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Abstract

In this paper we consider the problem of learning ann × n kernel matrix from
m(≥ 1) similarity matrices under general convex loss. Past research have exten-
sively studied them = 1 case and have derived several algorithms which require
sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not
apply if one uses arbitrary losses and often can not handlem > 1 case. We
present several provably convergent iterative algorithms, where each iteration re-
quires either an SVM or a Multiple Kernel Learning (MKL) solver form > 1
case. One of the major contributions of the paper is to extendthe well known Mir-
ror Descent(MD) framework to handle Cartesian product of psd matrices. This
novel extension leads to an algorithm, called EMKL, which solves the problem in
O(m

2 log n
ǫ2

) iterations; in each iteration one solves an MKL involvingm kernels
andm eigen-decomposition ofn × n matrices. By suitably defining a restriction
on the objective function, a faster version of EMKL is proposed, called REKL,
which avoids the eigen-decomposition. An alternative to both EMKL and REKL
is also suggested which requires only an SVM solver. Experimental results on real
world protein data set involving several similarity matrices illustrate the efficacy
of the proposed algorithms.

1 Introduction

Learning procedures based on positive semidefinite (psd) kernel functions, like Support vector ma-
chines (SVMs), have emerged as powerful tools for several learning tasks with wide applicability
[13]. In many applications it is relatively straightforward to define measures of similarity between
any pair of examples but extremely difficult to design a kernel function for accurate classification.
For instance, similarity score between two protein sequences given by various measures like BLAST
[1], Smith-Waterman [14], etc are not psd, whence cannot be substituted as kernel. In this paper, we
consider the problem of learning an optimal kernel matrix, from multiple similarity matrices, that
yields accurate classification.

Let the set ofn × n real symmetric matrices be denoted asSn and the set of psd matrices asSn+.
Consider a binary classification problem withn training examples. Lety ∈ {+1 ,−1}n be the
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vector of class labels andK ∈ Sn+ be a kernel matrix. The SVM formulation [13] computes a
performance measureω(K) by solving

ω(K) = max
α∈A

[

α⊤1− 0.5α⊤Y KYα
]

, (1)

whereA = {α ∈ Rn | α⊤y = 0, 0 ≤ α ≤ C1}, Y = diag(y), 1 = [ 1 . . . 1 ]⊤ ∈ Rn andC user
defined positive constant.

1.1 Background and Related work

To the best of our knowledge the problem of handling multiplesimilarity matrices and arbitrary
convex losses has not been studied before. Existing literature has focussed on only one similarity
matrix and specific choices of loss function. In this sectionwe briefly review the related literature.

The problem was first studied in [8] for a single similarity matrix. They introduced the following
optimization problem

min
K∈Sn

+

ω(K) + ρ ‖K − S‖2F , (2)

whereS ∈ Sn, is a similarity matrix, whose(i, j)-th elementS(i, j) represents the similarity be-
tween example pairi, j andω(K) is defined in (1). By interchanging the maximization overα and
minimization overK the authors note that the inner minimization admits a closedform solution:

K∗ =
(

S + (4ρ)−1(Yα)(Yα)⊤
)

+
, (3)

where(X)+ denotes the psd matrix obtained by clipping the negative eigen values ofX to zero, i.e.,
if X =

∑n

i=1 λiviv
⊤
i is the eigen decomposition ofX ∈ Sn then(X)+ =

∑n

i=1 max(λi, 0)viv
⊤
i .

After plugging in the value ofK∗ authors suggest using sophisticated techniques like Analytic center
cutting plane (ACCP) method to solve the outer maximizationin α.

The formulation (2) was studied further in [5] where an iterative algorithm based on solving a
quadratically constrained linear program (QCLP) was proposed. In both the above approaches the
order of maximization and minimization has been interchanged which lead to optimization problems
that can be posed as semi-infinite quadratically constrained linear Programs (SIQCLP) [5]. In [6] an
alternate loss function‖K − S‖F was studied which led to a Second Order Cone Program(SOCP)
formulation. The choice of‖K−S‖2F , as a measure of loss, is arbitrary. In this paper we generalize
the setting in (2) by providing an algorithm which works for any convex loss function. We note that
the method used in solving (2) utilizing (3) is specific to theloss function‖K − S‖2F and do not
apply generally. Apart from non-applicability of the existing methods to other loss functions it is
not clear how these procedures could be used to handle multiple similarity matrices.

