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Abstract

This paper is concerned with the generalization analysikeaming to rank for
information retrieval (IR). In IR, data are hierarchicatisganized, i.e., consisting
of queries and documents. Previous generalization asdiyisianking, however,
has not fully considered this structure, and cannot exgiaim the simultaneous
change of query number and document number in the trainitegvddl affect the
performance of the learned ranking model. In this paper, pgse performing
generalization analysis under the assumption of two-lagerpling, i.e., the i.i.d.
sampling of queries and the conditional i.i.d sampling ofwoents per query.
Such a sampling can better describe the generation meohaniseal data, and
the corresponding generalization analysis can betteaexthe real behaviors of
learning to rank algorithms. However, it is challenging &rfprm such analy-
sis, because the documents associated with differenteuare not identically
distributed, and the documents associated with the samg fgeome no longer
independent after represented by features extracted fuamyglocument match-
ing. To tackle the challenge, we decompose the expectedceizirding to the two
layers, and make use of the new concept of two-layer Radesnaslerage. The
generalization bounds we obtained are quite intuitive ardraaccordance with
previous empirical studies on the performances of rankiggrithms.

1 Introduction

Learning to rank has recently gained much attention in nmeckgarning, due to its wide applica-
tions in real problems such as information retrieval (IR).aNtapplied to IR, learning to rank is a
process as follows [16]. First, a set of queries, their d@aset documents, and the corresponding
relevance judgments are given. Each document is represbypte set of features, measuring the
matching between document and query. Widely-used feaiiucksle the frequency of query terms
in the document and the query likelihood given by the languagdel of the document. A rank-
ing function, which combines the features to predict thevahce of a document to the query, is
learned by minimizing a loss function defined on the trairdata. Then for a new query, the rank-
ing function is used to rank its associated documents ataptd their predicted relevance. Many
learning to rank algorithms have been proposed, among vthéchairwise ranking algorithms such
as Ranking SVMs [12, 13], RankBoost [11], and RankNet [5]ehagen widely applied.

To understand existing ranking algorithms, and to guidedtheslopment of new ones, people have
studied the learning theory for ranking, in particular, tfemeralization ability of ranking methods.
Generalization ability is usually represented by a bounthefdeviation between the expected and
empirical risks for an arbitrary ranking function in the logpesis space. People have investigated the
generalization bounds under different assumptions. ,Rirh the assumption that documents are
i.i.d., the generalization bounds of RankBoost [11], stgqdairwise ranking algorithms like Ranking
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SVMs [2], and algorithms minimizing pairwise 0-1 loss [1,v@ére studied. We call these general-
ization bounds “document-level generalization boundsiicl converge to zero when the number of
documents in the training set approaches infinity. Secoitl the assumption that queries are i.i.d.,
the generalization bounds of stable pairwise ranking &lyos like Ranking SVMs and IR-SVM
[6] and listwise algorithms were obtained in [15] and [14].e \b&ll these generalization bounds
“query-level generalization bounds”. When analyzing thergtlevel generalization bounds, the
documents associated with each query are usually regasdadiaterministic set [10, 14], and no
random sampling of documents is assumed. As a result, deegygeneralization bounds converge
to zero only when the number of queries approaches infindypnatter how many documents are
associated with them.

While the existing generalization bounds can explain thabieins of some ranking algorithms, they
also have their limitations. (1) The assumption that doausare i.i.d. makes the document-level
generalization bounds not directly applicable to rankimtR. This is because it has been widely ac-
cepted that the documents associated with different gaiddenot follow the same distribution [17]
and the documents with the same query are no longer indepeafier represented by document-
guery matching features. (2) It is not reasonable for quergl generalization bounds to assume
that one can obtain the document set associated with each iguedeterministic manner. Usually
there are many random factors that affect the collectioroofichents. For example, in the labeling
process of TREC, the ranking results submitted by all TRE@gipants were put together and then
a proportion of them were selected and presented to humariatars for labeling. In this process,
the number of participants, the ranking result given by gaaticipant, the overlap between dif-
ferent ranking results, the labeling budget, and the seleehethodology can all influence which
documents and how many documents are labeled for each qdepyresult, it is more reasonable
to assume a random sampling process for the generationeéthdocuments per query.

