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Abstract

We consider reinforcement learning in partially obsergatbbmains where the
agent can query an expert for demonstrations. Our nonpaiiarBayesian ap-
proach combines model knowledge, inferred from expertrmédion and inde-
pendent exploration, with policy knowledge inferred frorpert trajectories. We
introduce priors that bias the agent towards models with bohple representa-
tions and simple policies, resulting in improved policy anddel learning.

1 Introduction

We address the reinforcement learning (RL) problem of figdingood policy in an unknown,
stochastic, and partially observable domain, given both ttam independent exploration and ex-
pert demonstrations. The first type of data, from independgploration, is typically used by
model-based RL algorithms [1, 2, 3, 4] to learn the world’sayics. These approaches build mod-
els to predict observation and reward data given an agectisng; the action choices themselves,
since they are made by the agent, convey no statisticalnratdon about the world. In contrast,
imitation and inverse reinforcement learning [5, 6] useezkprajectories to learn reward models.
These approaches typically assume that the world’s dyrsisiknown.

We consider cases where we have data from both independplaraion and expert trajecto-
ries. Data from independent observation gives direct médron about the dynamics, while expert
demonstrations show outputs of good policies and thus g@eoividirect information about the un-
derlying model. Similarly, rewards observed during indegent exploration provide indirect infor-
mation about good policies. Because dynamics and policéelinked through a complex, nonlinear
function, leveraging information about both these aspatotsice is challenging. However, we show
that using both data improves model-building and contrdiggenance.

We use a Bayesian model-based RL approach to take advarftdgéhcforms of data, applying
Bayes rule to write a posterior over mod@lsgiven dataD asp(M |D) « p(D|M)p(M). In previ-
ous work [7, 8, 9, 10], the model prig M ) was defined as a distribution directly on the dynamics
and rewards models, making it difficult to incorporate expeijectories. Our main contribution is
a new approach to defining this prior: our prior uses the apsomthat the expert knew something
about the world model when computing his optimal policy.f&iént forms of these priors lead us to
three different learning algorithms: (1) if we know the ex{seplanning algorithm, we can sample
models fromp(M|D), invoke the planner, and weigh models given how likely ithie planner’s
policy generated the expert’s data; (2) if, instead of amilagalgorithm, we have policy prior, we
can similarly weight world models according to how likelystthat probable policies produced the
expert’s data; and (3) we can search directly in the poli@ceguided by probable models.

We focus on reinforcement learning in discrete action arsgnlation spaces. In this domain, one of
our key technical contributions is the insight that the Bage approach used for building models of
transition dynamics can also be used as policy priors, if xeb@&nge the typical role of actions and



observations. For example, algorithms for learning pliyt@bservable Markov decision processes
(POMDPs) build models that output observations and takeciioss as exogenous variables. |If
we reverse their roles, the observations become the exageruiables, and the model-learning
algorithm is exactly equivalent to learning a finite-statatcoller [11]. By using nonparametric

priors [12], our agent can scale the sophistication of itf@s and world models based on the data.

Our framework has several appealing properties. Firstchaices for the policy prior and a world
model prior can be viewed as a joint prior which introducesas tfor world models which are
both simple and easy to control. This bias is especially fi@akin the case of direct policy search,
where itis easier to search directly for good controlleasith s to first construct a complete POMDP
model and then plan with it. Our method can also be used wijthceqimately optimal expert data; in
these cases the expert data can be used to bias which maalkelrbut not set hard constraints on
the model. For example, in Sec. 4 an application where waeixtine essence of a good controller
from good—but not optimal—trajectories generated by a rangednplanning algorithm.

2 Background

A partially observable Markov decision process (POMDP) sgiod/ is an n-tuple
{5,A,0.TQ,R~}. S, A, andO are sets of states, actions, and observations. The stas-tra
tion functionT'(s'|s, a) defines the distribution over next-statéso which the agent may transition
after taking actioru from states. The observation functiof2(o|s’, a) is a distribution over obser-
vationso that may occur in state’ after taking actioru. The reward functiorR(s, a) specifies the
immediate reward for each state-action pair, while [0, 1) is the discount factor. We focus on
learning discrete state, observation, and action spaces.

