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Abstract

In multi-instance learning, there are two kinds of prediction failure, i.e., false
negative and false positive. Current research mainly focus on avoiding the for-
mer. We attempt to utilize the geometric distribution of instances inside positive
bags to avoid both the former and the latter. Based on kernel principal com-
ponent analysis, we define a projection constraint for each positive bag to clas-
sify its constituent instances far away from the separating hyperplane while place
positive instances and negative instances at opposite sides. We apply the Con-
strained Concave-Convex Procedure to solve the resulted problem. Empirical re-
sults demonstrate that our approach offers improved generalization performance.

1 Introduction

Multi-instance Learning (MIL) was first proposed by Dietterich et.al. in [1] to predict the binding
ability of a drug from its biochemical structure. A certain drug molecule corresponds to a set of
conformations which cannot be differentiated via chemical experiments. A drug is labeled positive
if any of its constituent conformations has the binding ability greater than the threshold, otherwise
negative. Therefore, each sample (a drug) is a bag of instances (its constituent conformations). In
multi-instance learning the label information for positive samples is incomplete in that the instances
in a certain positive bag are all labeled positive. Generally, methods for multi-instance learning are
modified versions of approaches for supervised learning by shifting the focus from discrimination
on instances to discrimination on bags.

The earliest exploration were the APR algorithms proposed in [1]. From then on, a number of
approaches emerged. Examples include Diverse Density [2], Citation k−NN [3], MI-SVMs [4], MI-
kernels [5], reg-SVM [6], MissSVM [7], sbMIL, stMIL [8], PPMM [9], MIGraphs [10], etc. Many
real-world applications can be regarded as Multi-instance learning problems. Examples include
image classification [11], document categorization [12], computer aided diagnosis [13], etc.

As far as positive bags are concerned, current research usually treat them as labyrinths in which
witnesses (responsible positive instances) are encaged, and consider nonwitnesses (other instances)
therein to be useless or even distractive. The information carried by nonwitnesses is not well utilized.
Factually, nonwitnesses are indispensable for characterizing the overall instance distribution, and
thus help to improve the learner. Several researchers realized the importance of nonwitnesses and
attempted to utilize them. In MI-kernels [5] and reg-SVM [6], nonwitnesses together with witnesses
are squeezed into the kernel matrix. In mi-SVM [4], the labels of all nonwitnesses are treated as
unknown integer variables to be optimized. mi-SVM tends to misclassify negative instances in
positive bags since the resulted margin will be larger. And we will elaborate on this flaw in section
3.1. In MissSVM [7] and stMIL [8], multi-instance learning is addressed from the view of semi-
supervised learning, and nonwitnesses are treated as unlabeled data, whose labels should be assigned
to maximize the margin. sbMIL [8] attempt to estimate the ratio of positive instances inside positive
bags and utilize this information in the subsequent classification. MissSVM, sbMIL and stMIL
suffer from the same flaw as mi-SVM.
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Figure 1: Illustration of the False Positive Phenomenon: The top image is a positive training sample,
and the bottom image is a negative testing sample. The symbol ⊕ and ⊖ respectively denote positive
and negative instances. Enveloped points are instances in a positive bag. The Point not enveloped
is a negative bag of just one instance. Separating plane Fi corresponds to f(x) = i, and Gi corre-
sponds to g(x) = i. The learners f and g are obtained with and without the projection constraint,
respectively. Instances are labeled according to f . For details, please refer to the passage below.

The neglect of nonwitnesses in positive bags may lead to false positive and cause a model to misclas-
sify unseen negative samples. For example, in natural scene classification, each image is segmented
to a bag of instances beforehand, and each instance is a patch (ROI, Regions Of Interest) charac-
terized by one feature vector describing its color. The task is to predict whether an image contains
a waterfall or not (Figure 1). A positive image contains some positive instances corresponding to
waterfall and some negative instances from other categories such as sky, stone, grass, etc., while
a negative bag exclusively contains negative instances from other categories. Naturally, some neg-
ative instances (patches) only exist in positive bags. For instance, the end of a waterfall is often
surrounded by mist. The aforementioned approaches tend to misclassify negative instances in posi-
tive bags. Therefore, the patch corresponding to mist is misclassified as positive. Given an unseen
image with cirrus cloud and without waterfall, the obtained learner will misclassify this image as
positive because cirrus cloud and mist are similar to each other.