To address the limitations of previous work, we propose &htheoretical framework for ranking,
in which a two-layer sampling strategy is assumed. In thé fwger, queries are i.i.d. sampled
from the query space according to a fixed but unknown proipadiktribution. In the second layer,
for each query, documents are i.i.d. sampled from the dontisgace according to a fixed but
unknown conditional probability distribution determinbyg the query (i.e., documents associated
with different queries do not have the identical distribn)i. Then, a set of features are extracted
for each document with respect to the query. Note that theifeaepresentations of the documents
with the same query, as random variables, are not indepeadgtonger. But they are conditionally
independent if the query is given. As can be seen, this nevplaagnstrategy removes improper
assumptions in previous work, and can more accurately ithesitre data generation process in IR.

Based on the framework, we have performed two-layer gematin analysis for pairwise rank-
ing algorithms. However, the task is non-trivial mainly base the two-layer sampling does not
correspond to a typical empirical process: the documenmtglifferent queries are not identically
distributed while the documents for the same query are mwgandent. Thus, the empirical pro-
cess techniques, widely used in previous work on genetalizanalysis, are not sufficient. To
tackle the challenge, we carefully decompose the expe&kdccording to the query and docu-
ment layers, and employ a new concept called two-layer Radker average. The new concept
accurately describes the complexity in the two-layersgitand its reduced versions can be used to
derive meaningful bounds for query layer error and docurtassr error respectively.

According to the generalization bounds we obtained, we tavéollowing findings: (i) Both more
gueries and more documents per query can enhance the geastévalability of ranking methods;
(i) Only if both the number of training queries and that ofcdments per query simultaneously
approach infinity, can the generalization bound convergeeto; (iii) Given a fixed size of training
data, there exists an optimal tradeoff between the numbgueries and the number of documents
per query. These findings are quite intuitive and can wellargmpirical observations [19].

2 Related Work

2.1 Pairwise Learning to Rank

Pairwise ranking is one of the major approaches to learmimgrik, and has been widely adopted in
real applications [5, 11, 12, 13]. The process of pairwisdkireg can be described as follows.



Assume there are queries{qi, ¢2, - - - , ¢, } in the training data. Each quegyis associated withn;
documentgd;, - - ,d}, } and their judgment$y;, - - - , v}, }, wherey} € Y. Each document, is
represented by a set of features= v (d}, ¢;) € X, measuring the matching between docum#nt
and queryg;. Widely-used features include the frequency of query tamthe document and the
guery likelihood given by the language model of the documEnt ease of reference, we use=
(z,y) € X x Y = Z to denote document since it encodes all the information @fin the learning
process. Then the training set can be denotesi as{ S, - - - , S, } whereS; = {z;'. € Z}j=t1, m

is the document sample for quegy For a ranking functiorf : X — R, the pairwise 0-1 losg_;
and pairwise surrogate logsare defined as below:

lo-1(2,2"; f) = Iiy—y')(f(a)— f(2)) <0}
lo(2,25 f) = (= sgn(y —¢') - (f(z) — f(2"))), 1)

where!;., is the indicator function and, >’ are two documents associated with the same query.
When function¢ takes different forms, we will get the surrogate loss fumsi for different al-
gorithms. For example, for Ranking SVMs, RankBoost, andkRian, function¢ is the hinge,
exponential, and logistic functions respectively.

2.2 Document-level Generalization Analysis

In document-level generalization analysis, it is assurhatithe documents are i.i.d. sampled from
the document spacg according taP(z).Then the expected risk of pairwise ranking algorithms can
be defined as below,

Roy(f) = / (=7 [)AP? (2, 7)),
22

whereP?(z, ) is the product probability of(z) on the product spacg?.

The document-level generalization bound usually take$aft@ving form: with probability at least
1-09,

v
m(m — 1)

Rp(f) < > Uz, 23 ) + €(8, F,m),Vf € F,
ik
wheree(d, F,m) — 0 when document numben — oo.

As representative work, the generalization bounds for tieyise 0-1 loss were derived in [1, 9]
and the generalization bounds for RankBoost and Ranking SWkte obtained in [2] and [11].

As aforementioned, the assumption that documents aremiades the document-level generaliza-
tion bounds not directly applicable to ranking in IR. Eventhié assumption holds, the document-
level generalization bounds still cannot be used to expaisting pairwise ranking algorithms.
Actually, according to the document-level generalizationnd, what we can obtain is: with proba-
bility at leastl — &, R}, (f) < Z(]Z)jf'(gifzif)" D4 (8, F, S my),Vf € F. The empirical risk is the
average of the pairwise losses on all the document pairs iStdlearly not the real empirical risk
of ranking in IR, where documents associated with differpréries cannot be compared with each
other, and pairs are constructed only by documents asedaiath the same query.