Bayesian RL In Bayesian RL, the agent starts with a prior distributiBg)/) over possible
POMDP models. Given dat® from an unknown , the agent can compute a posterior over pos-
sible worldsP(M|D) « P(D|M)P(M). The model prior can encode both vague notions, such as
“favor simpler models,” and strong structural assumptiagh as topological constraints among
states. Bayesian nonparametric approaches are weltdoitgoartially observable environments
because they can also infer the dimensionality of the uyiheristate space. For example, the re-
cent infinite POMDP (iPOMDP) [12] model, built from HDP-HMM43, 14], places prior over
POMDPs with infinite states but introduces a strong locddigs towards exploring only a few.

The decision-theoretic approach to acting in the Bayesiars&ting is to treat the modéel/ as
additional hidden state in a larger “model-uncertaintyNPQP and plan in the joint space of models
and states. Herel?(M) represents a belief over models. Computing a Bayes-opfpoiidy is
computationally intractable; methods approximate thénagdtpolicy by sampling a single model
and following that model’s optimal policy for a fixed period ime [8]; by sampling multiple
models and choosing actions based on a vote or stochastiaribsearch [1, 4, 12, 2]; and by trying
to approximate the value function for the full model-unagity POMDP analytically [7]. Other
approaches [15, 16, 9] try to balance the off-line compatetf a good policy (the computational
complexity) and the cost of getting data online (the samplapexity).

Finite State Controllers Another possibility for choosing actions—including in ouarpally-
observable reinforcement learning setting—is to considearametric family of policies, and at-
tempt to estimate the optimal policy parameters from dathais i the approach underlying, for
example, much work on policy gradients. In this work, we foun the popular case of a finite-state
controller, or FSC [11]. An FSC consists of the n-tugl¥,4,0,7,0}. N, A, andO are sets of
nodes, actions, and observations. The node transitiortiumgG(n'|n, o) defines the distribution
over next-nodes’ to which the agent may transition after taking actiofiom noden. The policy
function(a|n) is a distribution over actions that the finite state congrothay output in node.
Nodes are discrete; we again focus on discrete observatibaction spaces.

3 Nonparametric Bayesian Policy Priors

We now describe our framework for combining world models argert data. Recall that our key
assumption is that the expert used knowledge about the lyimdeworld to derive his policy. Fig. 1
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Figure 1: Two graphical models of expert data generatiorit: lthe prior only addresses world
dynamics and rewards. Right: the prior addresses both wgridmics and controllable policies.

shows the two graphical models that summarize our appreatle¢)/ denote the (unknown) world
model. Combined with the world mod#&{, the expert’s policyr, and agent’s policyr, produce the
expert’s and agent’s dafa. and D,. The data consist of a sequencéhitories where a history;
is a sequence of actions, - - - , a;, observation®, - - -, o;, and rewards, - - -, 7,. The agent has
access to all histories, but the true world model and optpoéty are hidden.

Both graphical models assume that a particular wadrlds sampled from a prior over POMDPs,
gu (M). In what would be the standard application of Bayesian Rhhkpert data (Fig. 1(a)), the
prior gxs (M) fully encapsulates our initial belief over world models. é&xpert, who knows the true
world model M, executes a planning algorithplan(M) to construct an optimal policy.. The
expert then executes the policy to generate expert Batalistributed according tp(D,|M, 7. ),
wherer, = plan(M).

