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Abstract

We consider structured multi-armed bandit problems basethe Generalized
Linear Model (GLM) framework of statistics. For these bdsdive propose a new
algorithm, called GLM-UCB. We derive finite time, high prdhlity bounds on
the regret of the algorithm, extending previous analysegldped for the linear
bandits to the non-linear case. The analysis highlightyalk@culty in generaliz-
ing linear bandit algorithms to the non-linear case, whichdlved in GLM-UCB
by focusing on the reward space rather than on the paranpetee sMoreover, as
the actual effectiveness of current parameterized balgditithms is often poorin
practice, we provide a tuning method based on asymptoticaegts, which leads
to significantly better practical performance. We presemt humerical experi-
ments on real-world data that illustrate the potential ef@&LM-UCB approach.

Keywords: multi-armed bandit, parametric bandits, generalizeddmmodels,
UCB, regret minimization.

1 Introduction

In the classical-armed bandit problem, an agent selects at each time stepféhe X' arms and
receives a reward that depends on the chosen action. The #imagent is to choose the sequence
of arms to be played so as to maximize the cumulated rewaréreTis a fundamental trade-off
between gathering experimental data about the rewarddigon (exploration) and exploiting the
arm which seems to be the most promising.

In the basic multi-armed bandit problem, also called theepmhdent bandits problem, the
rewards are assumed to be random and distributed indep®ndecording to a probability
distribution that is specific to each arm —sege [1) 2| 3, 4] &fierences therein. Recentyfructured
bandit problemsn which the distributions of the rewards pertaining to eacm are connected
by a common unknown parameter have received much atterflicfi, [7,13,.8]. This model is
motivated by the many practical applications where the remobarms is large, but the payoffs are
interrelated. Up to know, two different models were studiethe literature along these lines. In
one model, in each times step, a side-information, or canitegiven to the agent first. The payoffs
of the arms depend both on this side information and the imdéixe arm. Thus the optimal arm
changes with the context [5, 6, 9]. In the second, simplerehddat we are also interested in here,
there is no side-information, but the agent is given a moldai tescribes the possible relations



between the arms’ payoffs. In particular, in “linear basd{i10, [8,/11,12], each arma € A is
associated with somé-dimensional vectom, € R? known to the agent. The expected payoffs
of the arms are given by the inner product of their associagstior and some fixed, but initially
unknown parameter vectéy. Thus, the expected payoff of amris m/, 0., which is linear ind, i

In this article, we study a richegeneralized linear mod€IGLM) in which the expectation of
the reward conditionally to the actianis given byu(m/ 6.), wherey is a real-valued, non-linear
function called the (inverse) link function. This genezation allows to consider a wider class
of problems, and in particular cases where the rewards anatgmr binary variables using,
respectively, Poisson or logistic regression. Obviouhbig, situation is very common in the fields of
marketing, social networking, web-mining (see exampleeaxft®n[5.P below) or clinical studies.

Our first contribution is an “optimistic” algorithm, term&lM-UCB, inspired by théJpper Con-
fidence BounqUCB) approachl|2]. GLM-UCB generalizes the algorithmsstd by [10, 8] 12].
Our next contribution are finite-time bounds on the stat@tperformance of this algorithm. In
particular, we show that the performance depends on therdiiore of the parameter but not on the
number of arms, a result that was previously known in thealirase. Interestingly, the GLM-UCB
approach takes advantage of the particular structure gfdhemeter estimate of generalized linear
models andperates only in the reward spactn contrast, the parameter-space confidence region
approach adopted byl[3,112] appears to be harder to geretalizon-linear regression models.
Our second contribution is a tuning method based on asymo@ajuments. This contribution
addresses the poor empirical performance of the curreatittigns that we have observed for small
or moderate sample-sizes when these algorithms are tused ba finite-sample bounds.

The paper is organized as follows. The generalized lineadibenodel is presented in Sectith 2,
together with a brief survey of needed statistical resuBection[B is devoted to the description
of the GLM-UCB algorithm, which is compared to related ammioes. Sectiofil 4 presents our
regret bounds, as well as a discussion, based on asymp@ticants, on the optimal tuning of the
method. Sectiofll5 reports the results of two experimentgaldata sets.

2 Generalized Linear Bandits, Generalized Linear Models

We consider a structured bandit model with a finite, but fugsiery large, number of arms. At
each time, the agent chooses an arn from the setA (we shall denote the cardinality éfby K).
The prior knowledge available to the agent consists of a&ctitin of vectorgm,, },ca Of features
which are specific to each arm and a so-called (invdirgefunctiony : R — R.

