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Abstract

This paper is concerned with the generalization analysis onlearning to rank for
information retrieval (IR). In IR, data are hierarchicallyorganized, i.e., consisting
of queries and documents. Previous generalization analysis for ranking, however,
has not fully considered this structure, and cannot explainhow the simultaneous
change of query number and document number in the training data will affect the
performance of the learned ranking model. In this paper, we propose performing
generalization analysis under the assumption of two-layersampling, i.e., the i.i.d.
sampling of queries and the conditional i.i.d sampling of documents per query.
Such a sampling can better describe the generation mechanism of real data, and
the corresponding generalization analysis can better explain the real behaviors of
learning to rank algorithms. However, it is challenging to perform such analy-
sis, because the documents associated with different queries are not identically
distributed, and the documents associated with the same query become no longer
independent after represented by features extracted from query-document match-
ing. To tackle the challenge, we decompose the expected riskaccording to the two
layers, and make use of the new concept of two-layer Rademacher average. The
generalization bounds we obtained are quite intuitive and are in accordance with
previous empirical studies on the performances of ranking algorithms.

1 Introduction

Learning to rank has recently gained much attention in machine learning, due to its wide applica-
tions in real problems such as information retrieval (IR). When applied to IR, learning to rank is a
process as follows [16]. First, a set of queries, their associated documents, and the corresponding
relevance judgments are given. Each document is represented by a set of features, measuring the
matching between document and query. Widely-used featuresinclude the frequency of query terms
in the document and the query likelihood given by the language model of the document. A rank-
ing function, which combines the features to predict the relevance of a document to the query, is
learned by minimizing a loss function defined on the trainingdata. Then for a new query, the rank-
ing function is used to rank its associated documents according to their predicted relevance. Many
learning to rank algorithms have been proposed, among whichthe pairwise ranking algorithms such
as Ranking SVMs [12, 13], RankBoost [11], and RankNet [5] have been widely applied.

To understand existing ranking algorithms, and to guide thedevelopment of new ones, people have
studied the learning theory for ranking, in particular, thegeneralization ability of ranking methods.
Generalization ability is usually represented by a bound ofthe deviation between the expected and
empirical risks for an arbitrary ranking function in the hypothesis space. People have investigated the
generalization bounds under different assumptions. First, with the assumption that documents are
i.i.d., the generalization bounds of RankBoost [11], stable pairwise ranking algorithms like Ranking
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SVMs [2], and algorithms minimizing pairwise 0-1 loss [1, 9]were studied. We call these general-
ization bounds “document-level generalization bounds”, which converge to zero when the number of
documents in the training set approaches infinity. Second, with the assumption that queries are i.i.d.,
the generalization bounds of stable pairwise ranking algorithms like Ranking SVMs and IR-SVM
[6] and listwise algorithms were obtained in [15] and [14]. We call these generalization bounds
“query-level generalization bounds”. When analyzing the query-level generalization bounds, the
documents associated with each query are usually regarded as a deterministic set [10, 14], and no
random sampling of documents is assumed. As a result, query-level generalization bounds converge
to zero only when the number of queries approaches infinity, no matter how many documents are
associated with them.

While the existing generalization bounds can explain the behaviors of some ranking algorithms, they
also have their limitations. (1) The assumption that documents are i.i.d. makes the document-level
generalization bounds not directly applicable to ranking in IR. This is because it has been widely ac-
cepted that the documents associated with different queries do not follow the same distribution [17]
and the documents with the same query are no longer independent after represented by document-
query matching features. (2) It is not reasonable for query-level generalization bounds to assume
that one can obtain the document set associated with each query in a deterministic manner. Usually
there are many random factors that affect the collection of documents. For example, in the labeling
process of TREC, the ranking results submitted by all TREC participants were put together and then
a proportion of them were selected and presented to human annotators for labeling. In this process,
the number of participants, the ranking result given by eachparticipant, the overlap between dif-
ferent ranking results, the labeling budget, and the selection methodology can all influence which
documents and how many documents are labeled for each query.As a result, it is more reasonable
to assume a random sampling process for the generation of labeled documents per query.