2.3 Query-level Generalization Analysis

In existing query-level generalization analysis [14]sitissumed that each query represented by
a deterministic document s6t with the same number of documents (ie; = m), isi.i.d. sampled
from the space€™. Then the expected risk can be defined as follows,

Loy 1 L
Rof)= [ s 5 es s AP o).
The query-level generalization bound usually takes thieviehg form: with probability at least
1-9,
1 — 1 i
Ro(f) <= T > Uz 2k f) + €(6, Fyn),Vf € F,

n 4 :
i=1 J#k

wheree(d, F,n) — 0 as query numbet — co.



As representative work, the query-level generalizatiaumigs for stable pairwise ranking algorithms
such as Ranking SVMs and IR-SVM and listwise ranking aloni were derived in [15]and [14].

As mentioned in the introduction, the assumption that eamnygis associated with a deterministic
set of documents is not reasonable. The fact is that manypmafalctors can influence what kinds of
documents and how many documents are labeled for each dquasyto this inappropriate assump-
tion, the query-level generalization bounds are sometinmtsntuitive. For example, when more
labeled documents are added to the training set, the geraiah bounds of stable pairwise rank-
ing algorithms derived in [15] do not change and the germatiin bounds of some of the listwise
ranking algorithms derived in [14] get even looser.

3 Two-Layer Generalization Analysis

In this section, we introduce the concepts of two-layer darapling and two-layer generalization
ability for ranking. These concepts can help describe tha daneration process and explain the
behaviors of learning to rank algorithms more accuratedy threvious work.

3.1 Two-Layer Sampling in IR

When applying learning to rank techniques to IR, a trainingseeeded. The creation of such a
training set is usually as follows. First, queries are raniyosampled from query logs of search
engines. Then for each query, documents that are poteniddivant to the query are sampled (e.g.,
using the strategy in TREC [8]) from the entire document spoy and presented to human anno-
tators. Human annotators make relevance judgment to ttueserents, according to the matching
between them and the query. Mathematically, we can repréisembove process in the following
manner. First, querieQ = {q1, - ,¢,} are i.i.d. sampled from the query spa@eaccording to
distribution P(q). Second, for each quety, its associated documents and their relevant judgments
{(di,y}),---,(d,, ,yb,, )} areiid. sampled from the document sp@taccording to a conditional
distribution P(d|g;) wherem; is the number of sampled documents. Each documfeistthen rep-
resented by a set of matching features, ir:?.,: w(d;'., q:), wherey is a feature extractor. Following
the notation rules in Section 2.1, we use= (z},y}) to represent documen; and its label, and
denote the training data for quegyassS; = {2}};=1,... m,. Note that althoug{d’} ;=i ... m, are

i.i.d. samples, random variablés;i}jzl,.. m, are no longer independent because they share the
same query;. Only if ¢; is given, we can regard them as independent of each other.

We call the above data generation prodesslayer samplingand denote the training data generated
in this way ag(@, S), whereQ is the query sample anl = {S;}—1.... ., iS the document sample.
The two-layer sampling process can be illustrated usingreig.

Q (di,yi) (d%,yé) oo (s Ymy) .
o © ogg, | @D @) e )
n (dt,yr) (dz,yz) .. (A s Y
| A
2 2 2
Z:(¢(q,d),y) zZ1 o) Zm2
- S A

Figure 1: Two-layer sampling

Note that two-layer sampling has significant differencerfrihe sampling strategies used in pre-
vious generalization analysis. (i) As compared to the samgph document-level generalization
analysis, two-layer sampling introduces the sampling adrigs, and documents associated with

In [15], although a similar sampling strategy to the two-layer sampling is meetiothe generalization
analysis, however, does not consider the independent samplingdddhment layer. As a result, the general-
ization bound they obtained is a query-level generalization bound, battme-layer generalization bound.
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Figure 2:(n, m)-sampling

different queries are sampled according to different dimmil distributions. (i) As compared to
the sampling in query-level generalization analysis, tayer sampling considers the sampling of
documents for each query.

