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Abstract

In this paper we consider the problem of learningrar n kernel matrix from
m(> 1) similarity matrices under general convex loss. Past rebdzave exten-
sively studied then = 1 case and have derived several algorithms which require
sophisticated techniques like ACCP, SOCP, etc. The egistigorithms do not
apply if one uses arbitrary losses and often can not hamdle 1 case. We
present several provably convergent iterative algorithwinere each iteration re-
quires either an SVM or a Multiple Kernel Learning (MKL) selvform > 1
case. One of the major contributions of the paper is to exttemd/ell known Mir-

ror Descent(MD) framework to handle Cartesian product af pstrices. This
novel extension leads to an algorithm, called EMKL, whiclves the problem in

O(%) iterations; in each iteration one solves an MKL involvimgkernels
andm eigen-decomposition of x n matrices. By suitably defining a restriction
on the objective function, a faster version of EMKL is propdscalled REKL,
which avoids the eigen-decomposition. An alternative tthi#EMKL and REKL

is also suggested which requires only an SVM solver. Expantad results on real
world protein data set involving several similarity magsdllustrate the efficacy
of the proposed algorithms.

1 Introduction

Learning procedures based on positive semidefinite (psdgké&inctions, like Support vector ma-
chines (SVMs), have emerged as powerful tools for seveaahirg tasks with wide applicability
[13]. In many applications it is relatively straightforvebto define measures of similarity between
any pair of examples but extremely difficult to design a kéfaection for accurate classification.
For instance, similarity score between two protein seqeggien by various measures like BLAST
[1], Smith-Watermar[14], etc are not psd, whence cannoubstiuted as kernel. In this paper, we
consider the problem of learning an optimal kernel matnignf multiple similarity matrices, that
yields accurate classification.

Let the set ofn x n real symmetric matrices be denotedSisand the set of psd matrices &$.
Consider a binary classification problem withtraining examples. Ley € {+1,—1}" be the



vector of class labels anl’ € S’} be a kernel matrix. The SVM formulation [13] computes a
performance measutg K') by solving

wK)=max |a'1-05a'YKYa |, (1)
acA
whered = {a €R" |a'y =0,0< a < C1},Y =diagy), 1 =[1... 1]T € R* andC user
defined positive constant.

1.1 Background and Related work

To the best of our knowledge the problem of handling multghailarity matrices and arbitrary
convex losses has not been studied before. Existing literdtas focussed on only one similarity
matrix and specific choices of loss function. In this secti@briefly review the related literature.

The problem was first studied inl[8] for a single similarity tmva They introduced the following
optimization problem
in w(K K — 8|3 2
Igggniw( ) + pllK =S|, )
whereS € S™, is a similarity matrix, whoséi, j)-th elementS(:, j) represents the similarity be-
tween example pair, j andw(K) is defined in[(IL). By interchanging the maximization oweand
minimization overK the authors note that the inner minimization admits a cldsed solution:

— (S+Up) ' Ya)(Ya) ), . (3)

where(X) denotes the psd matrix obtained by clipping the negativereiglues ofX to zero, i.e.,
if X =>", \vv; is the eigen decomposition of € S™ then(X ), = >, max(\;,0)v;v;
After plugging in the value of* authors suggest using sophisticated techniques like Ainaknter
cutting plane (ACCP) method to solve the outer maximizaitog.

The formulation [(R) was studied further inl [5] where an it algorithm based on solving a
quadratically constrained linear program (QCLP) was psego In both the above approaches the
order of maximization and minimization has been intercleahghich lead to optimization problems
that can be posed as semi-infinite quadratically constddinear Programs (SIQCLF)|[5]. Ial[6] an
alternate loss functiofpl’ — S||» was studied which led to a Second Order Cone Program(SOCP)
formulation. The choice of K — S||%, as a measure of loss, is arbitrary. In this paper we gezerali
the setting in[(R) by providing an algorithm which works faryaconvex loss function. We note that
the method used in solvinfl(2) utilizingl(3) is specific to thss function|| K — S||% and do not
apply generally. Apart from non-applicability of the exigt methods to other loss functions it is
not clear how these procedures could be used to handle heudtipilarity matrices.

