This angle (which takes
a value from a finite discrete set) is modeled as the hidden variable h. We specify the joint feature
vector as Φ(x,y,h) = (0y(m+1); θh(x) 1;0(9−y)(m+1)), where θh(x) is the vector representation

6

Figure 2: Average Hamming distance between the motifs found in all selected samples at each iteration. Our
approach starts with easy samples (small Hamming distance) and gradually introduces more difficult samples
(large Hamming distance) until it starts to consider all samples of the training set. The figure shows results
for three different protein-fold pairs. The average Hamming distance (over all proteins and folds) of the motifs
obtained at convergence are 0.6155 for CCCP and 0.6099 for self-paced learning.

Figure 3: Four digit pairs from MNIST: 1-7, 2-7, 3-8, 8-9. Relative objective is computed as in Fig. 1. Positive
values indicate superior results for self-paced learning. The dotted black lines delineate where the difference
is greater than the convergence criteria range (Cǫ); differences outside this range are highlighted in blue.

of the image x rotated by the angle corresponding to h. In other words, the joint feature vector is
the rotated image of the digit which is padded in the front and back with the appropriate number of
zeroes. Imputing the hidden variables simply involves a search over a discrete set of angles. Similar
to the motif finding experiment, we use the standard 0-1 classification loss.

Dataset. We use the standard MNIST dataset [15], which represents each handwritten digit as a
vector of length 784 (that is, an image of size 28 × 28). For efficiency, we use PCA to reduce the
dimensionality of each sample to 10. We perform binary classification on four difficult digit pairs
(1-7, 2-7, 3-8, and 8-9), as in [25]. The training standard dataset size for each digit ranges from
5, 851 to 6, 742, and the test sets range from 974 to 1, 135 digits. The rotation modeled by the
hidden variable can take one of 11 discrete values, evenly spaced between −60 and 60 degrees.

Results. For each digit pair, we use C values ranging from 25 to 300, set ǫ = 0.001, and set

K = 104

C
. Modeling rotation as a hidden variable significantly improves classification performance,

allowing the images to be better aligned with each other. Across all experiments for both learning
methods, using hidden variables achieves better test error; the improvement over using no hidden
variables is 12%, 8%, 11%, and 22%, respectively, for the four digit pairs. CCCP learning took an
average of 18 minutes across all runs, while self-paced learning took an average of 53 minutes.

The above figure compares the training and test errors and objective values between CCCP and self-
paced learning. Self-paced learning achieves significantly better values in 15 runs, and is worse in 4
runs, demonstrating that it helps find better solutions to the optimization problems. Though training
and test errors do not necessarily correlate to objective values, the best test error across C values is
better for self-paced learning for one of the digit pairs (1-7), and is the same for the others.

5.4 Object Localization

Problem Formulation. Given a set of images along with labels that indicate the presence of a
particular object category in the image (for example, a mammal), our goal is to learn discriminative
object models for all object categories (that is, models that can distinguish between one object, say
bison, from another, say elephant). In practice, although it is easy to mine such images from free
photo-sharing websites such as Flickr, it is burdensome to obtain ground truth annotations of the
exact location of the object in each image. To avoid requiring these human annotations, we model
the location of objects as hidden variables. Formally, for a given image x, category y and location h,
the score is modelled as wT Φ(x,y,h) = wT

y Φh(x), where wy are the parameters that corresponds

to the class y and Φh(·) is the HOG [7, 9] feature extracted from the image at position h (the size of
the object is assumed to be the same for all images — a reasonable assumption for our datasets). For

7

Figure 4: The top row shows the imputed bounding boxes of an easy and a hard image using the CCCP

algorithm over increasing iterations (left to right). Note that for the hard (deer) image, the bounding box
obtained at convergence does not localize the object accurately. In contrast, the self-paced learning approach
(bottom row) does not use the hard image during initial iterations (indicated by the red color of the bounding
box). In subsequent iterations, it is able to impute accurate bounding boxes for both the easy and hard image.

the above problem, imputing the hidden variables involves a simple search over possible locations
in a given image. The loss function ∆(y, ŷ) is again the standard 0-1 classification loss.

Dataset. We use images of 6 different mammals (approximately 45 images per mammal) that
have been previously employed for object localization [13]. We split the images of each category
into approximately 90% for training and 10% for testing.