The generalized linear bandit modétvestigated in this work is based on the assumption that
the payoffR, received at time is conditionally independent of the past payoffs and croa®d it
satisfies

B[R] Ae] = p(mly,04) , 1)

for some unknown parameter vectar € R%. This framework generalizes the linear bandit model
considered by [10, 8, 12]. Just like the linear bandit modgds on linear regression, our model
capitalizes on the well-known statistical framework of @alized Linear Models (GLMs). The
advantage of this framework is that it allows to addressoues; specific reward structures widely
found in applications. For example, when rewards are bivalyed, a suitable choice ¢f is
u(x) = exp(x)/(1 + exp(z)), leading to thdogistic regression modeFor integer valued rewards,
the choiceu(x) = exp(x) leads to théPoisson regression modérhis can be easily extended to the
case ofmultinomial (or polytomic) logistic regressiomhich is appropriate to model situations in
which the rewards are associated with categorical vasable

To keep this article self-contained, we briefly review theirmaroperties of GLMs|[13]. A
univariate probability distribution is said to belong t@@nonical exponential familif its density
with respect to a reference measure is given by

pp(r) = exp (rf = b(B) + c(r)) , )

where is a real parametery(-) is a real function and the functioi(-) is assumed to be twice
continuously differentiable. This family contains the Gaian and Gamma distributions when the
reference measure is the Lebesgue measure and the Poiss8eraoulli distributions when the

Throughout the paper we use the prime to denote transpuositio



reference measure is the counting measure on the integers random variablé& with density
defined in[R)E(R) = b(3) andVar(R) = b(3), whereb andb denote, respectively, the first and
second derivatives df. In addition,b(;3) can also be shown to be equal to the Fisher information
matrix for the parametes. The functiorb is thus strictly convex.

Now, assume that, in addition to the response vari&hl&e have at hand a vector of covariates
X € R?. The canonical GLM associated {d (2) postulates thét|z) = p,.¢(r), whered € R?
is a vector of parameter. Denote py= b the so-callednverse link function From the properties
of b, we know thatu is continuously differentiable, strictly increasing, atidis one-to-one. The

maximum likelihood estimataof;, based on observatioi®;, X1),...(R:—1, Xt—1), is defined as
the maximizer of the function

t—1 t—1
> logps(Ri|Xk) =Y Re X0 — b(X10) + c(Ry) ,
k=1 k=1

a strictly concave function i@ Upon differentiating, we obtain tha} is the unique solution of
the following estimating equation

~
|

1
(Ri — u(X/0)) X3 = 0, ©)
1

where we have used the fact that= b. In practice, the solution of13) may be found efficiently
using, for instance, Newton’s algorithm.

b
Il

A semi-parametric version of the above model is obtaineddsyiming only thafy[R|X] =
1(X'6) without (much) further assumptions on the conditionalriistion of R given X. In this
case, the estimator obtained by solvillg (3) is referred th@smaximum quasi-likelihood estimator
It is a remarkable fact that this estimator is consisteneundry general assumptions as long as the
design matrixz’,;;l1 XX, tends to infinity [14]. As we will see, this matrix also playsicial
role in the algorithm that we propose for bandit optimizatio the generalized linear bandit model.

3 The GLM-UCB Algorithm

According to [1), the agent receives, upon playing arra random reward whose expected value is
u(ml6.), whered, € O isthe unknown parameter. The parametefsistan arbitrary closed subset
of R, Any arm with largest expected reward is calfgatimal The aim of the agent is to quickly find
an optimal arm in order to maximize the received rewards. greedy actiorargmax, ¢ u(m;ét)
may lead to an unreliable algorithm which does not suffi¢yegxplore to guarantee the selection of
an optimal arm. This issue can be addressed by resorting“mpéimistic approach”. As described
by [€,112] in the linear case, an optimistic algorithm cotssis selecting, at time¢, the arm

A = argmaxmaxEy [R | Ay = a] st (|6 — Oull s, < p(1), (4)

wherep is an appropriate, “slowly increasing” function,
t—1
M, = ZmAkm;lk (5)
k=1

is the design matrix corresponding to the fitst 1 timesteps andlv||,, = vv’Mv denotes the
matrix norm induced by the positive semidefinite matkix The region||6 — 6;||r;, < p(t) is

a confidence ellipsoid around the estimated paranteteGeneralizing this approach beyond the
case of linear link functions looks challenging. In partimuin GLMs, the relevant confidence
regions may have a more complicated geometry in the parasetee than simple ellipsoids. As
a consequence, the benefits of this form of optimistic algors appears dubiofis.

2Here, and in what follow$og denotes the natural logarithm.

®Note that maximizing.(m/,0) over a convex confidence region is equivalent to maximiziri@ over the
same region sincg is strictly increasing. Thus, computationally, this apgro is not more difficult than it is
for the linear case.



An alternative approach consists in directly determinimgupper confidence bound for the
expected reward of each arm, thus choosing the aatibat maximizes
Eét [Re| Ay = a] + p(t)Hma”M;l :

In the linear case the two approaches lead to the same so[df. Interestingly, for non-linear
bandits, the second approach looks more appropriate.

In the rest of this section, we apply this second approadig @M bandit model defined ifl(1).
According to [B), the maximum quasi-likelihood estimatdrtioe parameter in the GLM is the
unique solution of the estimating equation

t—1

> (Ri = s, 00)) ma, =0, (6)
k=1
whereAq, ..., A;_1 denote the arms played so far aRd . . ., R, are the corresponding rewards.