To some extent, the aforementioned two-layer samplingdladonship with directly sampling from
the product space of query and document, andthen)-sampling proposed in [4]. However, as
shown below, they also have significant differences. Kirdtis clear that directly sampling from
the product space of query and document does not describbedhdata generation process. Fur-
thermore, even if we sample a large number of documentssnathy, it is not guaranteed that we
can have sufficient number of documents for each single g&egondly, comparing Figure 1 with
Figure 2 (which illustratén, m)-sampling), we can easily find: (i) i, m)-sampling, tasks (cor-
responding to queries) have the same number (hg of elements (corresponding to documents),
however, in two-layer sampling, queries can be associattddifferent numbers of documents;
(i) in (n,m)-sampling, all the elements are i.i.d., however, in twoelagampling documents (if
represented by matching features) associated with the gaeng are not independent of each other.

3.2 Two-Layer Generalization Ability

With the probabilistic assumption of two-layer samplings define the expected risk for pairwise
ranking as follows,

n=[ [ 1 nap 2 ir) @

whereP(z, 2’|q) is the product probability of’(z|¢) on the product spacg?.
Definition 1. We say that an ERM learning process with |68 hypothesis spac& has two-layer
generalization ability, if with probability at least— 4,

Rl(f) S éf’b;ml,-“,mn(f;‘s) +6(67-F>n7m177"' 7mn)7vf S ]:7

WhereRiz ML, My, (fv S) = % Z?:l m Zj;ék 1(257 Z]lqv f)! and€(§, ‘F7 n,my, -, mn) -
0 iff query numbem and document number per query; simultaneously approach infinity.

In the next section, we will show our theoretical results loa two-layer generalization abilities of
typical pairwise ranking algorithms.

4 Main Theoretical Result

In this section, we show our results on the two-layer geigibn ability of ERM learning with
pairwise ranking losses (either pairwise 0-1 loss or paieveurrogate losses). As prerequisites, we
recall the concept of conventional Rademacher average3RA

Definition 2. For sample{zy,...,z,}, the RA ofl o F is defined as followsR,,(l o F) =
E, [supfejr 7% ZJ 105z f)H , whereoy, ..., o, are independent Rademacher random vari-
ables independent of data sample.

With the above definitions, we have the following theoremjolhdescribes when and how the
two-layer generalization bounds of pairwise ranking althons converge to zero.

Theorem 1. Supposé is the loss function for pairwise ranking. Assumé d)F is bounded by/,
2)E[Rn(lo F)] < D(lo F,m), then with probability at least — 4, forVf € F

2M2 log (%) 2M?21
) L e m |32,

R'(f) <Rhmy o, (f) + D0 Fyn) +



Remark: The condition of the existence of upper bounds EjfR., (I o F)] can be satisfied in
many situations. For example, for ranking function cld@shat satisfies’C(F) = V, where
F =A{f(z,2") = f(z) — f(«); f € F}, VC(-) denotes the VC dimension, anf(z)| < B, it

has been proved th@(ly_1 o F,m) = c1/V/mandD(ly o F,m) = c2B¢'(B)/V/min[3, 9],
wherec; andcy are both constants.

4.1 Proof of Theorem 1

Note that the proof of Theorem 1 is non-trivial because damisigenerated by two-layer sampling
are neither independent nor identically distributed, aseafientioned. As a result, the two-layer
sampling does not correspond to an empirical process asdicéd proving techniques in statisti-
cal learning are not sufficient for the proof. To tackle thaldnge, we decompose the two-layer
expected risk as follows:

Rl(f) = Ruimy, o () + BU(f) = Bo() + B () = Rovsons o ()
whereR! (f) = 230 | [, U(z,2'; f)dP(z, #'|q;). We callR'(f) — R! (f) query-layer errorand
Rﬁl(f) RL .m1.,m,, (f) document-layer errorThen, inspired by conventional RA [3], we propose
a concept calledNo Iayer RAto describe the complexity of sampl@, S).
Definition 3. For two-layer sampléq@, S), the two-layer RA of o F is defined as follows,
lme2
n o Tga] 2 Ao

j=1

n

Rn;ml,u-,mn(lo.}—(@,s)) =E, sup 2
fe

where {O’;-} are independent Rademacher random variables independedata sample. |If
(@,S) ={a; 2,7 }i=1,.. n, We call its expected two-layer RA, i.Bg s [Rn:2,... 2(l 0 F(Q, S5))],
document-layer reduced two-layer RA(¢f.S) = {q; 21, - , zm },» we call its conditional expected
two-layer RA, i.e.Eg|q [R1:m(l o F(g,5))], query-layer reduced two-layer RA.