To address the limitations of previous work, we propose a novel theoretical framework for ranking,
in which a two-layer sampling strategy is assumed. In the first layer, queries are i.i.d. sampled
from the query space according to a fixed but unknown probability distribution. In the second layer,
for each query, documents are i.i.d. sampled from the document space according to a fixed but
unknown conditional probability distribution determinedby the query (i.e., documents associated
with different queries do not have the identical distribution). Then, a set of features are extracted
for each document with respect to the query. Note that the feature representations of the documents
with the same query, as random variables, are not independent any longer. But they are conditionally
independent if the query is given. As can be seen, this new sampling strategy removes improper
assumptions in previous work, and can more accurately describe the data generation process in IR.

Based on the framework, we have performed two-layer generalization analysis for pairwise rank-
ing algorithms. However, the task is non-trivial mainly because the two-layer sampling does not
correspond to a typical empirical process: the documents for different queries are not identically
distributed while the documents for the same query are not independent. Thus, the empirical pro-
cess techniques, widely used in previous work on generalization analysis, are not sufficient. To
tackle the challenge, we carefully decompose the expected risk according to the query and docu-
ment layers, and employ a new concept called two-layer Rademacher average. The new concept
accurately describes the complexity in the two-layer setting, and its reduced versions can be used to
derive meaningful bounds for query layer error and documentlayer error respectively.

According to the generalization bounds we obtained, we havethe following findings: (i) Both more
queries and more documents per query can enhance the generalization ability of ranking methods;
(ii) Only if both the number of training queries and that of documents per query simultaneously
approach infinity, can the generalization bound converge tozero; (iii) Given a fixed size of training
data, there exists an optimal tradeoff between the number ofqueries and the number of documents
per query. These findings are quite intuitive and can well explain empirical observations [19].

2 Related Work

2.1 Pairwise Learning to Rank

Pairwise ranking is one of the major approaches to learning to rank, and has been widely adopted in
real applications [5, 11, 12, 13]. The process of pairwise ranking can be described as follows.
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Assume there aren queries{q1, q2, · · · , qn} in the training data. Each queryqi is associated withmi

documents{di1, · · · , dimi
} and their judgments{yi1, · · · , yimi

}, whereyij ∈ Y. Each documentdij is
represented by a set of featuresxij = ψ(dij , qi) ∈ X , measuring the matching between documentdij
and queryqi. Widely-used features include the frequency of query termsin the document and the
query likelihood given by the language model of the document. For ease of reference, we usez =
(x, y) ∈ X × Y = Z to denote documentd since it encodes all the information ofd in the learning
process. Then the training set can be denoted asS = {S1, · · · , Sn} whereSi , {zij ∈ Z}j=1,··· ,mi

is the document sample for queryqi. For a ranking functionf : X → R, the pairwise 0-1 lossl0−1
and pairwise surrogate losslφ are defined as below:

l0−1(z, z
′; f) = I{(y−y′)(f(x)−f(x′))<0},

lφ(z, z
′; f) = φ

(

− sgn(y − y′) · (f(x)− f(x′))
)

, (1)

whereI{·} is the indicator function andz, z′ are two documents associated with the same query.
When functionφ takes different forms, we will get the surrogate loss functions for different al-
gorithms. For example, for Ranking SVMs, RankBoost, and RankNet, functionφ is the hinge,
exponential, and logistic functions respectively.

2.2 Document-level Generalization Analysis

In document-level generalization analysis, it is assumed that the documents are i.i.d. sampled from
the document spaceZ according toP (z).Then the expected risk of pairwise ranking algorithms can
be defined as below,

Rl
D(f) =

∫

Z2

l(z, z′; f)dP 2(z, z′),

whereP 2(z, z′) is the product probability ofP (z) on the product spaceZ2.

The document-level generalization bound usually takes thefollowing form: with probability at least
1− δ,

Rl
D(f) ≤

1

m(m− 1)

∑

j 6=k

l(zj , zk; f) + ε(δ,F ,m), ∀f ∈ F ,

whereε(δ,F ,m) → 0 when document numberm→ ∞.

As representative work, the generalization bounds for the pairwise 0-1 loss were derived in [1, 9]
and the generalization bounds for RankBoost and Ranking SVMs were obtained in [2] and [11].