To avoid both false negative and false positive, we attempt to classify instances inside positive bags
far from the separating hyperplane and place positive and negative instances at opposite sides. We
achieve this by introducing projection constraints based on kernel principal component analysis into
MI-SVM [4]. Each constraint is defined on a positive bag to encourage large variance of its con-
stituent instances along the normal direction of the separating hyperplane. We apply the Constrained
Concave-Convex Procedure (CCCP) to solve the resulted optimization problems.

The remainder of the paper is organized as follows: Section 2 introduces notation convention and
the CCCP. In Section 3 we bring out the projection constraint and the corresponding formulation
for multi-instance learning. In Section 4, the algorithm is evaluated on real world data sets. Finally,
conclusions are drawn in Section 5.

2 Preliminaries

2.1 Notation Convention

The origin of multi-instance learning [1] has been presented in section 1. Let X ⊆ Rp be the
space containing instances and D = {(Bi, yi)}mi=1 be the training data, where Bi is the ith bag of
instances {xi1, · · · ,xini} and yi ∈ Y is the label for Bi. Y is {+1,−1} for classification and R
for regression. In addition, denote the index set for instances xij of Bi by Ii. The task is to train
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a learner to predict the label of an unseen bag. Compared with traditional supervised learning, the
learner is a mapping from 2X to Y instead of from X to Y . Denote the index sets for positive and
negative bags by I+ and I− respectively. Without loss of generality, assume that the instances are
ordered in the sequence {x11, · · · ,x1n1 , · · · ,xm1, · · · ,xmnm}. We index instances by a function

I(xij) =
i−1∑
k=1

nk + j. And I(Bi) returns a vector (
i−1∑
k=1

nk + 1, · · · ,
i−1∑
k=1

nk + ni).

2.2 Constrained Concave-Convex Procedure

Non-convex optimizations are undesirable because few algorithms effectively converge even to a
local optimum. However, if both objective function and constraints take the form of a difference be-
tween two convex functions, then a non-convex problem can be solved efficiently by the constrained
concave-convex procedure [14]. The fundamental is to eliminate the non-convexity by changing
non-convex parts to their first-order Taylor expansions. The original problem is as follows:

min
x

f0(x)− g0(x)

s.t. fi(x)− gi(x) ≤ ci, i = 1, · · · ,m (1)

where fi, gi(i = 0, · · · ,m) are real-valued, convex and differentiable functions on Rn. Starting
from a random x(0), (1) is approximated by a sequence of successive convex optimization problems.
At the t+1th iteration, the non-convex parts in the objective and constraints are substituted by their
first-order Taylor expansions, and the resulted optimization problem is as follows:

min
x

f0(x)−
[
g0(x

(t)) +∇g0(x
(t))T (x− x(t))

]
(2)

s.t. fi(x)−
[
gi(x

(t)) + ∇gi(x
(t))T (x− x(t))

]
≤ ci

where x(t) is the optimal solution to (2) at the tth iteration. The above procedure is repeated until
convergence. In [14] it is proved that the CCCP converges to a local optimum of (1).

3 Multi-Instance Classification

3.1 Support Vector Machine Formulation

Our work is based on the support vector machine (SVM) formulations for multi-instance learning,
to be exact, the MI-SVM [4] as follows:

min
w,b,ξ

1

2
∥w∥2 + C

[ ∑
i∈I+

ξi +
∑

j∈Ii,i∈I−

ξij

]
(3)

s.t. max
j∈Ii

(wTxij + b) ≥ 1− ξi, ξi ≥ 0, i ∈ I+

−wTxij − b ≥ 1− ξij , ξij ≥ 0, j ∈ Ii, i ∈ I−

Compared with the conventional SVM, in MI-SVM the notion of slack variables for positive samples
is extended from individual instances to bags while that for negative samples remains unchanged.
As shown by the first set of max constraints, only the “most positive” instance in a positive bag, or
the witness, could affect the margin. And other instances, or nonwitnesses, become irrelevant for
determining the position of the separating plane once the witness is specified.