Results. We use five different folds to compare our method with the state of the art CCCP algo-
rithm. For each fold, we randomly initialized the location of the object in each image (the initializa-
tion was the same for the two methods). We used a value of C = 10 and ǫ = 0.001. The average
training time over all folds were 362 seconds and 482 seconds for CCCP and self-paced learning
respectively. Table 2 shows the mean and standard deviation of three terms: the objective value,
the training loss and the testing loss. Self-paced learning provided a significantly lower (more than
tolerance) objective value than CCCP for all folds. The better objective value resulted in a substantial
improvement in the training (for 4 folds) and testing loss (an improvement of approximately 4% for
achieved for 2 folds). In these experiments, CCCP never outperformed self-paced learning for any of
the three measures of performance.

Objective Train Loss (%) Test Loss (%)
4.70 ± 0.11 0.33 ± 0.18 16.92 ± 5.16

Objective Train Loss (%) Test Loss (%)
4.53 ± 0.15 0.0 ± 0.0 15.38 ± 3.85

Table 2: Results for the object localization experiment. Left: CCCP. Right: Self-paced learning. Note that
self-paced learning provides better results for all measures of performance.

Fig. 4 shows the imputed bounding boxes for two images during various iterations of the two algo-
rithms. The proposed self-paced learning algorithm does not use the hard image during the initial
iterations (as indicated by the red bounding box). In contrast, CCCP considers all images at each
iteration. Note that self-paced learning provides a more accurate bounding box for the hard im-
age at convergence, thereby illustrating the importance of learning in a meaningful order. In our
experience, this was a typical behavior of the two algorithms.

6 Discussion
We proposed the self-paced learning regime in the context of parameter estimation for latent variable
models. Our method works by iteratively solving a biconvex optimization problem that simultane-
ously selects easy samples and updates the parameters. Using four standard datasets from disparate
domains (natural language processing, computational biology and computer vision) we showed that
our method outperforms the state of the art approach.

In the current work, we solve the biconvex optimization problem using an alternate convex search
strategy, which only provides us with a local minimum solution. Although our results indicate that
such a strategy is more accurate than the state of the art, it is worth noting that the biconvex problem
can also be solved using a global optimization procedure, for example the one described in [11].
This is a valuable direction for future work. We are also currently investigating the benefits of self-
paced learning on other computer vision applications, where the ability to handle large and rapidly
growing weakly supervised data is fundamental to the success of the field.

Acknowledgements. This work is supported by NSF under grant IIS 0917151, MURI contract
N000140710747, and the Boeing company.

8

References

[1] E. Allgower and K. Georg. Numerical continuation methods: An introduction. Springer-
Verlag, 1990.

[2] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Programming - Theory and Algorithms. John
Wiley and Sons, Inc., 1993.

[3] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.

[4] M. Berger, G. Badis, A. Gehrke, and S. Talukder et al. Variation in homeodomain DNA binding
revealed by high-resolution analysis of sequence preferences. Cell, 27, 2008.

[5] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT,
98.

[6] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with statistical models. JAIR, 4:129–
145, 1996.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of Royal Statistical Society, 39(1):1–38, 1977.

[9] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale,
deformable part model. In CVPR, 2008.

[10] T. Finley and T. Joachims. Supervised clustering with support vector machines. In ICML,
2005.

[11] C. Floudas and V. Visweswaran. Primal-relaxed dual global optimization approach. Journal
of Optimization Theory and Applications, 78(2):187–225, 1993.

[12] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman and Hall,
1995.

[13] G. Heitz, G. Elidan, B. Packer, and D. Koller. Shape-based object localization for descriptive
classification. IJCV, 2009.

[14] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training for structural SVMs. Machine
Learning, 77(1):27–59, 2009.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[16] V. Ng and C. Cardie. Improving machine learning approaches to coreference resolution. In
ACL, 2002.

[17] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In CIKM,
2000.

[18] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent Prop - a formalism for specifying
selected invariances in adaptive network. In NIPS, 1991.

[19] B. Sriperumbudur and G. Lanckriet. On the convergence of concave-convex procedure. In
NIPS Workshop on Optimization for Machine Learning, 2009.

[20] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

[21] S. Tong and D. Koller. Support vector machine active learning with applications to text classi-
fication. JMLR, 2:45–66, 2001.

[22] I. Tsochantaridis, T. Hofmann, Y. Altun, and T. Joachims. Support vector machine learning for
interdependent and structured output spaces. In ICML, 2004.

[23] C.-N. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009.

[24] A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15, 2003.

[25] K. Zhang, I. Tsang, and J. Kwok. Maximum margin clustering made practical. In ICML, 2007.

9