Contributions: The key contribution of the paper is to design efficient procedures which can learn
a kernel matrix,K ∈ Sn+, fromm(≥ 1) similarity matrices, possibly indefinite, under general con-
vex sub-differentiable loss function by using either SVM orMKL solvers. We study the problem in
two different settings. In the first setting we consider learning a single kernel matrix from multiple
similarity matrices under a general loss function. A novel algorithm, referred in the paper as ESKL,
based on the Mirror Descent (MD) [3] procedure is proposed. It is a provably convergent algorithm
which requiresO( log n

ǫ2
) calls to an SVM solver. In the second setting we consider learning separate

kernel matrix for each of the given similarity matrices and then aggregating them using a Multiple
Kernel Learning (MKL) setup. The resultant formulation is non-trivial to solve. We present EMKL
which is based on generalizing the existing MD setup to deal with Cartesian product of psd matri-
ces. Like the previous case it requiresO(m

2 logn
ǫ2

) calls to an MKL solver. At every iteration the
algorithm also requires eigen-decomposition which is expensive. We present a related algorithm,
REKL, which does not require the expensive eigen-decomposition step but yields similar classifica-
tion performance as EMKL. Apart from allowing general loss functions the procedures also opens
up new avenues for learning multiple kernels, which could beviable alternatives to the framework
proposed in [7].

The remainder of the paper is organized as follows: in section 2 we discuss problem formulation.
Our main contribution is in section 3, where we develop mirror descent algorithms for learning
kernel from multiple indefinite similarity matrices. We also analyze the complexity and convergence
properties of the proposed algorithms. Finally we present our experimental results in section 4.
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2 Problem formulation

Given multiple similarity matrices{Si : i = 1, . . . ,m} we consider the following formulation

min
K∈Sn

+
, tr(K)=τ

f(K) ≡
[

ω(K) + ρ

m
∑

i=1

Li (K − Si)
]

, (4)

whereρ ≥ 0 is a trade-off parameter,Li : Sn → R is a convex sub-differentiable loss function
operating onK andSi. We impose the trace constraint onK to ensure good generalization as in [7].

A more naturally suited formulation for handling multiple similarity matrices is to consider learning
individual kernel matrixKi from similarity matrixSi , ∀i and invoke a Multiple Kernel Learning
(MKL) setup to obtain a kernel matrixK ∈ K ,

{
∑

i βiKi | Ki ∈ Sn+, βi ≥ 0, ∀i
}

. In [7] the
MKL problem is proposed as

Ω(K1, . . . , Km) = min
K∈K, tr(K)=τ

ω(K) , (5)

where the kernelsKi’s are fixed andβi’s are variable. Based on MKL we consider the following
kernel learning formulation

min
K1, ...,Km

F (K1, . . . ,Km) ≡
[

Ω(K1, . . . , Km) + ρ

m
∑

i=1

Li(Ki − Si)
]

,

s.t. Ki ∈ Sn+ , tr(Ki) = τ , i = 1, . . . , m.

(6)

Note thatΩ(K1, . . . , Km) can be obtained by solving any standard MKL formulation.

The restriction of Ω(K1, . . . ,Km) on the Cartesian product of sets
⊗m

i=1{Ki =
∑

j µij vij v
⊤
ij | µij ≥ 0, vij is j-th eigen vector ofSi }, yields a very interesting alternative to

(6). Based on this restriction we formulate the restricted kernel learning problem as

min
µ

1
, ...,µ

m
∈Rn

g(µ1, . . . , µm) ≡
[

Ω(K1, . . . Km) + ρ

m
∑

i=1

ℓi(µi,λi)
]

,

s.t. Ki =
∑

j µij vij v
⊤
ij , Ki ∈ Sn+ ,

∑m

j=1 µij = τ , i = 1, . . . , m,

(7)

whereλi = [λi1 . . . λin]
⊤ denotes the eigen values ofSi andℓi : Rn × Rn → R is a convex loss

function onµi = [µi1 . . . µin]
⊤.

We mention that the formulation (4) generalizes the existing single similarity matrix based formula-
tions. Form = 1 with L(X) = ‖X‖2F , L(X) = ‖X‖F we recover the formulations in [8] and [6]
respectively (albeit with a trace constraint). Also the SOCP based spectrum modification learning
formulation [6] proposed in the context of single similarity matrix (m = 1) is a special case of (7).