As aforementioned, the assumption that documents are i.i.d. makes the document-level generaliza-
tion bounds not directly applicable to ranking in IR. Even ifthe assumption holds, the document-
level generalization bounds still cannot be used to explainexisting pairwise ranking algorithms.
Actually, according to the document-level generalizationbound, what we can obtain is: with proba-

bility at least1− δ, Rl
D(f) ≤

∑
(i,j) 6=(i′,k) l(zij ,z

i′

k ;f)
∑

mi(
∑

mi−1)
+ ε(δ,F ,

∑

mi), ∀f ∈ F . The empirical risk is the
average of the pairwise losses on all the document pairs. This is clearly not the real empirical risk
of ranking in IR, where documents associated with differentqueries cannot be compared with each
other, and pairs are constructed only by documents associated with the same query.

2.3 Query-level Generalization Analysis

In existing query-level generalization analysis [14], it is assumed that each queryqi, represented by
a deterministic document setSi with the same number of documents (i.e.mi ≡ m), is i.i.d. sampled
from the spaceZm. Then the expected risk can be defined as follows,

Rl
Q(f) =

∫

Zm

1

m(m− 1)

∑

j 6=k

l(zj , zk; f)dP (z1, · · · , zm).

The query-level generalization bound usually takes the following form: with probability at least
1− δ,

Rl
Q(f) ≤

1

n

n
∑

i=1

1

m(m− 1)

∑

j 6=k

l(zij , z
i
k; f) + ε(δ,F , n), ∀f ∈ F ,

whereε(δ,F , n) → 0 as query numbern→ ∞.
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As representative work, the query-level generalization bounds for stable pairwise ranking algorithms
such as Ranking SVMs and IR-SVM and listwise ranking algorithms were derived in [15]1 and [14].

As mentioned in the introduction, the assumption that each query is associated with a deterministic
set of documents is not reasonable. The fact is that many random factors can influence what kinds of
documents and how many documents are labeled for each query.Due to this inappropriate assump-
tion, the query-level generalization bounds are sometimesnot intuitive. For example, when more
labeled documents are added to the training set, the generalization bounds of stable pairwise rank-
ing algorithms derived in [15] do not change and the generalization bounds of some of the listwise
ranking algorithms derived in [14] get even looser.

3 Two-Layer Generalization Analysis

In this section, we introduce the concepts of two-layer datasampling and two-layer generalization
ability for ranking. These concepts can help describe the data generation process and explain the
behaviors of learning to rank algorithms more accurately than previous work.

3.1 Two-Layer Sampling in IR

When applying learning to rank techniques to IR, a training set is needed. The creation of such a
training set is usually as follows. First, queries are randomly sampled from query logs of search
engines. Then for each query, documents that are potentially relevant to the query are sampled (e.g.,
using the strategy in TREC [8]) from the entire document repository and presented to human anno-
tators. Human annotators make relevance judgment to these documents, according to the matching
between them and the query. Mathematically, we can represent the above process in the following
manner. First, queriesQ = {q1, · · · , qn} are i.i.d. sampled from the query spaceQ according to
distributionP (q). Second, for each queryqi, its associated documents and their relevant judgments
{(di1, yi1), · · · , (dimi

, yimi
)} are i.i.d. sampled from the document spaceD according to a conditional

distributionP (d|qi) wheremi is the number of sampled documents. Each documentdij is then rep-
resented by a set of matching features, i.e.,xij = ψ(dij , qi), whereψ is a feature extractor. Following
the notation rules in Section 2.1, we usezij = (xij , y

i
j) to represent documentdij and its label, and

denote the training data for queryqi asSi = {zij}j=1,··· ,mi
. Note that although{dij}j=1,··· ,mi

are
i.i.d. samples, random variables{zij}j=1,··· ,mi

are no longer independent because they share the
same queryqi. Only if qi is given, we can regard them as independent of each other.

We call the above data generation processtwo-layer sampling, and denote the training data generated
in this way as(Q,S), whereQ is the query sample andS = {Si}i=1,··· ,n is the document sample.
The two-layer sampling process can be illustrated using Figure 1.
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Figure 1: Two-layer sampling

Note that two-layer sampling has significant difference from the sampling strategies used in pre-
vious generalization analysis. (i) As compared to the sampling in document-level generalization
analysis, two-layer sampling introduces the sampling of queries, and documents associated with

1In [15], although a similar sampling strategy to the two-layer sampling is mentioned, the generalization
analysis, however, does not consider the independent sampling at thedocument layer. As a result, the general-
ization bound they obtained is a query-level generalization bound, but not a two-layer generalization bound.
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Figure 2:(n,m)-sampling

different queries are sampled according to different conditional distributions. (ii) As compared to
the sampling in query-level generalization analysis, two-layer sampling considers the sampling of
documents for each query.