However, the graphical model in Fig. 1(a) does not easilgvallis to encode a prior bias toward
more controllable world models. In Fig. 1(b), we introduceeav graphical model in which we
allow additional parameters in the distributipf. ). In particular, if we choose a distribution of the
form

p(me| M) o< frr(me)gn(me) 1)
where we interprey, (7.) as aprior over policiesand f;(7.) as alikelihood of a policy given a
model We can write the distribution over world models as

p(M) o / Frt (7) g (me)ana (M) )

If fu(me) is a delta function oplan(M), then the integral in Eq. 2 reduces to

p(M) o g (72 )gnr (M) (3

whererM = plan(M), and we see that we have a prior that provides input on botiwdnkl’s
dynamics and the world’s controllability. For example,h&tpolicy class is the set of finite state
controllers as discussed in Sec. 2, the policy pyipfr.) might encode preferences for a smaller
number of nodes used the policy, whilg; (A1) might encode preferences for a smaller number of
visited states in the world. The functiofi;(7.) can also be made more general to encode how
likely it is that the expert uses the poliay given world model/.

Finally, we note thap(D.|M, ) factors agp(D&|m)p(DS"|M), whereD¢ are the actions in the
historiesD, and D" are the observations and rewards. Therefore, the conalititistribution over
world models given dat®. andD,, is:

p(M|De, D) O<p(DZ”“,Dalf\/[)gM(M)/ p(D¢|me) g (me) far (e) (4)

Te

The model in Fig. 1(a) corresponds to setting a uniform priog,. (7.). Similarly, the conditional
distribution over policies given data. andD, is

p(e| Des Da) o g (me)p(D2me) / (D2 DulM)gas (1) (5)

We next describe three inference approaches for using Eargd 8 to learn.



#1: Uniform Policy Priors(Bayesian RL with Expert Data). If fy;(7.) = d(plan(M)) and we
believe that all policies are equally likely (graphical nebd(a)), then we can leverage the expert’s
data by simply considering how well that world model’s pylislan()/) matches the expert's
actions for a particular world modél/. Eq. 4 allows us to compute a posterior over world models
that accounts for the quality of this match. We can then uaeghbsterior as part of a planner by
using it to evaluate candidate actions. The expected vdla@ actiort ¢(a) with respect to this
posterior is given by:

Elga)] = /M 4(alM)p(M|DE", D,)

= /M q(a|M)p(Dg", Da| M) gar (M)p(D¢ |plan(M)) (6)

We assume that we can draw samples fig/ | D", D,) o p(D2", D,|M)gas (M), a common
assumption in Bayesian RL [12, 9]; for our iPOMDP-based cagecan draw these samples using
the beam sampler of [17]. We then weight those samplgs( By |7.), wherer, = plan(M), to
yield the importance-weighted estimator

Elq(a)l = q(alMy)p(DE|M;, 7o),  M; ~ p(M|DS", Dy).
7
Finally, we can also sample values fg) by first sampling a world model given the importance-
weighted distribution above and recording tf{e) value associated with that model.

#2: Policy Priors with Model-based Inference. The uniform policy prior implied by standard
Bayesian RL does not allow us to encode prior biases aboutdhey. With a more general prior
(graphical model 1(b) in Fig. 1), the expectation in Eq. 6dmees

Ela(e)] = [ alalM)p(D2" Dul Mg (M)g-PLan(M))p(Delp1an(M) (1)

where we still assume that the expert uses an optimal pdtiayis, f1;(7m.) = d(plan(M)). Using

Eqg. 7 can result in somewhat brittle and computationallgnsive inference, however, as we must
computer, for each sampled world modél/. It also assumes that the expert used the optimal
policy, whereas a more realistic assumption might be tleaexpert uses a near-optimal policy.