Based on the concept of two-layer RA, we can derive meanibgiunds for the two-layer expected
risk. In Section 4.1.1, we prove the query-layer error bopdisingdocument-layer reduced two-
layer RA and in Section 4.1.2, we prove the document-layer errontdwy usingquery-layer
reduced two-layer RACombining the two bounds, we can prove Theorem 1 in Sectibi34

4.1.1 Query-Layer Error Bounds
As for the query-layer error bound, we have the followingpitesen.
Theorem 2. Assumé o F is bounded by/, then with probability at least — 4,

2M?log(2/9)
n

R'(f) — RL(f) <Eq.s [Ru,.. 2(l0 F(Q,S))] + Vf € F.

Proof. We define a functiorl; as follows: L(q) = [;.1(z,2; f)dP?(z|q). Sinceqi, - ,qn
are i.i.d. sampledLs(q1),--- , Ly(qn) are also |.|.d.. Denoté' (Q) = supjcr ‘Rl(f) — RL(f)|.
Sincel o F is bounded byM, by the McDiarmid’s inequality, we hav€'; (Q) < E[G1(Q)] +

4/ %"g(%). By introducing a ghost query sample= {41, - - - , ¢, }, we have
ZLf w) - [ Li@ir@ ZLf a) - —ZLf } @)

Further assuming that there are virtual document san’{pllesi},-zL... » and{z;, Zi}i=17"' n for
query samples) andQ, we haveL(q;) = E. ¢ Uz 2l ) Le(@)] = E, i [1(Zi, 25 )]
SubstituteL ¢(¢;) and L (¢;) into inequality 3, we obtain the following result:

E [Gl(Q)] =Eq |sup

<E
fer 2.Q

sup

n

1 -
E ZEZ”L Z 1Zis 7‘q’t qi (l(Zq,,Z{,f) - 1(21727{7-]‘.))
1=1
< Eq“jiEzi,zéyz'z‘,%\qwii |:Sup

sup Tlliiz:(l(zhzzﬁf)—l(fugﬁ ))’ ZU’ zi, 2 f H

According to the definition of document-layer reduced tager RA, Theorem 2i |s proved. O

E[G1(Q)] = Eq,¢/ Lsctelg

=Eq sE; sup




4.1.2 Document-layer Error Bound

In order to obtain the bound for document-layer error, wesater the fact that documents are
independent if the query sample is given. Then for any giveery sample, we can obtain the
following theorem by concentration inequality and symnzetion.

Theorem 3. DenoteG(S) = supfef(]%n(f) — Ruim, . m, (f)) and assuméo F is bounded by
M, then we have:

PLG(S) < T3 B, [Ragm, (L0 Flai, $))] + J SO Ml 2/0)191 < @

; ; m;n?
=1 i=1

Proof. First, we prove the bounded difference property @iS).? Given query sampl€), all the
documents in the document sample will become independeznot®S’ as the document sample

obtained by replacing docume:ji”0 in .S with a new documeni;'.g. It is clear that
Zusg ‘G(S) — G(S')| < Zup sup ‘Rn;mhm i (F38) = Roeony v, (f S')|

< sup sup Zk;&‘jo ’(l(z;87 Z]1907 ) - l(~;ga Zko; f)‘ < 2M
T 5.5 feF nmig (mig — 1) T Mign

Then by the McDiarmid’s inequality, with probability at ld — ¢, we have

2M?log (2/5)
m;n2

(6)

i=1

G(S) < Esjo[G(9)] + $ >

Second, inspired by [9] we introduce permutations to cdrixernon-sum-of-i.i.d. pairwise loss to

a sum-of-i.i.d. form. Assum§,,, is the symmetric group of degree; andr; € S,,,(i =1,--- ,n
which permutes then; documents associates wigh Since documents associated with the same
guery follow the identical distribution, we have,

n [mi/2]
1 1 i i
5Zmb(ml—1) Zl Zj7zk3’ Zm 'Z Z l(Z‘rer(j)7Z7'rq,(Lmi/2J+j);f): (6)
i=1 j#k j=1
whereZ means identity in distribution. Define a functi6{S;) on eachs; as follows:

Lm; /2]

Z 1(2;72’[%J+]7f) 7Ez,z’\qi [l(Z,Z,,f)] ’