The max constraint at first sight seems to well embody the characteristic of multi-instance learning.
Indeed, it helps to avoid the false negative, i,e., the misclassification of positive samples. However,
it may incur false positive due to the following two reasons. Firstly, the max constraint aims at
discovering the witness, and tends to skip nonwitnesses. Thus each positive bag is approximately
oversimplified to a single pattern, i.e., the witness. Most information in positive bags is wasted.
Secondly, due to the characteristic of the max function and the greediness of optimization methods,
the predictions of nonwitnesses are often adjusted above zero in the learning process. Besides, there
is no mechanism to draw the predictions of nonwitenesses below zero. Nevertheless, many nonwit-
nesses in positive bags are factually negative instances. For example, in natural scene classification,
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many image patches in a positive bag are from the irrelevant background; in document categoriza-
tion, many posts in a positive bag are not from the target category. Hence, many nonwitnesses are
mislabeled as positive, and we obtain a falsely large margin.

As shown in Figure 1, MI-SVM classifies half instances in the training sample as positive, and some
negative instances are mislabeled. This false positive will impair the generalization performance.

3.2 Projection Constraint

The above problem is not unique for MI-SVM. Any approach without properly utilizing nonwit-
nesses has the same problem. In our preliminary work before this paper, we tried three solutions.
Firstly, we treat the labels of all nonwitnesses as unknown integer variables to be optimized. In the
SVM framework, it is exactly the mi-SVM [4] as follows:

min
{yij}

min
w,b,ξ

1

2
∥w∥2 + C

∑
j∈Ii, i∈I+∪I−

ξij (4)

s.t. yij(w
Txij + b) ≥ 1− ξij , ξij ≥ 0, j ∈ Ii, i ∈ I+∑

j∈Ii

yij + 1

2
≥ 1, i ∈ I+

−wTxij − b ≥ 1− ξij , ξij ≥ 0, j ∈ Ii, i ∈ I−
It seems that assigning labels over all nonwitnesses should lead to a reasonable model. Nevertheless,
nonwitnesses are usually labeled positive since the consequent margin will be larger. Thus, many
of nonwitnesses are misclassified. As far as the example in Figure 1 is concerned, the obtained
learner is g(x) instead of f(x). MissSVM [7] takes an unsupervised approach. For every instance
in positive bags, two slack variables are introduced, measuring the distances from the instance to
the positive boundary f(x) = +1 and the negative boundary f(x) = −1 respectively, and the label
of the instance depends on the smaller slack variable. stMIL [8] takes a similar approach. As mi-
SVM, MissSVM and stMIL also suffers from misclassification of nonwitnesses. sbMIL [8] tackles
multi-instance learning in two steps. The first step is similar to MI-SVM, and the second step is a
traditional SVM. Still, there is no mechanism in sbMIL to avoid false positive.

In the second solution, we simultaneously seek for the “most positive” instance and the “most neg-
ative” instance in a positive bag by adding the following constraints to (3):

(−1) ·min
j∈Ii

(wTxij + b) ≥ −1− ζi, ζi ≥ 0, i ∈ I+ (5)

And the term
∑

i∈I+
ξi in the objective of (3) is changed to

∑
i∈I+

(ξi + ζi). Although misclas-
sification of nonwitnesses is alleviated since at least the “most negative” nonwitness is classified
correctly, the information carried by most nonwitnesses are not fully utilized. As far as the example
in Figure 1 is concerned, the obtained learner is still g(x) instead of f(x). Besides, this solution is
not appropriate for applications which involve positive bags only with positive instances.

The third solution is the projection constraint proposed in this paper. In a maximum margin frame-
work we want to classify instances in a positive bag far away from the separating hyperplane while
place positive instances and negative instances at opposite sides. From another point of view, in the
feature (kernel) space, we want to maximize the variance of instances in a positive bag along w, the
normal vector of the separating hyperplane. Therefore, the principal component analysis (PCA) [15]
is just the technique that we need. To tackle complicated real world datasets, we directly develop our
approach in the Reproducing Kernel Hilbert Space (RKHS). Let X be the space of instances, and H
be a RKHS of functions f : X → R with associated kernel function k(·, ·). Note that f is both a
function on X and a vector in H. With an abuse of notation, we will not differentiate them unless
necessary. Denote the RKHS norm of H by ∥f∥H. Then MI-SVM can be rewritten as follows:

min
f∈H,ξ

1

2
∥f∥2 + C

[ ∑
i∈I+

ξi +
∑

j∈Ii,i∈I−

ξij

]
s.t. max

j∈Ii

(f(xij)) ≥ 1− ξi, ξi ≥ 0, i ∈ I+ (6)

− (f(xij)) ≥ 1− ξij , ξij ≥ 0, j ∈ Ii, i ∈ I−
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Figure 2: Illustration of the Effect of the Projection Constraint: Please note that the projection
constraint is effective for datasets with any geometric distribution once an appropriate kernel is
selected. Enveloped points are instances in a positive bag. Points not enveloped are negative bags of
just one instance. Separating plane Fi corresponds to f(x) = i, and Gi corresponds to g(x) = i.
The learner f and g are obtained with and without the projection constraint, respectively. Instances
are labeled according to f . ⊕ and ⊖ denote positive instances and negative instance respectively.