We now discuss an alternative that relaxgs(m.) = d(plan(M)): let fa(7.) be a function that
prefers policies that achieve higher rewards in world maddelfy, (7.) x exp {V (7w.|M)}, where
V(me| M) is the value of the policyr, on world M ; indicating a belief that the expert tends to sample
policies that yield high value. Substituting thyfig (7.) into Eq. 4, the expected value of an action is

Elg(a)] :/JV[ q(a| M)p(D¢|me) exp {V (me| M)} g (me ) (D", Da|M)gas (M)

We again assume that we can draw samples i | D", D,) x p(D2", D,|M)gn (M), and
additionally assume that we can draw samples fpgm |D%) « p(DZ|m.)gx (), yielding:

Elq(a)l Y q(alM;)> exp {V(me;|M;)},  M;~p(M|DZ", Dy),me; ~ p(me| DE)  (8)
i J
As in the case with standard Bayesian RL, we can also use oghtgd world models to draw
samples fromy(a).

#3: Policy Priorswith Joint Model-Policy Inference.  While the model-based inference for pol-
icy priors is correct, using importance weights often ssfi@hen the proposal distribution is not
near the true posterior. In particular, sampling world meded policies—both very high dimen-
sional objects—from distributions that ignore large paftthe evidence means that large numbers
of samples may be needed to get accurate estimates. We noribdeasn inference approach that
alternates sampling models and policies that both avoigsitance sampling and can be used even

"We omit the belief over world statégs) from the equations that follow for clarity; all referencegta| M)
areqg(alba(s), M).



in cases wherég,, (m.) = d(plan(M)). Once we have a set of sampled models we can compute the
expectatiorE[¢(a)] simply as the average over the action valyeg M;) for each sampled model.

The inference proceeds in two alternating stages: first, amepte a new policy given a sampled
model. Given a world model, Eq. 5 becomes

p(me|De, Day M) o< gr(me)p(Dg|me) far (Te) )

where makingg (7.) andp(D%|w,) conjugate is generally an easy design choice—for example,
in Sec. 3.1, we use the iIPOMDP [12] as a conjugate prior ovéicips encoded as finite state
controllers. We then approximafg, (7.) with a function in the same conjugate family: in the case
of the iPOMDP prior and count dat2?, we also approximatg,, with a set of Dirichlet counts
scaled by some temperature parameterAs « is increased, we recover the desirgd (r.) =
d(plan(MM)); the initial approximation speeds up the inference and doesaffect its correctness.

Next we sample a new world model given the policy. Given agypkq. 4 reduces to
p(MlDeaDa) OCp(Dgﬂ"’Da|M)g]W(M)f]\/[(7re)- (10)

We apply a Metropolis-Hastings (MH) step to sample new wartlels, drawing a new modél’

from p(D2", D,|M)ga (M) and accepting it with ratié;%. If far(me) is highly peaked, then

this ratio is likely to be ill-defined; as when sampling p@i we apply a tempering scheme in the
inference to smootlfiy, (7). For example, if we desirefh(7.) = d(plan(M)), then we could use

smoothed versioffiy (7. ) o exp(a-(V (7o|M)—V (7| M))?), whereb is a temperature parameter
for the inference. While applying MH can suffer from the sas®ies as the importance sampling in
the model-based approach, Gibbs sampling new policieswesnane set of proposal distributions
from the inference, resulting in better estimates with fiesamples.

3.1 Priorsover State Controller Policies

We now turn to the definition of the policy prigir.). In theory, any policy prior can be used, but
there are some practical considerations. Mathematidhkypolicy prior serves as a regularizer to
avoid overfitting the expert data, so it should encode a peafee toward simple policies. It should
also allow computationally tractable sampling from thetpder p(7e|De) o p(De|me)p(me).

In discrete domains, one choice for the policy prior (as aelthe model prior) is the iPOMDP [12].
To use the iPOMDP as a model prior (its intended use), we éiet&ins as inputs and observations
as outputs. The iPOMDP posits that there are an infinite nuoflsatess but a few popular states
are visited most of the time; the beam sampler [17] can effiiglraw samples of state transition,
observation, and reward models for visited states. Joieténce over the model paramet&ts?, R
and the state sequengallows us to infer the number of visited states from the data.