To some extent, the aforementioned two-layer sampling has relationship with directly sampling from
the product space of query and document, and the(n,m)-sampling proposed in [4]. However, as
shown below, they also have significant differences. Firstly, it is clear that directly sampling from
the product space of query and document does not describe thereal data generation process. Fur-
thermore, even if we sample a large number of documents in this way, it is not guaranteed that we
can have sufficient number of documents for each single query. Secondly, comparing Figure 1 with
Figure 2 (which illustrate(n,m)-sampling), we can easily find: (i) in(n,m)-sampling, tasks (cor-
responding to queries) have the same number (i.e.,m) of elements (corresponding to documents),
however, in two-layer sampling, queries can be associated with different numbers of documents;
(ii) in (n,m)-sampling, all the elements are i.i.d., however, in two-layer sampling documents (if
represented by matching features) associated with the samequery are not independent of each other.

3.2 Two-Layer Generalization Ability

With the probabilistic assumption of two-layer sampling, we define the expected risk for pairwise
ranking as follows,

Rl(f) =

∫

Q

∫

Z2

l(z, z′; f)dP (z, z′|q)dP (q), (2)

whereP (z, z′|q) is the product probability ofP (z|q) on the product spaceZ2.
Definition 1. We say that an ERM learning process with lossl in hypothesis spaceF has two-layer
generalization ability, if with probability at least1− δ,

Rl(f) ≤ R̂l
n;m1,··· ,mn

(f ;S) + ε(δ,F , n,m1, , · · · ,mn), ∀f ∈ F ,

whereR̂l
n;m1,··· ,mn

(f ;S) = 1
n

∑n
i=1

1
mi(mi−1)

∑

j 6=k l(z
i
j , z

i
k; f), andε(δ,F , n,m1, · · · ,mn) →

0 iff query numbern and document number per querymi simultaneously approach infinity.

In the next section, we will show our theoretical results on the two-layer generalization abilities of
typical pairwise ranking algorithms.

4 Main Theoretical Result

In this section, we show our results on the two-layer generalization ability of ERM learning with
pairwise ranking losses (either pairwise 0-1 loss or pairwise surrogate losses). As prerequisites, we
recall the concept of conventional Rademacher averages (RA)[3].

Definition 2. For sample{x1, . . . , xm}, the RA ofl ◦ F is defined as follows,Rm(l ◦ F) =

Eσ

[

supf∈F

∣

∣

∣

2
m

∑m
j=1 σj l(xj ; f)

∣

∣

∣

]

, whereσ1, . . . , σm are independent Rademacher random vari-

ables independent of data sample.

With the above definitions, we have the following theorem, which describes when and how the
two-layer generalization bounds of pairwise ranking algorithms converge to zero.
Theorem 1. Supposel is the loss function for pairwise ranking. Assume 1)l ◦ F is bounded byM ,
2)E [Rm(l ◦ F)] ≤ D(l ◦ F ,m), then with probability at least1− δ, for ∀f ∈ F

Rl(f) ≤R̂l
n;m1,··· ,mn

(f) +D(l ◦ F , n) +

√

2M2 log( 4
δ
)

n
+

1

n

n
∑

i=1

D(l ◦ F , b
mi

2
c) +

√

√

√

√

n
∑

i=1

2M2 log 4
δ

min2
.

5



Remark: The condition of the existence of upper bounds forE [Rm(l ◦ F)] can be satisfied in
many situations. For example, for ranking function classF that satisfiesV C(F̃) = V , where
F̃ = {f(x, x′) = f(x) − f(x′); f ∈ F}, V C(·) denotes the VC dimension, and|f(x)| ≤ B, it
has been proved thatD(l0−1 ◦ F ,m) = c1

√

V/m andD(lφ ◦ F ,m) = c2Bφ
′(B)

√

V/m in [3, 9],
wherec1 andc2 are both constants.