According to the representer theorem [16], each minimizer f ∈ H of (6) has the following form:

f =
∑

i∈I+∪I−

∑
j∈Ii

αijϕ(xij) (7)

where all αi ∈ R, and ϕ(·) induced by k(·, ·) is the feature mapping from X to H.

Next, we will propose our key contribution, i.e., the projection constraint. Given a positive bag
Bi, denote its instances by {xij}ni

j=1, and denote the normal vector of the separating plane in the
RKHS by f . According to the theory of PCA [15, 17], maximizing the variance of mapped instances
{ϕ(xij)}ni

j=1 along f equals to minimizing the sum of the Euclidean distances from the centralized
data points to their projections on the normalized vector f

∥f∥2
, as follows:

Ji(f) =

ni∑
j=1

∥cj
f

∥f∥2
− (ϕ(xij)− ϕ(mi))∥22 (8)

where ϕ(mi) = 1
ni

ni∑
j=1

ϕ(xij), the mean of {ϕ(xij)}ni
j=1. |cj | is the distance from ϕ(mi) to the

projection point of ϕ(xij). After simple algebra, we get:

cj =
fT

∥f∥2
(ϕ(xij)− ϕ(mi)) (9)

Substituting (9) and (7) into (8), we arrive at:

Ji(α) = oi −
αTL2

iα

αTKα
(10)

where K is a n × n kernel matrix defined on all the instances of both positive bags and negative
bags, oi = trace(KI(Bi))− 1

ni
1TKI(Bi)1 where KI(Bi) is a ni × ni matrix formed by extracting

the I(Bi) columns (Please refer to section 2.1) and the I(Bi) rows of the overall kernel matrix K,
and L2

i is the “centralized” L2
i as follows:

L2
i = LT

i Li − 1nL
T
i Li − LT

i Li1n + 1nL
T
i Li1n (11)
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where 1n is a matrix with all elements equal to 1
n , and Li is a n× n matrix formed by keeping the

I(Bi) rows of K and setting all the elements in other rows to 0:

Li(p, q) =

{
K(p, q) if p ∈ I(Bi), ∀q ∈ {1, · · · , n}

0 otherwise

Generally, the optimal normal vector f varies for different positive bags. Hence it is meaningless to
solve (10) for its optimum. Instead, we average (10) by the bag size ni, and use a common threshold
λ to bound the averaged projection distance for different bags from above. We name the obtained
inequality “the projection constraint”, as follows:

1

ni

(
oi −

αTL2
iα

αTKα

)
≤ λ (12)

This is equivalent to bounding variance of instances in positive bags along f from below [15].

Substituting (7) into (6), and adding the projection constraint (12) for each positive bag to the re-
sulted problem, we arrive at the following optimization problem:

min
α,b,ξ

1

2
αTKα+ C

[ ∑
i∈I+

ξi +
∑

j∈Ii,i∈I−

ξij

]
(13)

s.t. 1− ξi −max
j∈Ii

(kT
I(xij)

α+ b) ≤ 0, ξi ≥ 0, i ∈ I+

kT
I(xij)

α+ b ≤ −1 + ξij , ξij ≥ 0, j ∈ Ii, i ∈ I−

αT (oi ·K− L2
i )α− λni ·αTKα ≤ 0, i ∈ I+

3.3 Optimization via the CCCP

In the problem (13), the objective function and the second set of constraints are convex. The first
set of constraints are all in the form of difference of two convex functions since the max function
is convex. According to the definition of Ji(f) in (8), J(α) in (10) is not less than 0 for any α.
Thus for any i ∈ I+, oi ·K−L2

i is semi-definite positive. Consequently, the third set of constraints
are all in the form of difference of two convex functions. Therefore, we can apply the Constrained
Concave-Convex Procedure (CCCP) introduced in section 2.2 to solve the problem (13).