To use the iPOMDP as a policy prior, we simply reverse thesrolfeactions and observations,
treating the observations as inputs and the actions astsutgaw, the iPOMDP posits that there is
a state controller with an infinite number of nodegsbut probable polices use only a small subset
of the nodes a majority of the time. We perform joint infererower the node transition and policy
parameters andn as well as the visited nodes The ‘policy state’ representation learned is not
the world state, rather it is a summary of previous obsesaativhich is sufficient to predict actions.
Assuming that the training action sequences are drawn freoptimal policy, the learner will
learn just enough “policy state” to control the system oplign As in the model prior application,
using the iPOMDP as a policy prior biases the agent towardglsr policies—those that visit fewer
nodes—nbut allows the number of nodes to grow as with new ergp#drience.

3.2 Consistency and Correctness

In all three inference approaches, the sampled models ditiegoare an unbiased representation
of the true posterior and are consistent in that in the lirhinnite samples, we will recover the
true model and policy posteriors conditioned on their redpe dataD,, D" and DZ. There are
some mild conditions on the world and policy priors to enstorsistency: since the policy prior
and model prior are specified independently, we requirettieae exist models for which both the
policy prior and model prior are non-zero in the limit of dat@ormally, we also require that the
expert provide optimal trajectories; in practice, we sex this assumption can be relaxed.



Rewards for Multicolored Gridworld Rewards for Snakes
4000

iPOMDP
mm— |nference #1

3000 = |nference #2

= |nference #3

100

2000
0>

1000

Cumulative Reward
2

0

20
-1000 = =
0 1000 2000 3000
N . 0 1000 2000 300 4000 5000 6000 7000 8000
Iterations of EXperlence Iterations of Experience

Figure 2: Learning curves for the multicolored gridworleff) and snake (right). Error bars are 95%
confidence intervals of the mean. On the far right is the snalxet.

Cumulative Reward

3.3 Planning with Distributions over Policiesand Models

All the approaches in Sec. 3 output samples of models oripsli® be used for planning. As
noted in Section 2, computing the Bayes optimal action igcglly intractable. Following similar
work [4, 1, 2, 12], we interpret these samples as beliefshénnodel-based approaches, we first
solve each model (all of which are generally small) usingagdéad POMDP planners. During the
testing phase, the internal belief state of the models @émibdel-based approaches) or the internal
node state of the policies (in the policy-based approaciespdated after each action-observation
pair. Models are also reweighted using standard importamights so that they continue to be an
unbiased approximation of the true belief. Actions are ehdsy first selecting, depending on the
approach, a model or policy based on their weights, and theionming its most preferred action.
While this approach is clearly approximate (it considertestacertainty but not model uncertainty),
we found empirically that this simple, fast approach to@telection produced nearly identical
results to the much slower (but asymptotically Bayes opistachastic forward search in [12].

4 Experiments

We first describe a pair of demonstrations that show two itgpoproperties of using policy priors:
(1) that policy priors can be useful even in the absence oémrxgata and (2) that our approach
works even when the expert trajectories are not optimal. Wga tompare policy priors with the
basic iPOMDP [12] and finite-state model learner trainedh\&M on several standard problems. In
all cases, the tasks were episodic. Since episodes couliiMagiable length—specifically, experts
generally completed the task in fewer iterations—we alloeach approachv = 2500 iterations, or
interactions with the world, during each learning trial.eTéigent was provided with an expert tra-
jectory with probability.5 5, wheren was the current amount of experience. No expert trajectorie
were provided in the last quarter of the iterations. We rahegproach for 10 learning trials.