4.1 Proof of Theorem 1

Note that the proof of Theorem 1 is non-trivial because documents generated by two-layer sampling
are neither independent nor identically distributed, as aforementioned. As a result, the two-layer
sampling does not correspond to an empirical process and classical proving techniques in statisti-
cal learning are not sufficient for the proof. To tackle the challenge, we decompose the two-layer
expected risk as follows:

Rl(f) = R̂l
n;m1,··· ,mn

(f) +Rl(f)− R̂l
n(f) + R̂l

n(f)− R̂l
n;m1,··· ,mn

(f),

whereR̂l
n(f) =

1
n

∑n
i=1

∫

Z2 l(z, z
′; f)dP (z, z′|qi). We callRl(f)− R̂l

n(f) query-layer errorand

R̂l
n(f)−R̂l

n;m1,··· ,mn
(f) document-layer error. Then, inspired by conventional RA [3], we propose

a concept calledtwo-layer RAto describe the complexity of sample(Q,S).
Definition 3. For two-layer sample(Q,S), the two-layer RA ofl ◦ F is defined as follows,

Rn;m1,··· ,mn(l ◦ F(Q,S)) = Eσ



sup
f∈F

∣

∣

∣

2

n

n
∑

i=1

1

bmi/2c

bmi/2c
∑

j=1

σi
j l(z

i
j , z

i
bmi/2c+j ; f)

∣

∣

∣



 ,

where {σi
j} are independent Rademacher random variables independent of data sample. If

(Q,S) = {qi; zi, z′i}i=1,··· ,n, we call its expected two-layer RA, i.e.,EQ,S [Rn;2,··· ,2(l ◦ F(Q,S))],
document-layer reduced two-layer RA. If(q, S) = {q; z1, · · · , zm}, we call its conditional expected
two-layer RA, i.e.,ES|q [R1;m(l ◦ F(q, S))], query-layer reduced two-layer RA.

Based on the concept of two-layer RA, we can derive meaningful bounds for the two-layer expected
risk. In Section 4.1.1, we prove the query-layer error boundby usingdocument-layer reduced two-
layer RA; and in Section 4.1.2, we prove the document-layer error bound by usingquery-layer
reduced two-layer RA. Combining the two bounds, we can prove Theorem 1 in Section 4.1.3.

4.1.1 Query-Layer Error Bounds

As for the query-layer error bound, we have the following theorem.
Theorem 2. Assumel ◦ F is bounded byM , then with probability at least1− δ,

Rl(f)− R̂l
n(f) ≤ EQ,S [Rn;2,··· ,2(l ◦ F(Q,S))] +

√

2M2 log(2/δ)

n
, ∀f ∈ F .

Proof. We define a functionLf as follows: Lf (q) =
∫

Z2 l(z, z
′; f)dP 2(z|q). Sinceq1, · · · , qn

are i.i.d. sampled,Lf (q1), · · · , Lf (qn) are also i.i.d.. DenoteG1(Q) = supf∈F

∣

∣

∣
Rl(f)− R̂l

n(f)
∣

∣

∣
.

Sincel ◦ F is bounded byM , by the McDiarmid’s inequality, we haveG1(Q) ≤ E [G1(Q)] +
√

2M2 log( 2
δ
)

n . By introducing a ghost query samplẽQ = {q̃1, · · · , q̃n}, we have

E [G1(Q)] = EQ

[

sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Lf (qi)−

∫

Lf (q)dP (q)

∣

∣

∣

∣

∣

]

≤ EQ,Q̃

[

sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Lf (qi)−
1

n

n
∑

i=1

Lf (q̃i)

∣

∣

∣

∣

∣

]

(3)

Further assuming that there are virtual document samples{zi, z′i}i=1,··· ,n and{z̃i, z̃′i}i=1,··· ,n for
query samplesQ andQ̃, we haveLf (qi) = Ezi,z′

i|qi [l(zi, z
′
i; f);Lf (q̃i)] = Ez̃i,z̃′

i|q̃i
[l(z̃i, z̃′i; f)].