Since the function max in the first set of constraints is nonsmooth, we have to change gradients to
subgradients to use the CCCP. The subgradient is usually not unique, and we adopt the definition
used in [6] for the subgradient of max

j∈Ii

kT
I(xij)

α:

∂(max
j∈Ii

kT
I(xij)

α) =
∑
j∈Ii

βijk
T
I(xij)

(14)

where

βij =

{
0 if kT

I(xij)
α ̸= max

j∈Ii

kT
I(xij)

α

1
na

otherwise
(15)

where na is the number of xij that maximize kT
I(xij)

α. At the tth iteration, denote the current

estimate for α and βij by α(t) and β
(t)
ij respectively. Then the first order Taylor expansion of

max
j∈Ii

kT
I(xij)

α is as follows:

max
j∈Ii

kT
I(xij)

α(t) +
∑
j∈Ii

β
(t)
ij kT

I(xij)
(α−α(t)) (16)

According to (15), we have ∑
j∈Ii

β
(t)
ij kT

I(xij)
α(t) = max

j∈Ii

(kT
I(xij)

α(t)) (17)
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Using (17), (16) reduces to ∑
j∈Ii

β
(t)
ij kT

I(xij)
α (18)

Replacing max
j∈Ii

kT
I(xij)

α in the first set of constraints by (18) and αTKα in the third set of con-

straints by their first order Taylor expansions, finally we get:

min
α,b,ξ

1

2
αTKα+ C

[ ∑
i∈I+

ξi +
∑

i∈Ii,I∈I−

ξi

]
(19)

s.t. 1− ξi − (
∑
j∈Ii

β
(t)
ij kT

I(xij)
α+ b) ≤ 0, ξi ≥ 0, i ∈ I+

kT
I(xij)

α+ b ≤ −1 + ξij , ξij ≥ 0, j ∈ Ii, i ∈ I−

αTSiα− 2λni ·α(t)TK(α−α(t)) ≤ 0, i ∈ I+

where Si = oi ·K−L2
i . The problem (19) is a quadratically constrained quadratic program (QCQP)

with a convex objective function and convex constraints, and thus can be readily solved via interior
point methods [18]. Following the CCCP, we can do the iteration until (19) converges.

4 Experiments

4.1 Classification: Benchmark

Benchmark data sets comes from two areas. Musk 1 and Musk 2 data sets [1] are two biochemical
tasks which directly promoted the research of multi-instance learning. The aim is to predict activ-
ity of drugs from structural information. Each drug molecule is a bag of potential conformations
(instances). The Musk 1 data set consists of 47 positive bags, 45 negative bags, and totally 476
instances. The Musk 2 data set consists of 39 positive bags, 63 negative bags, and totally 6598 in-
stances. Each instance is represented by a 166 dimensional vector. Elephant, tiger and fox are three
data sets from image categorization. The aim is to differentiate images with elephant, tiger, and fox
[4] from those without, respectively. A bag here is a group of ROIs (Region Of Interests) drawn
from a certain image. Each data set contains 100 positive bags and 100 negative bags, and each
ROI as an instance is a 230 dimensional vector. Related methods for comparison includes Diverse

Table 1: Test Accuracy(%) On Benchmark: Rows and columns correspond to methods and datasets
respectively.

Algorithm Musk 1 Musk 2 Elep Fox Tiger

PC-SVM 90.6 91.3 89.8 65.7 83.8
±2.7 ±3.2 ±1.2 ±1.4 ±1.3

MIGraph 90.0 90.0 85.1 61.2 81.9
±3.8 ±2.7 ±2.8 ±1.7 ±1.5

miGraph 88.9 90.3 86.8 61.6 86.0
±3.3 ±2.6 ±0.7 ±2.8 ±1.0

MI-Kernel 88.0 89.3 84.3 60.3 84.2
±3.1 ±1.5 ±1.6 ±1.9 ±1.0

MI-SVM 77.9 84.3 81.4 59.4 84.0
stMIL 79.5 68.4 81.6 60.7 74.7
sbMIL 91.8 87.7 88.6 69.8 83.0
DD 88.0 84.0 N/A N/A N/A
EM-DD 84.8 84.9 78.3 56.1 72.1

Density (DD,[2]), EM-DD [19], MI-SVM [4], MI-Kernel [5], stMIL [8], sbMIL [8], MIGraph and
miGraph [10]. When applied for multi-instance classification, our approach involves three parame-
ters, namely, the bias/variance trade-off factor C, the kernel parameter (e.g.: γ in RBF kernel), and
the bound parameter λ in the projection constraint. In the experiment, C, γ, and λ are selected from
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{0.01,0.1,1,10,50,100}, {0.2,0.4,0.6,0.8,1.0} and {0.01,0.1,1,10,100} respectively. We employ the
MOSEK toolbox 1 to solve the resulted QCQP problem (19). The other experiment uses the same
parameter setting.