Models and policies were updated every 100 iterations, anl episode was capped at 50 iterations
(though it could be shorter, if the task was achieved in fategations). Following each update, we
ran 50 test episodes (not included in the agent’s experjemitle the new models and policies to
empirically evaluate the current value of the agents’ golior all of the nonparametric approaches,
50 samples were collected, 10 iterations apart, after a-iouofi 500 iterations. Sampled models
were solved using 25 backups of PBVI [18] with 500 sampledef®l One iteration of bounded
policy iteration [19] was performed per sampled model. Thédistate learner was trained using
min(25, |S]), where|S| was the true number of underlying states. Both the nonparamand
finite learners were trained from scratch during each updadound empirically that starting from
random points made the learner more robust than startingp@tantially poor local optima.

Policy Priorswith No Expert Data The combined policy and model prior can be used to encode
a prior bias towards models with simpler control policiesisTinterpretation of policy priors can

2\We suspect that the reason the two planning approaches yield simillis ieghat the stochastic forward
search never goes deep enough to discover the value of learning tled amal thus acts equivalently to our
sampling-based approach, which only considers the value of learrongabout the underlying state.



be useful even without expert data: the left pane of Fig. 2vshine performance of the policy
prior-biased approaches and the standard iPOMDP on a gidlywmblem in which observations
correspond to both the adjacent walls (relevant for plagireimd the color of the square (not relevant
for planning). This domain has 26 states, 4 colors, stand&EW actions, and an 80% chance of
a successful action. The optimal policy for this gridworldsasimple: go east until the agent hits
a wall, then go south. However, the varied observations rntael@OMDP infer many underlying
states, none of which it could train well, and these modeds abnfused the policy-inference in
Approach 3. Without expert data, Approach 1 cannot do b#tter iPOMDP. By biasing the agent
towards worlds that admit simpler policies, the model-baséerence with policy priors (Approach
2) creates a faster learner.

Policy Priorswith Imperfect Experts While we focused on optimal expert data, in practice pol-
icy priors can be applied even if the expert is imperfect.. B{tp) shows learning curves for a sim-

ulated snake manipulation problem with a 40-dimensionatinoous state space, corresponding
to (x,y) positions and velocities of 10 body segments. Awiare 9-dimensional continuous vec-

tors, corresponding to desired joint angles between segn&he snake is rewarded based on the
distance it travels along a twisty linear “maze,” encoungdt to wiggle forward and turn corners.

We generated expert data by first deriving 16 motor primitifige the action space using a cluster-
ing technique on a near-optimal trajectory produced by a&haexploring random tree (RRT). A
reasonable—but not optimal—controller was then designathusiernative policy-learning tech-
niques on the action space of motor primitives. Trajectofiem this controller were treated as
expert data for our policy prior model. Although the tragads and primitives are suboptimal,
Fig. 2(b) shows that knowledge of feasible solutions bopst$ormance when using the policy-
based technique.

Testson Standard Problems We also tested the approaches on ten problems: tiger [204t&s3,
network [20] (7 states), shuttle [21] (8 states), an adaptadion of gridworld [20] (26 states),
an adapted version of follow [2] (26 states) hallway [20] &&tes), beach (100 states), rocksam-
ple(4,4) [22] (257 states), tag [18] (870 states), and insegech (16321 states). In the beach
problem, the agent needed to track a beach ball on a 2D grié.imiage-search problem involved
identifying a unique pixel in an 8x8 grid with three type otédils with varying cost and scales.
We compared our inference approaches with two approacheslithnot leverage the expert data:
expectation-maximization (EM) used to learn a finite worlddal of the correct size and the infinite
POMDP [12], which placed the same nonparametric prior ov@tdymodels as we did.
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Figure 3: Performance on several standard problems, wih @mfidence intervals of the mean.



Fig. 3 shows the learning curves for our policy priors apphes (problems ordered by state space
size); the cumulative rewards and final values are shownliteTh As expected, approaches that
leverage expert trajectories generally perform bettar thase that ignore the near-optimality of the
expert data. The policy-based approach is successful emengthe larger problems. Here, even
though the inferred state spaces could grow large, poli@egined relatively simple. The opti-
mization used in the policy-based approach—recall we ussttiehastic search to find a probable

policy—was also key to producing reasonable policies wittited computation.