Contributions:  The key contribution of the paper is to design efficient pcages which can learn
a kernel matrix K € S'}, fromm(> 1) similarity matrices, possibly indefinite, under generai-co
vex sub-differentiable loss function by using either SVMMIKL solvers. We study the problem in
two different settings. In the first setting we consider ihéag a single kernel matrix from multiple
similarity matrices under a general loss function. A novgbathm, referred in the paper as ESKL,
based on the Mirror Descent (MD)/[3] procedure is proposeid.d provably convergent algorithm
which reqwresO(lOg”) calls to an SVM solver. In the second setting we conS|denIegrseparate
kernel matrix for each of the given similarity matrices ahdrt aggregating them using a Multiple
Kernel Learning (MKL) setup. The resultant formulation mmatrivial to solve. We present EMKL
which is based on generalizing the existing MD setup to détl @artesian product of psd matri-

ces. Like the previous case it requir@(;%) calls to an MKL solver. At every iteration the
algorithm also requires eigen-decomposition which is espe. We present a related algorithm,
REKL, which does not require the expensive eigen-decortipastep but yields similar classifica-
tion performance as EMKL. Apart from allowing general losadtions the procedures also opens
up new avenues for learning multiple kernels, which couldiable alternatives to the framework
proposed in[[7].

The remainder of the paper is organized as follows: in sefiave discuss problem formulation.
Our main contribution is in sectidd 3, where we develop nmidescent algorithms for learning
kernel from multiple indefinite similarity matrices. We alanalyze the complexity and convergence
properties of the proposed algorithms. Finally we presenegperimental results in sectibh 4.



2 Problem formulation

Given multiple similarity matrice$S; : i = 1,...,m} we consider the following formulation
oot F(K) = [ W) + p Y Li(K—5) |, (4)

i=1
wherep > 0 is a trade-off parametef,; : S* — R is a convex sub-differentiable loss function
operating onK” andsS;. We impose the trace constraint &hto ensure good generalization aslih [7].

A more naturally suited formulation for handling multipienglarity matrices is to consider learning
individual kernel matrixk(; from similarity matrix.S; , Vi and invoke a Multiple Kernel Learning
(MKL) setup to obtain a kernel matrik € K £ {Zi Bi K | K; €S, 3 >0, Vz’}. In [[7] the
MKL problem is proposed as

WKy, .o, Kip) = KeKﬁgglK):T w(K), (5)
where the kerneld(;’s are fixed and3;’s are variable. Based on MKL we consider the following
kernel learning formulation

Kl,n}.l,nKm F(Kl,...,Km) = Q(Kl, ...,Km) + p;Li(Ki—Si) R (6)
s.t. KiESSlr,tI‘(Ki)ZT,izl,...,m.
Note that2(K7, ..., K,,) can be obtained by solving any standard MKL formulation.

The restriction of Q(K,,...,K,,) on the Cartesian product of set®.” {K;, =
> Hij Vi viTj | wij > 0, v;; is j-th eigen vector of; }, yields a very interesting alternative to
(6). Based on this restriction we formulate the restrictedhkl learning problem as

min gy, oy Myy) = | UK, .. Ky) + p iy, N },
L gl ) = [ ok, RO UTBY -
s.t. Kizzj,uijvijv;;,KiESﬁ, Z;n:l,uij:T, i1=1,...,m,

whereX; = [\i1 ... \in] " denotes the eigen values 8f and/; : R” x R® — R is a convex loss
function onge; = i1 - .- pin] |

We mention that the formulatiofl(4) generalizes the exgssimgle similarity matrix based formula-
tions. Form = 1 with L(X) = || X||% , L(X) = || X||r we recover the formulations ifl[8] and [6]
respectively (albeit with a trace constraint). Also the $Otased spectrum modification learning
formulation [6] proposed in the context of single similgnihatrix (m = 1) is a special case dfl(7).

3 Kernel Learning using Mirror Descent

In this section we derive general methods for solving (4)@pthased on the following assumptions:
loss functionL; is convex; a sub-gradierit, can be computed efficiently and the computed sub-
gradients are bounded. We also assume the availability effeient SVM / MKL solver.

3.1 Entropic single kernel learning (ESKL) algorithm

We denote the feasible set of kernelskas= {K € S’} | tr(K) = 7} and its relative interior as
int(K) = {K € S" | tr(K) = 7, K is positive definite;. Note that/C is convex and compact.
Define inner-product 08" as(K, K') = tr(K K'). From Eqgn.[(ILl) we note thai(K) is a convex
function of K. Therefore the objective functiofiin (@) is convex and Lipschitz continuous éh
Let o* denote a maximizer of the SVM dual (1). Then we can computdagsadient off as

fi(K) = =05Ya*a*TY + p> " LI(K-S5,). (8)
Thus the convex programming problefd (4) satisfies the camditfor applying Mirror Descent

(MD) [2] scheme. To apply MD procedure we require a strongligvex and continuously differen-
tiable function : K — R. Following [2] we choose negative of matrix entropy as thedidate for

.
Y(K) = 35, Ajlog ), 9)
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where (A1, ..., \,) are the eigen values df € K. With the above setup we derive an MD
algorithm, named entropic single kernel learning (ESKIgogithm, similar to the entropic mirror
descent algorithm proposed I [2].