3 Kernel Learning using Mirror Descent

In this section we derive general methods for solving (4) and(6) based on the following assumptions:
loss functionLi is convex; a sub-gradientL′

i can be computed efficiently and the computed sub-
gradients are bounded. We also assume the availability of anefficient SVM / MKL solver.

3.1 Entropic single kernel learning (ESKL) algorithm

We denote the feasible set of kernels asK = {K ∈ Sn+ | tr(K) = τ} and its relative interior as
int(K) = {K ∈ Sn | tr(K) = τ, K is positive definite}. Note thatK is convex and compact.
Define inner-product onSn as〈K,K ′〉 = tr(KK ′). From Eqn. (1) we note thatω(K) is a convex
function ofK. Therefore the objective functionf in (4) is convex and Lipschitz continuous onK.
Letα∗ denote a maximizer of the SVM dual (1). Then we can compute a sub-gradient off as

f ′(K) = −0.5 Y α∗ α∗⊤ Y + ρ
∑m

i=1 L
′
i (K − Si) . (8)

Thus the convex programming problem (4) satisfies the conditions for applying Mirror Descent
(MD) [2] scheme. To apply MD procedure we require a strongly convex and continuously differen-
tiable functionψ : K → R. Following [2] we choose negative of matrix entropy as the candidate for
ψ:

ψ(K) =
∑n

j=1 λj logλj , (9)
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where(λ1, . . . , λn) are the eigen values ofK ∈ K. With the above setup we derive an MD
algorithm, named entropic single kernel learning (ESKL) algorithm, similar to the entropic mirror
descent algorithm proposed in [2].

Algorithm 1 Entropic single kernel learning (ESKL) algorithm

Initialization:K(1) ∈ int(K). Sett = 0.
repeat

• t := t+ 1.
• Obtainα∗ i.e. a maximizer of the SVM dual problem (1) for kernelK = K(t).
• Compute sub-gradientf ′(K(t)) := −0.5 Yα∗α∗⊤Y + ρ

∑

j L
′
i(K

(t) − Si).
• Choose suitable step-sizeηt.
• Compute eigen decompositionf ′(K(t)) = V (t) diag([d

(t)
1 . . . d

(t)
n ]) V (t)⊤.

• λ(t+1)
j :=

τ λ
(t)
j exp(−ηt d

(t)
j )

∑n

l=1 λ
(t)
l exp(−ηt d

(t)
l )

, ∀j = 1, . . . , n.

• K(t+1) := V (t) diag
( [

λ
(t+1)
1 . . . λ

(t+1)
n

] )

V (t)⊤.

until Convergence

Proposition 3.1. Let f (t) denote the objective function value at t-th iteration and f∗ be the optimal
objective value. If the ESKL algorithm is initialized with K(1) = τ

n
I and the step-sizes are chosen

as ηt =
1

Lip(f)

√

2 logn

t
then min

1≤t≤T
f (t) − f∗ ≤ τ Lip(f)

√

2 logn

T
, where Lip(f) is a

Lipschitz constant of f such that ‖ f ′(K(t)) ‖F ≤ Lip(F ) , t = 1, . . . , T .

Proof. The strong convexity constant ofψ w.r.t. ‖ · ‖F norm isσ = 1
τ

. LetBψ denote the Bregman
distance function [2] generated byψ. Then we haveBψ(K,K(1)) ≤ τ logn , ∀K ∈ K (assuming
n ≥ 3). We complete the proof by applying Theorem 4.2 of [2] to the ESKL algorithm.

3.2 Entropic multiple kernel learning (EMKL) algorithm

Consider the kernel learning formulation (6) which minimizes the distances of kernels{Ki : i =
1, . . . ,m} from the corresponding similarity matrices{Si : i = 1, . . . ,m} and simultaneously
learns an SVM classifier by performing multiple kernel learning (MKL) on those kernels. To learn
a non-sparse combination of kernels the following MKL formulation has been proposed in [10]:

Ω(K1, . . . ,Km) ≡ max
γ∈△m

max
α∈A

[

α⊤1−
1

2
α⊤Y

(

m
∑

i=1

1

γi
Ki

)

Yα
]

, (10)

where△m =
{

γ = [γ1 . . . γm]⊤ :
∑

i γi ≤ 1, γi ≥ 0, ∀i
}

. With Ω(K1, . . . ,Km) as defined
above, the objective functionF in (6) can be expressed as