Cumulative Reward Final Reward
iPOMDP App. App. App. EM iPOMDP, App.1 | App.2 | App.3 | EM
1 2 3

tiger -2.2e3 | -1.4e3 | -5.3e2 | -2.2e2 | -3.0e3 || -2.0el | -1.0el | -2.3 16 -2.0el
network -1.5e4 | -6.3e3 | -2.1e3 | 194 | -2.6e3 || -1.1el | -1.2el | -4.0e-1| 1.1lel -4.7
shuttle -53el | 7.9el | 15e2 | 5.1el | 0.0 1.7e-1 | 3.3e-1 | 6.5e-1 | 86e-1 | 0.0
follow -6.3e3 | -2.3e3 | -1.9e3 | -1.6e3 | -5.0e3 || -5.9 -3.1 -1.4 -11 -5.0
gridworld -2.0e3 | -6.2e2 | -7.0e2 | 4.6e2 | -3.7e3 | -1.3 5.3e-1 | 1.8 2.3 2.1
hallway 2.0e-1 | 14 1.6 6.6 0.0 8.6e-4 | 7.4e-3 | 1.4e-2 | 19e2 | 0.0
beach 1.9e2 1l.4e2 | 1.8e2 | 1.9e2 | 3.5e2 2.0e-1 | 1.1e-1 | 1.4e-1 | 2.7e-1 | 3.4el
rocksample| -3.2e3 | -1.7e3 | -1.8e3 | -1.0e3 | -3.5e3 || -1.6 -53e-1| -1.3 12 -2.0
tag -1.6e4 | -6.9e3 | -7.4e3 | -35e3 | - -9.4 -2.8 -4.1 -17 9.1
image -7.8e3 | -5.3e3 | -6.1e3 | -3.9e3 | - -5.0 -3.6 -4.2 1.3el -5.0

Table 1: Cumulative and final rewards on several problem#d #alues highlight best performers.

5 Discussion and Related Work

Several Bayesian approaches have been developed for Rlttiallpaobservable domains. These
include [7], which uses a set of Gaussian approximationdw or analytic value function updates
in the POMDP space; [2], which jointly reasons over the spddeirichlet parameters and states
when planning in discrete POMDPs, and [12], which samplegeaisofrom a nonparametric prior.

Both [1, 4] describe how expert data augment learning. Tike[fi lets the agent to query a state
oracle during the learning process. The computationalfiiesfea state oracle is that the informa-
tion can be used to directly update a prior over models. Hewenw large or complex domains, the
agent’s state might be difficult to define. In contrast, [43 ne agent query an expert for optimal ac-
tions. While policy information may be much easier to speeifgicorporating the result of a single
query into the prior over models is challenging; the paetiiitering approach of [4] can be brittle
as model-spaces grow large. Our policy priors approachargés trajectories; by learning policies
rather than single actions, we can generalize better addagganodels more holistically. By work-
ing with models and policies, rather than just models as]infé can also consider larger problems
which still have simple policies. Targeted criteria for imgkfor expert trajectories, especially one
with performance guarantees such as [4], would be an integesxtension to our approach.

6 Conclusion

We addressed a key gap in the learning-by-demonstratienafitre: learning from both expert and
agent data in a partially observable setting. Prior workdusepert data in MDP and imitation-
learning cases, but less work exists for the general POMBP. caur Bayesian approach combined
priors over the world models and policies, connecting imfation about world dynamics and expert
trajectories. Taken together, these priors are a new wanjrik &bout specifying priors over models:
instead of simply putting a prior over the dynamics, our ppmvides a bias towards models with
simple dynamics and simple optimal policies. We show withapproach expert data never reduces
performance, and our extra bias towards controllabilitprioves performance even without expert
data. Our policy priors over nonparametric finite state ialgrs were relatively simple; classes of
priors to address more problems is an interesting dire¢tiofuture work.
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