Algorithm 1 Entropic single kernel learning (ESKL) algorithm
Initialization: K™ € int(K). Sett = 0.

repeat
e t:=t+1.
« Obtaina* i.e. a maximizer of the SVM dual problef (1) for kerrél= K ®),
» Compute sub-gradiefit (K") := —0.5Ya*a*TY + p 3, Li(K® - S;).

» Choose suitable step-size
- Compute eigen decompositigh( K®) = V) diag([d{" ... d"]) v®OT,
A ex (— d(t))
. )\(_t+1) — j pPl="n a;
T S A ew(-md;”)
o KD .= V() diag ( [/\gt“) /\Sﬁ”} ) VT,
until Convergence

, Vi=1,...,n.

Proposition 3.1. Let f*) denote the objective function value at ¢-th iteration and f* be the optimal
objective value. If the ESKL algorithmisinitialized with K1) = — I and the step-sizes are chosen

1 2 logn . N . 2 logn . .
as mn = Tin(f) tg then lgléle(t) — f* < 7 Lip(f) Tg , Where Lip(f) isa
Lipschitz constant of f suchthat || f/(K®) || < Lip(F), t=1,...,T.
Proof. The strong convexity constant gfw.r.t. || - ||  normiso = L. LetB,, denote the Bregman
distance functior [2] generated by Then we hav, (K, K") < 7logn, VK € K (assuming
n > 3). We complete the proof by applying Theorem 4.2/6f [2] to tIBKE algorithm. O

3.2 Entropic multiple kernel learning (EMKL) algorithm

Consider the kernel learning formulatidd (6) which minieszhe distances of kerngl#(; : i =
1,...,m} from the corresponding similarity matricds, : ¢ = 1,...,m} and simultaneously
learns an SVM classifier by performing multiple kernel leaagy(MKL) on those kernels. To learn
a non-sparse combination of kernels the following MKL fotetion has been proposed [n]10]:

1 1
UKy,...,Ky) = 'Ynel%)fn max [aTl—iaTY(;%Ki)Ya}, (10)

where Ay, = {v=n ... 9] X, % <1, % >0,Vi}. With Q(Ky,..., Ky,) as defined
above, the objective functioR in (@) can be expressed as
F(Kl,-..,Km)=7rrelaAofngg§ i Fi(Ki; a,7), an
Fi(K;; a,y) = %lTa - 2_}71 tr (KiYaaTY) + pLi(K;—S;),i=1,...,m.
LetV := Q",S", K = {K € S} : tr(K) = 7} andK™ := Q;*, K C V. Denote
K = (Ki,...,K,,) € K™. Define inner product o as (K, K')y := Y " (K;, K}), where
(K;, K]) = tr(K;K!). Also define a norm o/ as|K|| = >, ||[K;||r. From [I0) we note
thatQ (K, ..., K,,) is a convex function of K1, . . ., K,,,) over the compact spadé€™. Thus the
objective function in (8) is convex and Lipschitz continuous #if*.

Lemma 3.1. Let (a*, v*) beasolution of (I0)and L, be a sub-gradient of L,. Then a sub-gradient
of F'isgiven by
FIKY,... Ky) = ( O, Py (K15 0%, 7%) -+ Ok, Fon (Ko 0, 7*) )

1
Ok, Fi (Ko, v*) = —ﬁYa* Y + LK, —Si), i=1,...,m.

2
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Proof. First, we observe thal;(K;; o, ~) is a convex function ofs; € K and the expression of
Ok, Fi(K;; o, ) given in Eqn.[(IR) is precisely a sub-gradientof Therefore, we can write

Fi(KZ(;a,’Y) > Fi(Ki;aa'Y) + <K/ KzaaKl (Kﬂav’y))’ VK{EK:. (13)