F (K1, . . . ,Km) = max
γ∈△m

max
α∈A

∑

i

Fi(Ki ; α,γ) ,

Fi(Ki ; α,γ) = 1
m
1⊤α− 1

2γi
tr
(

KiYαα⊤Y
)

+ ρ Li(Ki − Si) , i = 1, . . . ,m.
(11)

Let V :=
⊗m

i=1 S
n, K = {K ∈ Sn+ : tr(K) = τ} andKm :=

⊗m

i=1 K ⊂ V. Denote
K = (K1, . . . ,Km) ∈ Km. Define inner product onV as〈K,K′〉V :=

∑m

i=1〈Ki,K
′
i〉, where

〈Ki,K
′
i〉 = tr(KiK

′
i). Also define a norm onV as‖K‖ =

∑m

i=1 ‖Ki‖F . From (10) we note
thatΩ(K1, . . . ,Km) is a convex function of(K1, . . . ,Km) over the compact spaceKm. Thus the
objective functionF in (6) is convex and Lipschitz continuous onKm.

Lemma 3.1. Let (α∗,γ∗) be a solution of (10)and L′
i be a sub-gradient of Li. Then a sub-gradient

of F is given by

F ′(K1, . . . ,Km) =
(

∂K1
F1(K1;α

∗,γ∗) · · · ∂Km
Fm(Km;α

∗,γ∗)
)

,

∂Ki
Fi(Ki;α

∗,γ∗) = −
1

2 γ∗i
Yα∗ α∗⊤Y + L′

i(Ki − Si) , i = 1, . . . ,m.
(12)
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Proof. First, we observe thatFi(Ki;α,γ) is a convex function ofKi ∈ K and the expression of
∂Ki

Fi(Ki;α,γ) given in Eqn. (12) is precisely a sub-gradient ofFi. Therefore, we can write

Fi(K
′
i;α,γ) ≥ Fi(Ki;α,γ) + 〈K ′

i −Ki , ∂Ki
Fi(Ki;α,γ) 〉 , ∀K ′

i ∈ K. (13)

By optimality of (α∗,γ∗) we haveF (K1, . . . ,Km) =
∑m

i=1 Fi(Ki;α
∗,γ∗). Because of the

max operation overα,γ, we haveF (K ′
1, . . . ,K

′
m) ≥

∑m

i=1 Fi(K
′
i;α

∗,γ∗) for any K′ =
(K ′

1, . . . ,K
′
m) ∈ Km. Applying (13) we arrive at

F (K ′
1, . . . ,K

′
m) ≥ F (K1, . . . ,Km) +

〈

K′ −K , F ′(K1, . . . , Km)
〉

V

,

Hence,F ′(K1, . . . ,Km) given in (12) is a sub-gradient ofF .

We develop a novel Mirror Descent procedure for problem (6) by defining a strongly convex and
continuously differentiable functionΨ on the product spaceKm as

Ψ(K) =
∑m

i=1

∑n

j=1 λi,j log λi,j , K ∈ Km, (14)

where(λi,1 , . . . , λi,n) denote eigen values ofKi. The resulting algorithm, named entropic multiple
kernel learning (EMKL), is given below.

Algorithm 2 Entropic multiple kernel learning (EMKL) algorithm

Initialization:K(1)
i ∈ int(K), i = 1, . . . ,m. Sett = 0.

repeat
t := t+ 1.
Obtainα∗,γ∗ by solving the MKL problem (10) withKi = K

(t)
i , i = 1, . . . ,m.

for i = 1 to m do
• Compute sub-gradient∂Ki

Fi(K
(t)
i ;α∗,γ∗) := − 1

2 γ∗

i

Yα∗ α∗⊤Y + L′
i(K

(t)
i − Si).

• Find eigen decomposition∂Ki
Fi(K

(t)
i ;α∗,γ∗) = V

(t)
i diag([d

(t)
i,1 . . . d

(t)
i,n]) V

(t)⊤
i .

• λ(t+1)
i,j :=

τ λ
(t)
i,j exp(−ηt d

(t)
i,j )

∑n

l=1 λ
(t)
i,l exp(−ηt d

(t)
i,l )

, j = 1, . . . , n.