G(S
(Si fef‘ [mif2]

We can see thaf(S;) does not contain any document pairs that share a common eéoturBy
using Eqn.(6), we can decompdgg|[G(S)] into the sum ofEg, |, [G(S;)] as below:

1 n 1 , ,
ES|Q[G(S)] - n Pt mz| — E57,|f11, [?EE‘LQ l(Z,Z 7f)dP(Z7Z |ql)

[mq/2] n

T X W Zema D] = 5 2 B [650)]. Q)

j=1 =1

Third, we give a bound foEg;, |, [G(Si)} by use of symmetrization. We introduce a ghost doc-
ument sampIeS = {Z!}j=1,...m, that is independent of; and identically distributed. Assume
ol Lm /2) @re mdependent Rademacher random variables, indepesidgnandS;. Then,
Lm./2]

ESi|qi [é(sl)] < Esi,gi\qi lsup (l(Z;aZZLmTlJ+Jvf) - (2;721 1J+]7f))’

rerlmif2] —~

Lm;/2]
= ESiJ"’\Qi [?gg‘ [mi/2] Z U] Z]7ZLml/2J+37f)‘ =Eg,q; [Rl imy ¢ O]:(Qzasz))]- (8)

Jointly considering (5), (7), and (8), we can prove the theor O

2\We say a function has bounded difference, if the value of the functioely have bounded change when
only one variable is changed.



4.1.3 Combining the Bounds

Considering Theorem 3 and taking expectation on query sa@plve can obtain that with proba-
bility at leastl — 4,

) Al 1 "\ 2M?log 2
Rn(f) - Rn;ml,‘“,mn (f) < E ZIESH% [Rl;’mi (l o]:(qi?S’i))] + z_; vaf € F.

Furthermore, if conventional RA has an upper boulind o F, -), for arbitrary sample distribution,
document-layer reduced two-layer RA can be upper bounddd(byF, n) and query-layer reduced
two-layer RA can be bounded by(l o F, |m;/2]).

Combining the document-layer error bound and the quergrlayror bound presented in the previ-
ous subsections, and considering the above discussiortgmaventually prove Theorem 1.

4.2 Discussions

According to Theorem 1, we can have the following discussion

(1) The increasing number of either queries or documentgyeny in the training data will enhance
the two-layer generalization ability. This conclusionrssemore intuitive and reasonable than that
obtained in [15].

(2) Only if n — oo andm; — oo simultaneously does the two-layer generalization bourifdtmly
converge. That is, if the number of documents for some gueffinite, there will always exist
document-layer error no matter how many queries have beeth fos training; if the number of
queries is finite, then there will always exist query-laygoe no matter how many documents per
guery have been used for training.

(3) If we only have a limited budget to lab€él documents in total, according to Theorem 1, there is
an optimal trade off between the number of training queniekthat of training documents per query.
This is consistent with previous empirical findings in [LBEtually one can attain the optimal trade
off by solving the following optimization problem:

) 2M?2 log 2 2M?log 3 i
n,mrlr,l~1'r~l,mn l ° f n + mmz ; D(l ° ]:7 Lml/2J)
s.t. ZmL = C

i=1

This optimum problem is easy to solve. For example, if ragkimction classF satisfied/ C/(F) =

Vv, for the pairwise 0-1 loss, we havé = vVt V\/22L‘c/>g(4/5 VC,m: = < wherec, is a constant.

From this result we have the following d|scu55|on5n(‘|)decreases Wlth the increasing capacity of
the function class. That is, we should label fewer queriesraare documents per query when the
hypothesis space is larger. (ii) For fixed hypothesis spat@creases with the confidence level
That is, we should label more query if we want the bound to kdtt a larger probability.

The above findings can be used to explain the behavior ofigiptirwise ranking algorithms, and
can be used to guide the construction of training set fonlagrto rank.

5 Conclusions and Discussions

In this paper, we have proposed conducting two-layer géimetian analysis for ranking, and proved
a two-layer generalization bound for ERM learning with page losses. The theoretical results we
have obtained can better explain experimental obsenatiolearning to rank than previous results,
and can provide general guidelines to trade off between tdrging and shallow labeling in the
construction of training data.

For future work, we plan to i) extend our analysis to listwises functions in ranking, such as
ListNet [7] and listMLE [18]; i) and introduce noise conidit in order to obtain faster convergency.
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