By optimality of (a*,~*) we haveF(Ki,...,K,,) = > .-, F;(K;;a*,~*). Because of the
max operation overa, v, we haveF(K{,...,K,) > >, F(K/a* v*) foranyK' =
(K{,...,K]) € K™ Applying (I3) we arrive at

F(K,,...,K) > F(Ky,...,Kn) + <K’—K,F’(K1,...,Km)>v,

Hence,F'(Ky, ..., K,,) givenin [12) is a sub-gradient &f. O
We develop a novel Mirror Descent procedure for problEm §6yl&fining a strongly convex and
continuously differentiable functiod on the product spadeé™ as

\I/(K) = Zyil Z?:l /\iJ log /\iJ? KeKm, (14)

where(\; 1,..., A ) denote eigen values &f,. The resulting algorithm, named entropic multiple
kernel learning (EMKL), is given below.

Algorithm 2 Entropic multiple kernel learning (EMKL) algorithm

Initialization: K" € int(K), i = 1,...,m. Sett = 0.
repeat
t:=t+ 1.
Obtaina*, ~* by solving the MKL problem[{T0) withs; = Ki(t), i=1,...,m.
for i =1tomdo
» Compute sub-gradientx, F; (K K. *,7 ) =

)

TY + LK"Y - 8)).

« Find eigen decomposmo@m ( ), yt) = V(t) dlag([d( Ldl) Vi(t)
o 2D T)‘( )' eXP( ) =1 "
1,7 . d( ) ) g ey .
Y z exp( "t i,z)
R K.(t+1) — V(t) dlag([)\(t+1) ) A(»t-’_l)]) V(t)T.
end for 7

until Convergence

Theorem 3.2. Let F'(*) denote the objective function value at ¢-th iteration and F* be the optimal
objective value. If the EMKL algorithm is initialized with K(l) -1, Vi and the step-sizes are
1 2 logn . (t) % .
— <
T F) o then lglélTF F* < 7m Lip(F)
Lip(F) isa Lipschitz constant of F' such that || @iF(Kft); o,v)||lr < Lip(F), Vi, t.

2 logn

chosenas n; = , where

Proof. LetK* = (K7, ..., K* ) be an optimal solution of{6). Denok&*) = (Kf), s K,(,?).
We apply the convergence result presented as Theorem 42 ifHis leads to the following:

1 20 By (K*, K®)
" Tip(P)

284 (K" K") (15

. (t)_ * < .
t - 1221TF F* < Lip(F) oT

whereos > 0 is the strong convexity constant @fandBy is the Bregman distance function gener-
ated by¥. For the® function defined in Eqn[{14), we have= ——. Assumingn > 3, we also

haveBy (K, K1) < mrlogn, VK € K™. Substituting values deq; ando in (I8) we obtain
the desired result. O



3.3 Restricted entropic kernel learning (REKL) algorithm

The proposed EMKL algorithm is computationally expensigdtacomputes eign decomposition
of m matrices of dimensiom x n at every iteration. Here we propose an efficient algorithm
by considering the restricted kernel learning formulat{@h whereQ)(K3, ..., K,,) is given in
Eqgn. [10). We denote the feasible set foras X’ := {u; € R™ | p;; > 0, V5, Z};l Wij = T},
which is a convex compact subsetRf. We note thatf? in (I0) when viewed as a function of
u;’s, is a convex function on the Cartesian product sp&¢e := ", X. The loss function

¢; is assumed to be a convex function mf with bounded sub-gradients. Hence, the objective
function g in (@) is convex and Lipschitz continuous over the compaecsp’™. Denote a sub-
gradient of¢; as[d,,, li(p;, Ni) s -+, Opsn bi (18, A;)]". We can compute a sub-gradient(fas

Y = (0,2, 049, 9, ), Whered,; @ = —52= o Y vy v Y. We derive an MD
algorithm, named restricted entropic kernel learning (IkEmy extending the entropic mirror de-
scent schemé[2] to deal with Cartesian product of simplitéss is achieved by defining a strongly
convex and continuously differentiable functigp : X — R as

Y/Je(lil, B )u’m) = Zzll Z?:l Mg 10g,LLij s My € va’L (16)

Algorithm 3 Restricted entropic kernel learning (REKL) algorithm

Find eigen decompositiorti; = >, Ai; vy; o
Initialization: ,ugl) €int(X),i=1,...,m. Sett = 0.
repeat
t=t+1
Obtaina*,v* by solving the MKL problem[(Z0) with; = 3", ug;) Vij V;;7 i=1,...,m.
for i = 1tom do

1=1,...,m.