• K(t+1)
i := V

(t)
i diag([λ

(t+1)
i,1 . . . λ

(t+1)
i,n ]) V

(t)⊤
i .

end for
until Convergence

Theorem 3.2. Let F (t) denote the objective function value at t-th iteration and F ∗ be the optimal
objective value. If the EMKL algorithm is initialized with K(1)

i = τ
n
I , ∀ i and the step-sizes are

chosen as ηt =
1

Lip(F )

√

2 logn

m t
then min

1≤t≤T
F (t) − F ∗ ≤ τ m Lip(F )

√

2 logn

T
, where

Lip(F ) is a Lipschitz constant of F such that ‖ ∂Ki
F (K

(t)
i ;α,γ) ‖F ≤ Lip(F ) , ∀i, t.

Proof. LetK∗ = (K∗
1 , . . . , K

∗
m) be an optimal solution of (6). DenoteK(t) =

(

K
(t)
1 , . . . , K

(t)
m

)

.

We apply the convergence result presented as Theorem 4.2 in [2]. This leads to the following:

ηt =
1

Lip(F )

√

2 σ BΨ(K
∗,K(t))

t
⇒ min

1≤t≤T
F (t) − F ∗ ≤ Lip(F )

√

2BΨ(K
∗,K(t))

σ T
, (15)

whereσ > 0 is the strong convexity constant ofΨ andBΨ is the Bregman distance function gener-
ated byΨ. For theΨ function defined in Eqn. (14), we haveσ = 1

mτ
. Assumingn ≥ 3, we also

haveBΨ(K,K
(1)) ≤ mτ logn , ∀K ∈ Km. Substituting values forBΨ andσ in (15) we obtain

the desired result.
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3.3 Restricted entropic kernel learning (REKL) algorithm

The proposed EMKL algorithm is computationally expensive as it computes eign decomposition
of m matrices of dimensionn × n at every iteration. Here we propose an efficient algorithm
by considering the restricted kernel learning formulation(7) whereΩ(K1, . . . ,Km) is given in
Eqn. (10). We denote the feasible set forµi asX := {µi ∈ Rn | µij ≥ 0, ∀j,

∑n

j=1 µij = τ},
which is a convex compact subset ofRn. We note thatΩ in (10) when viewed as a function of
µi’s, is a convex function on the Cartesian product spaceXm :=

⊗m

i=1 X . The loss function
ℓi is assumed to be a convex function ofµi with bounded sub-gradients. Hence, the objective
functiong in (7) is convex and Lipschitz continuous over the compact spaceXm. Denote a sub-
gradient ofℓi as[ ∂µi1

ℓi(µi,λi) , . . . , ∂µin
ℓi(µi,λi) ]

⊤. We can compute a sub-gradient ofΩ as
Ω′ = ( ∂µ11

Ω , ∂µ12
Ω , . . . , ∂µnn

Ω ), where∂µij
Ω = − 1

2 γ∗

i

α∗⊤Y vij v
⊤
ij Yα∗. We derive an MD

algorithm, named restricted entropic kernel learning (REKL), by extending the entropic mirror de-
scent scheme [2] to deal with Cartesian product of simplices. This is achieved by defining a strongly
convex and continuously differentiable functionψe : Xm → R as

ψe(µ1, . . . , µm) =
∑m

i=1

∑n

j=1 µij logµij , µi ∈ X , ∀i. (16)

Algorithm 3 Restricted entropic kernel learning (REKL) algorithm

Find eigen decomposition:Si =
∑

j λij vij v
⊤
ij , i = 1, . . . ,m.

Initialization:µ(1)
i ∈ int(X ) , i = 1, . . . ,m. Sett = 0.

repeat
t = t+ 1
Obtainα∗,γ∗ by solving the MKL problem (10) withKi =

∑

j µ
(t)
ij vij v

⊤
ij , i = 1, . . . ,m.

for i = 1 to m do
• Compute sub-gradientg′(t)ij := − 1

2 γ∗

i

α∗⊤Y vij v
⊤
ij Yα∗ + ∂µij

ℓi(µ
(t)
i ,λi).