The ten-times 10-fold cross validation results (except Diverse Density) are shown in Table 1. The
results for other methods are replicated from their original papers. The results not available are
marked by N/A. The bolded figure indicates that result is better than all other methods. Table 1
shows that the performance of our approach (PC-SVM) is competitive. Recall that the difference
between our approach and MI-SVM is just the projection constraint. Therefore, as discussed in
section 3.2, the results in Table 1 demonstrates that the strength of nonwitnesses is well utilized via
the projection constraint.

4.2 Classification: COREL Image Data Sets

Table 2: Test Accuracy(%) On COREL: Rows and columns correspond to methods and datasets
respectively.

Algorithm 1000-Image 2000-Image

PC-SVM 85.6 : [84.3, 86.9] 75.8 : [74.4,77.2]

reg-SVM 84.4 : [83.0, 85.8] N/A
MIGraph 83.9 : [81.2, 85.7] 72.1 : [71.0, 73.2]
miGraph 82.4 : [80.2, 82.6] 70.5 : [68.7, 72.3]
MI-Kernel 81.8 : [80.1, 83.6] 72.0 : [71.2, 72.8]
MI-SVM 74.7 : [74.1, 75.3] 54.6 : [53.1, 56.1]
DD-SVM 81.5 : [78.5, 84.5] 67.5 : [66.1, 68.9]

COREL is a collection of natural scene images which have been categorized according to the pres-
ence of certain objects. Each image is regarded as a bag, and the nine dimensional ROIs (Region Of
Interests) in it are regarded as its constituent instances. In experiments, we use the 1000-Image data
set and the 2000-Image data set which contain ten and twenty categorizes, respectively. Following
the methodology in [10], on both of the two data sets the related methods are compared by their five
times 2-fold cross validation results. The algorithm for comparison include Diverse Density (DD),
MI-SVM, MIGraph, miGraph , MI-Kernel and reg-SVM. In the last four algorithms one-against-all
strategy is employed to tackle this multi-class task. In our approach this strategy is also used. Table
2 shows the overall accuracy as well as the 95% interval. As in benchmark data sets, our approach is
competitive with the latest methods. The results again suggest that fully utilizing the nonwitnesses
is important for multi-instance classification.

5 Conclusion

We design a projection constraint to fully exploit nonwitnesses to avoid false positive. Since our
approach is basically MI-SVM with projection constraints, the improved results on real world data
sets validate the strength of nonwitnesses. We will introduce the universal projection constraint
into other existing approaches for multi-instance learning, and related learning tasks, such as multi-
instance regression, multi-label multi-instance learning, generalized multi-instance learning, etc.
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Léon Bottou and Michael Littman, editors, Proceedings of the 26th International Conference on Machine
Learning, pages 1249–1256, Montreal, June 2009. test, Omnipress.

[11] Y. Chen and J.Z. Wang. Image categorization by learning and reasoning with regions. The Journal of
Machine Learning Research, 5:913–939, 2004.

[12] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. Advances in Neural Information
Processing Systems (NIPS), 20:1289–1296, 2008.

[13] G. Fung, M. Dundar, B. Krishnapuram, and R.B. Rao. Multiple instance learning for computer aided
diagnosis. In NIPS2007, page 425. The MIT Press, 2007.

[14] A.J. Smola, SVN Vishwanathan, and T. Hofmann. Kernel methods for missing variables. In Proceedings
of the Tenth International Workshop on Artificial Intelligence and Statistics. Citeseer, 2005.

[15] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. John Wiley & Sons, 2001.

[16] B. Schölkopf and A.J. Smola. Learning with kernels. Citeseer, 2002.

[17] Q. Tao, D.J. Chu, and J. Wang. Recursive support vector machines for dimensionality reduction. IEEE
Transactions on Neural Networks, 19(1):189–193, 2008.

[18] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Pr, 2004.

[19] Q. Zhang and S.A. Goldman. Em-dd: An improved multiple-instance learning technique. Advances in
neural information processing systems, 2:1073–1080, 2002.

9