« Compute sub-gradielgtz(.;) = —p= o YvyvlYar + By, i1t ).
71l exp (_77 /(.t.))
(t+1) 1] 29 ) .
oy = o o ,j=1,...,n.
Do1=1 Myt €Xp (—th il )
end for

until Convergence

Proposition 3.2. Let ¢(*) denote the objective function value at ¢-th iteration and ¢* be the optimal
objective value. If the REKL algorithm is initialized with p\") = 21, Vi and the step-sizes are

1 2 logn . 0 « .
= — <
chosen as;, Tin(o) p— then 1r§I}flgnT g g 7m Lip(g)

. . . (t) . . .
isa Lipschitz constant of ¢ such that |g'ij | < Lip(g),i,=1,...,m,j=1,...

2 logn

, where Lip(g)

Proof. The proof is similar to that of Theoren_8.2. O

3.4 Discussion

The ESKL formulation require® (1"5%) iterations (see Propositidn_8.1), where in each iteration
one solves an SVM and eigen-decomposition ofn matrix. Both EMKL and REKL formulations
requireO (%) iterations (see Theorem 8.2 and Propositionl 3.2), and ih #éation one
solves an MKL problem. However EMKL is more computationaipensive than REKL.

4 Experiments and Results

In this section we experimentally compare the proposedetelearning formulations against
IndSVM [8] and the eigen transformation methods: Denoidig, Bhift [15]. Given an indefinite
similarity matrix,S with eigen-decompositio = Zj )\jvjva, eigen transformation methods gen-

erate kernel matrix a& := ) yu;v; v/, where choicey;’s are: (a)Denoise: ; = max();,0),



(b)Flip:  w; = |Aj|, (€) Shift: w; = A\; —d, whered = min{)\, ..., A\, 0}. We consider the fol-
lowing choices for the loss functions in ESKL/ EMKL.L[] L(K—-S) = >, ; |K(i,7)—5(, )|,
[Lo] L(K = 8) = |[K = S|lr,  [£s] LK —S) = X, ; [K(i,5) — S(i, j)>. For REKL we
choose/(p;, Aj) = |p; — Ajll2, i.e., the Euclidean distance. Algorithm parameters aredwsing
standard 5 fold cross validation procedure. LibSVM [4] isdigs the SVM solver. For each data set
we have considered equal number of positive and negativeértgs/ test samples. We report classi-
fication performance in terms of accuracy and F-score (ssgitas % ) averaged over 5 different
train / test splits.

4.1 Datasets

We experimented on 10 different data sets including the dets covered in_[16,]6]. We have
generated the indefinite similarity matrices as prescrib€i6] for each of the following data sets:
Sonar, Liver disorder, lonosphere, Diabetes andHeart. We have used the same similarity matrices
as in [6]H for the data setAmazon, Aural Sonar, Yeast-SA-5-7 and Yeast-SA-5-12 .

To test the proposed multiple similarity based formulagiove experimented on a subset of the
SCOP databasé][9] taken from Protein Classification Bendhi@allectionl. Considering pro-
teins having< 40% sequence identity, we randomly sel&csuper-families which have at least
45 proteins. We compute 3 different pairwise similarity measfor proteins: Psi-BLAST[]1],
Smith-Watermar [14] and Needleman-WunscH [11]. The shijlanatrices obtained from these 3
similarity measures are indefinite in general.

4.2 Effect of various loss functions

We experimentally demonstrate the ability of the propos&KIE algorithm in handling general
convex loss function. Classification performance is prieskim Tabldl. We observe that aiver
disorder data setC, loss performs better thad;, £5. Again, onDiabetes andHeart data sets
both £1, £ provides much better performance better tifan From Tabld 2 we observe that on
AuralSonar data set ESKL formulation works best with; loss function. But orveast-SW-5-7 data
setL; loss function works best. Therefore we can say that the ehafitoss function has an effect
on classification accuracy. This suggest the need for a gealgorithm which provides flexibility
to choose loss function based on the data set. Hence in thés pee have developed the algorithms
keeping the choice of loss function almost open.