• µ(t+1)
ij :=

τ µ
(t)
ij exp

(

−ηt g
′(t)
ij

)

∑n

l=1 µ
(t)
il exp

(

−ηt g′
(t)
il

) , j = 1, . . . , n.

end for
until Convergence

Proposition 3.2. Let g(t) denote the objective function value at t-th iteration and g∗ be the optimal
objective value. If the REKL algorithm is initialized with µ

(1)
i = τ

n
1 , ∀ i and the step-sizes are

chosen as ηt =
1

Lip(g)

√

2 logn

m t
then min

1≤t≤T
g(t) − g∗ ≤ τ m Lip(g)

√

2 log n

T
, where Lip(g)

is a Lipschitz constant of g such that |g′(t)ij | ≤ Lip(g) , i,= 1, . . . ,m, j = 1, . . . , n, t = 1, . . . , T .

Proof. The proof is similar to that of Theorem 3.2.

3.4 Discussion

The ESKL formulation requiresO
(

logn
ǫ2

)

iterations (see Proposition 3.1), where in each iteration

one solves an SVM and eigen-decomposition ofn×nmatrix. Both EMKL and REKL formulations

requireO
(

m2 logn
ǫ2

)

iterations (see Theorem 3.2 and Proposition 3.2), and in each iteration one

solves an MKL problem. However EMKL is more computationallyexpensive than REKL.

4 Experiments and Results

In this section we experimentally compare the proposed kernel learning formulations against
IndSVM [8] and the eigen transformation methods: Denoise, Flip, Shift [15]. Given an indefinite
similarity matrixS with eigen-decompositionS =

∑

j λjvjv
⊤
j , eigen transformation methods gen-

erate kernel matrix asK :=
∑

j µjvjv
⊤
j , where choiceµj ’s are: (a)Denoise: µj = max(λj , 0),
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(b) Flip: µj = |λj |, (c) Shift: µj = λj − δ, whereδ = min{λ1, . . . , λn, 0}. We consider the fol-
lowing choices for the loss functions in ESKL / EMKL: [L1] L(K−S) =

∑

i,j |K(i, j)−S(i, j)|,
[L2] L(K − S) = ‖K − S‖F , [L3] L(K − S) =

∑

i,j |K(i, j) − S(i, j)|2. For REKL we
chooseℓ(µj ,λj) = |µj −λj‖2, i.e., the Euclidean distance. Algorithm parameters are tuned using
standard 5 fold cross validation procedure. LibSVM [4] is used as the SVM solver. For each data set
we have considered equal number of positive and negative training / test samples. We report classi-
fication performance in terms of accuracy and F-score (expressed as % ) averaged over 5 different
train / test splits.

4.1 Data sets

We experimented on 10 different data sets including the datasets covered in [16, 6]. We have
generated the indefinite similarity matrices as prescribedin [16] for each of the following data sets:
Sonar, Liver disorder, Ionosphere, Diabetes andHeart. We have used the same similarity matrices
as in [6]:1 for the data setsAmazon, AuralSonar, Yeast-SW-5-7 andYeast-SW-5-12 .

To test the proposed multiple similarity based formulations we experimented on a subset of the
SCOP database [9] taken from Protein Classification Benchmark Collection 2. Considering pro-
teins having< 40% sequence identity, we randomly select8 super-families which have at least
45 proteins. We compute 3 different pairwise similarity measure for proteins: Psi-BLAST [1],
Smith-Waterman [14] and Needleman-Wunsch [11]. The similarity matrices obtained from these 3
similarity measures are indefinite in general.

4.2 Effect of various loss functions

We experimentally demonstrate the ability of the proposed ESKL algorithm in handling general
convex loss function. Classification performance is presented in Table 1. We observe that onLiver
disorder data setL2 loss performs better thanL1, L3. Again, onDiabetes andHeart data sets
bothL1, L2 provides much better performance better thanL3. From Table 2 we observe that on
AuralSonar data set ESKL formulation works best withL3 loss function. But onYeast-SW-5-7 data
setL1 loss function works best. Therefore we can say that the choice of loss function has an effect
on classification accuracy. This suggest the need for a general algorithm which provides flexibility
to choose loss function based on the data set. Hence in this paper we have developed the algorithms
keeping the choice of loss function almost open.