SubstituteLf (qi) andLf (q̃i) into inequality 3, we obtain the following result:

E[G1(Q)] = EQ,Q′

[

sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

E
zi,z

′
i
,z̃i,z̃

′
i
|qi,q̃i

(

l(zi, z
′
i; f)− l(z̃i, z̃′i; f)

)

∣

∣

∣

∣

∣

]

≤ Eqi,q̃iEzi,z
′
i
,z̃i,z̃

′
i
|qi,q̃i

[

sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

l(zi, z
′
i; f)− l(z̃i, z̃′i; f)

)

∣

∣

∣

∣

∣

]

= EQ,SEσ

[

sup
f∈F

∣

∣

∣

∣

∣

2

n

n
∑

i=1

σil(zi, z
′
i; f)

∣

∣

∣

∣

∣

]

According to the definition of document-layer reduced two-layer RA, Theorem 2 is proved.
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4.1.2 Document-layer Error Bound

In order to obtain the bound for document-layer error, we consider the fact that documents are
independent if the query sample is given. Then for any given query sample, we can obtain the
following theorem by concentration inequality and symmetrization.

Theorem 3. DenoteG(S) , supf∈F (R̂n(f)− R̂n;m1,··· ,mn
(f)) and assumel ◦ F is bounded by

M , then we have:

P
{

G(S) ≤
1

n

n
∑

i=1

ESi|qi [R1;mi(l ◦ F(qi, Si))] +

√

√

√

√

n
∑

i=1

2M2 log (2/δ)

min2

∣

∣

∣Q
}

≤ 1− δ. (4)

Proof. First, we prove the bounded difference property forG(S).2 Given query sampleQ, all the
documents in the document sample will become independent. DenoteS′ as the document sample
obtained by replacing documentzi0j0 in S with a new document̃zi0j0 . It is clear that

sup
S,S′

∣

∣G(S)−G(S′)
∣

∣ ≤ sup
S,S′

sup
f∈F

∣

∣R̂n;m1,··· ,mn(f ;S)− R̂n;m1,··· ,mn(f ;S
′)
∣

∣

≤ sup
S,S′

sup
f∈F

∑

k 6=j0

∣

∣(l(zi0j0 , z
i0
k ; f)− l(z̃i0j0 , z

i0
k ; f)

∣

∣

nmi0(mi0 − 1)
≤

2M

mi0n
.

Then by the McDiarmid’s inequality, with probability at least1− δ, we have

G(S) ≤ ES|Q[G(S)] +

√

√

√

√

n
∑

i=1

2M2 log (2/δ)

min2
. (5)

Second, inspired by [9] we introduce permutations to convert the non-sum-of-i.i.d. pairwise loss to
a sum-of-i.i.d. form. AssumeSmi

is the symmetric group of degreemi andπi ∈ Smi
(i = 1, · · · , n)

which permutes themi documents associates withqi. Since documents associated with the same
query follow the identical distribution, we have,

1

n

n
∑

i=1

1

mi(mi − 1)

∑

j 6=k

l(zij , z
i
k; f)

p
=

1

n

n
∑

i=1

1

mi!

∑

πi

1

bmi/2c

bmi/2c
∑

j=1

l(ziπi(j), z
i
πi(bmi/2c+j); f), (6)

where
p
= means identity in distribution. Define a functioñG(Si) on eachSi as follows:

G̃(Si) = sup
f∈F

∣

∣

∣

1

bmi/2c

bmi/2c
∑

j=1

l(zij , z
i
b
mi
2

c+j ; f)−Ez,z′|qi

[

l(z, z′; f)
]

∣

∣

∣.

We can see that̃G(Si) does not contain any document pairs that share a common document. By
using Eqn.(6), we can decomposeES|Q[G(S)] into the sum ofESi|qi [G̃(Si)] as below:

ES|Q[G(S)] ≤
1

n

n
∑

i=1

1

mi!