Table 1: Comparison of classification accuracy (odd rowd)Fscore (even rows) on UCI data sets

Dataset Eigen Transformation INdSVM ESKL
Denoise | Flip | Shift [8] L. ] (L] | 145]
Sonar 71.5 72.5 76.5 76.5 75.5 73.0 75.5
70.0 70.6 75.0 74.8 73.9 71.3 74.1
Liver disorder 57.6 545 55.5 59.7 61.0 62.8 60.7
55.4 53.8 52.9 55.8 58.9 59.1 57.5
lonosphere 87.3 89.6 91.2 915 88.5 91.2 915
87.6 89.9 91.4 91.8 88.5 914 91.8
Diabetes 63.9 58.7 64.4 70.2 73.3 735 69.8
65.0 58.8 65.1 71.4 74.3 74.6 71.0
Heart 73.3 63.8 75.8 76.3 78.8 78.8 76.3
73.1 65.1 76.9 76.5 79.5 79.0 76.5

4.3 Combining multiple sequence similarity matrices for Poteins

Consider the task of classifying proteins into super-faasilvhen multiple sequence similarity mea-
sures are available. We perfornvs rest classification experiments on each of the 8 protgiersu
families and report performance averaged over 5 train /dgls. One can extend IndSVMI[8]

Ihttp://idl.ee.washington.edu/SimilarityLearning/
Zhttp://net.icgeb.org/benchmark/
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Table 2: Comparison of classification accuracy (odd rowd)faiscore (even rows) on real data sets

Dataset Eigen Transformation IndSVM ESKL
Denoise | Flip | Shift [8] (L] T L] T 1£43]
Amazon 83.8 83.8 | 85.0 87.5 88.8 85.0 88.8
84.8 84.8 | 85.9 86.9 88.0 84.3 88.0
Aural Sonar 87.0 87.0 | 87.0 88.0 88.0 87.0 90.0
86.5 86.3 | 86.3 87.3 87.3 86.3 89.1
Yeast-SW-5-7 75.5 70.0 | 740 77.0 79.0 75.5 76.5
77.1 724 | 741 77.7 79.9 76.1 77.2
Yeast-SW-5-12 86.0 855 | 86.0 90.0 90.0 90.5 90.0
87.1 85.8 | 87.6 90.9 90.9 | 91.35 | 90.9

Table 3: Comparison of classification accuracy (odd rowd)rscore (even rows) on Proteins

Super Linear Eigen INdSVM simple MKL ESKL EMKL REKL
family SVM Denoise [8] [12] [£4] [£4] I 12
a4l 51.9 53.1 54.4 56.9 70.0 73.1 84.4
67.5 68.1 68.7 69.9 77.1 78.9 86.5
b.1.18 63.8 62.5 58.1 65.6 71.9 75.6 74.4
73.9 73.1 70.7 74.7 78.6 80.6 78.6
b.29.1 70.6 80.6 75.6 775 85.0 83.8 75.0
55.6 76.3 67.0 70.2 83.5 82.1 71.0
b.40.4 66.9 68.1 59.4 70.0 71.9 68.8 76.2
74.8 75.4 71.1 76.7 77.3 76.3 78.5
c.1.8 58.8 75.0 66.9 73.7 80.6 85.0 80.0
29.5 65.1 50.1 62.7 74.6 80.8 77.9
c.3.1 91.9 97.5 95.6 95.0 95.6 95.6 96.2
90.9 97.4 95.4 94.7 95.2 95.4 96.0
c.47.1 88.1 86.2 76.2 90.0 84.4 90.6 84.4
85.7 87.8 81.5 88.8 85.7 90.3 86.4
c.67.1 88.8 90.6 90.6 91.2 81.9 91.2 93.1
87.2 89.6 89.6 90.3 76.8 90.3 92.6

originally proposed to handle single similarity matrix,rtwiltiple similarity matrices by averaging
over the similarity matrices. We implement the linear SVMdonsidering similarities as feature
and computing a linear kernel. We also compare with a meltigknel learning formulation, simple
MKL [L2]. Denoised version of the similarity matrices arevgm as input to simple MKL. In Ta-
ble[3 the proposed multiple similarity based kernel leagrlyorithms ESKL / EMKL / REKL are
compared with the other methods mentioned above. We obsgmigicant performance improve-
ment in most cases. We also note that REKL is computatiocayaper than EMKL but provides
reasonably good performance.

5 Conclusion

We have proposed three formulationis, (&), @), (7) for leaykernels from multiple similarity ma-
trices. The key advantages of the proposed algorithms beestate of the art are: (i) require only
SVM / MKL solvers and does not require any other sophistité&bels; (i) the algorithms are appli-
cable for a wide choice of loss functions and multiple simityafunctions. Proposed methods can
also be seen as an alternative to Multiple Kernel learnihglwwill be explored in future research.
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