Table 1: Comparison of classification accuracy (odd rows) and F-score (even rows) on UCI data sets

Dataset Eigen Transformation IndSVM ESKL
Denoise Flip Shift [8] [L1] [L2] [L3]

Sonar 71.5 72.5 76.5 76.5 75.5 73.0 75.5
70.0 70.6 75.0 74.8 73.9 71.3 74.1

Liver disorder 57.6 54.5 55.5 59.7 61.0 62.8 60.7
55.4 53.8 52.9 55.8 58.9 59.1 57.5

Ionosphere 87.3 89.6 91.2 91.5 88.5 91.2 91.5
87.6 89.9 91.4 91.8 88.5 91.4 91.8

Diabetes 63.9 58.7 64.4 70.2 73.3 73.5 69.8
65.0 58.8 65.1 71.4 74.3 74.6 71.0

Heart 73.3 63.8 75.8 76.3 78.8 78.8 76.3
73.1 65.1 76.9 76.5 79.5 79.0 76.5

4.3 Combining multiple sequence similarity matrices for Proteins

Consider the task of classifying proteins into super-families when multiple sequence similarity mea-
sures are available. We perform1 vs rest classification experiments on each of the 8 protein super-
families and report performance averaged over 5 train / testsplits. One can extend IndSVM [8]

1http://idl.ee.washington.edu/SimilarityLearning/
2http://net.icgeb.org/benchmark/
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Table 2: Comparison of classification accuracy (odd rows) and F-score (even rows) on real data sets

Dataset Eigen Transformation IndSVM ESKL
Denoise Flip Shift [8] [L1] [L2] [L3]

Amazon 83.8 83.8 85.0 87.5 88.8 85.0 88.8
84.8 84.8 85.9 86.9 88.0 84.3 88.0

AuralSonar 87.0 87.0 87.0 88.0 88.0 87.0 90.0
86.5 86.3 86.3 87.3 87.3 86.3 89.1

Yeast-SW-5-7 75.5 70.0 74.0 77.0 79.0 75.5 76.5
77.1 72.4 74.1 77.7 79.9 76.1 77.2

Yeast-SW-5-12 86.0 85.5 86.0 90.0 90.0 90.5 90.0
87.1 85.8 87.6 90.9 90.9 91.35 90.9

Table 3: Comparison of classification accuracy (odd rows) and F-score (even rows) on Proteins

Super Linear Eigen IndSVM simple MKL ESKL EMKL REKL
family SVM Denoise [8] [12] [L1] [L1] ‖ · ‖2
a.4.1 51.9 53.1 54.4 56.9 70.0 73.1 84.4

67.5 68.1 68.7 69.9 77.1 78.9 86.5
b.1.18 63.8 62.5 58.1 65.6 71.9 75.6 74.4

73.9 73.1 70.7 74.7 78.6 80.6 78.6
b.29.1 70.6 80.6 75.6 77.5 85.0 83.8 75.0

55.6 76.3 67.0 70.2 83.5 82.1 71.0
b.40.4 66.9 68.1 59.4 70.0 71.9 68.8 76.2

74.8 75.4 71.1 76.7 77.3 76.3 78.5
c.1.8 58.8 75.0 66.9 73.7 80.6 85.0 80.0

29.5 65.1 50.1 62.7 74.6 80.8 77.9
c.3.1 91.9 97.5 95.6 95.0 95.6 95.6 96.2

90.9 97.4 95.4 94.7 95.2 95.4 96.0
c.47.1 88.1 86.2 76.2 90.0 84.4 90.6 84.4

85.7 87.8 81.5 88.8 85.7 90.3 86.4
c.67.1 88.8 90.6 90.6 91.2 81.9 91.2 93.1

87.2 89.6 89.6 90.3 76.8 90.3 92.6

originally proposed to handle single similarity matrix, tomultiple similarity matrices by averaging
over the similarity matrices. We implement the linear SVM byconsidering similarities as feature
and computing a linear kernel. We also compare with a multiple kernel learning formulation, simple
MKL [12]. Denoised version of the similarity matrices are given as input to simple MKL. In Ta-
ble 3 the proposed multiple similarity based kernel learning algorithms ESKL / EMKL / REKL are
compared with the other methods mentioned above. We observesignificant performance improve-
ment in most cases. We also note that REKL is computationallycheaper than EMKL but provides
reasonably good performance.

5 Conclusion

We have proposed three formulations, (4), (6), (7) for learning kernels from multiple similarity ma-
trices. The key advantages of the proposed algorithms over the state of the art are: (i) require only
SVM / MKL solvers and does not require any other sophisticated tools; (ii) the algorithms are appli-
cable for a wide choice of loss functions and multiple similarity functions. Proposed methods can
also be seen as an alternative to Multiple Kernel learning,which will be explored in future research.
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