∑

πi

ESi|qi

[

sup
f∈F

∣

∣

∣

∫

Z2

l(z, z′; f)dP (z, z′|qi)

−
1

bmi

2
c

bmi/2c
∑

j=1

l(Zi
πi(j), Z

i
πi(b

mi
2

c+j); f)
∣

∣

∣

]

=
1

n

n
∑

i=1

ESi|qi

[

G̃(Si)
]

. (7)

Third, we give a bound forESi|qi

[

G̃(Si)
]

by use of symmetrization. We introduce a ghost doc-

ument samplẽSi = {z̃ij}j=1,··· ,mi
that is independent ofSi and identically distributed. Assume

σi
1, · · · , σi

bmi/2c are independent Rademacher random variables, independentof Si andS̃i. Then,

ESi|qi

[

G̃(Si)
]

≤ ESi,S̃i|qi



sup
f∈F

∣

∣

∣

1

bmi/2c

bmi/2c
∑

j=1

(

l(zij , z
i
b
mi
2

c+j ; f)− l(z̃ij , z̃
i
b
mi
2

c+j ; f)
)

∣

∣

∣





= ESi,σi|qi



sup
f∈F

∣

∣

∣

2

bmi/2c

bmi/2c
∑

j=1

σi
j l(z

i
j , z

i
bmi/2c+j ; f)

∣

∣

∣



 = ESi|qi [R1;mi(l ◦ F(qi, Si))] . (8)

Jointly considering (5), (7), and (8), we can prove the theorem.
2We say a function has bounded difference, if the value of the function can only have bounded change when

only one variable is changed.
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4.1.3 Combining the Bounds

Considering Theorem 3 and taking expectation on query sampleQ, we can obtain that with proba-
bility at least1− δ,

R̂l
n(f)− R̂l

n;m1,··· ,mn
(f) ≤

1

n

n
∑

i=1

ESi|qi [R1;mi(l ◦ F(qi, Si))] +

√

√

√

√

n
∑

i=1

2M2 log 2
δ

min2
, ∀f ∈ F .

Furthermore, if conventional RA has an upper boundD(l ◦ F , ·), for arbitrary sample distribution,
document-layer reduced two-layer RA can be upper bounded byD(l◦F , n) and query-layer reduced
two-layer RA can be bounded byD(l ◦ F , bmi/2c).
Combining the document-layer error bound and the query-layer error bound presented in the previ-
ous subsections, and considering the above discussions, wecan eventually prove Theorem 1.

4.2 Discussions

According to Theorem 1, we can have the following discussions.

(1) The increasing number of either queries or documents perquery in the training data will enhance
the two-layer generalization ability. This conclusion seems more intuitive and reasonable than that
obtained in [15].

(2) Only if n→ ∞ andmi → ∞ simultaneously does the two-layer generalization bound uniformly
converge. That is, if the number of documents for some query is finite, there will always exist
document-layer error no matter how many queries have been used for training; if the number of
queries is finite, then there will always exist query-layer error, no matter how many documents per
query have been used for training.

(3) If we only have a limited budget to labelC documents in total, according to Theorem 1, there is
an optimal trade off between the number of training queries and that of training documents per query.
This is consistent with previous empirical findings in [19].Actually one can attain the optimal trade
off by solving the following optimization problem:

min
n,m1,··· ,mn

D(l ◦ F , n) +

√

√

√

√

n
∑

i=1

2M2 log 2
δ

min2
+

n
∑

i=1

D(l ◦ F , bmi/2c)

s.t.
n
∑

i=1

mi = C

This optimum problem is easy to solve. For example, if ranking function classF satisfiesV C(F̃) =

V , for the pairwise 0-1 loss, we haven∗ =
c1

√
V+

√
2 log(4/δ)

c1
√
2V

√
C,m∗

i ≡ C
n∗ wherec1 is a constant.

From this result we have the following discussions. (i)n∗ decreases with the increasing capacity of
the function class. That is, we should label fewer queries and more documents per query when the
hypothesis space is larger. (ii) For fixed hypothesis space,n∗ increases with the confidence levelδ.
That is, we should label more query if we want the bound to holdwith a larger probability.

The above findings can be used to explain the behavior of existing pairwise ranking algorithms, and
can be used to guide the construction of training set for learning to rank.

5 Conclusions and Discussions

In this paper, we have proposed conducting two-layer generalization analysis for ranking, and proved
a two-layer generalization bound for ERM learning with pairwise losses. The theoretical results we
have obtained can better explain experimental observations in learning to rank than previous results,
and can provide general guidelines to trade off between deeplabeling and shallow labeling in the
construction of training data.

For future work, we plan to i) extend our analysis to listwiseloss functions in ranking, such as
ListNet [7] and listMLE [18]; ii) and introduce noise condition in order to obtain faster convergency.
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