Let g,(0) = 22;11 p(m’y, 0)ma, be the invertible function such that the estimated parantete
satisfiesg; (6;) = i ) Ryma, . Sinced, might be outside of the set of admissible parametgrs
we “project it” to O, to obtaind,:

f; = argmin Hgt(e) - gt(ét)H (")

:argmiant 0) — Rima
6cO 0o (6) Z i

Mt
Note that ifd, € © (which is easy to check and which happened to hold alwaysirtamples we

dealt with) then we can e, = 6. This is important since computiry is non-trivial and we can
save this computation by this simple check. The proposeatiggn, GLM-UCB, is as follows:

Algorithm 1 GLM-UCB
1: Input: {mg}aea
2: Play actionsuy, . .., aq, receiveRy, . .., Ry.
3: fort > ddo

4 Est|mat69t accordlng to[(b)

5 if 9t cOletd, =0, elsecompute9t according to[{l7)
6: Play the actiom; = argmax, { (m!.0,) + p(t )HmaHM;] } receiveR;
7: end for

At time ¢, for each armu, an upper bounq&(m;ét) + B¢ is computed, where the “exploration
bonus” 3¢ = p(t)|mall,,-1 is the product of two terms. The quantjtyt) is a slowly increasing

function; we prove in Sectiofl 4 tha{t) can be set to guarantee high-probability bounds on the
expected regret (for the actual form used, $ée (8)). Notethiealeading term of3¢ is ||ma||M;1

which decreases to zero amcreases.

As we are mostly interested in the case when the number of & much larger than the
dimensiond, the algorithm is simply initialized by playing actions, . . . , ag such that the vectors
Ma, - - ., Mg, form a basis ofM = spartm,,a € A). Without loss of generality, here and in what
follows we assume that the dimension/ef is equal tod. Then, by playingis, ..., aq in the first
d steps the agent ensures thiét is invertible for allt. An alternative strategy would be to initialize
My = Mol, wherel is thed x d identify matrix.

3.1 Discussion

The purpose of this section is to discuss some propertiesiggrthm[, and in particular the
interpretation of the role played byﬂaHMt—l.

Generalizing UCB The standard UCB algorithm fd£ arms [2] can be seen as a special case of
GLM-UCB where the vectors of covariates associated withatines form an orthogonal system and
u(x) = z. Indeed, take = K,A = {1, ..., K}, define the vectorm, }.ca as the canonical basis
{e.}aen Of RY, and taked € R? the vector whose componefy is the expected reward for arm



Then, M, is a diagonal matrix whose-th diagonal element is the numbat (a) of times the

a-th arm has been played up to timeTherefore, the exploration bonusAin GLM-UCB is given by
B¢ = p(t)/\/Ni(a). Moreover, the maximum quasi-likelihood estimatprsatisfieskR¢ = 6,(a)
1

foralla € A, whereR} = @ o I 4,—a} Ry is the empirical mean of the rewards received

while playing arma. Algorithm[ then reduces to the familiar UCB algorithm. hist case, it
is known that the expected cumulated regret can be cordrai®n setting the slowly varying

functionp to p(t) = /2 log(t), assuming that the range of the rewards is bounded by_bne [2].

Generalizing linear bandits Obviously, setting:(x) = x, we obtain a linear bandit model. In
this case, assuming th@t= R<, the algorithm will reduce to those described in the pagfzi2].

In particular, the maximum quasi-likelihood estimator m@es the least-squares estimator and as
noted earlier, the algorithm behaves identically to onecwlthooses the parameter optimistically

within the confidence ellipsoih : || — 6, [as, < p(t)}.

Dependence in the Number of Arms In contrast to an algorithm such as UCB, Algoritiiin 1
does not need that all arms be played even fin®e.understand this phenomenon, observe that,

_ 2
asMyp1 = M; + ma,m/y,, ||ma|\§4;1] = Hmanjﬁl — (ml,M; ma,)” /(1 + HmAtHjﬁl) for
any arma. Thus the exploration bonus', ; decreases for all arms, except those which are exactly

orthogonal tan 4, (in the M, ! metric). The decrease is most significant for arms that dieezr
to m4,. This explains why the regret bounds obtained in TheofdnmlBeelow depend od but
notonk.

4 Theoretical analysis

In this section we first give our finite sample regret boundsthen show how the algorithm can be
tuned based on asymptotic arguments.

4.1 Regret Bounds

To quantify the performance of the GLM-UCB algorithm, we simer thecumulated (pseudo)
regret defined as the expected difference between the optimal demlatained by always playing
an optimal arm and the reward received following the altomit

T
Regref = Y pu(m/,.0.) — p(m'y,6.) .

t=1
For the sake of the analysis, in this section we shall asshatéahe following assumptions hold:

Assumption 1. The link functiory : R — R is continuously differentiable, Lipschitz with constant
k,, and such that,, = infgco qen f1(m)0) > 0.

For the logistic functiork,, = 1/4, while the value ot,, depends 08up,cg e [7,,0]-
Assumption 2. The norm of covariates ifim, : a € A} is bounded: there exists,, < oo such
thatforalla € A, ||ma|ly < cm.

Finally, we make the following assumption on the rewards:

Assumption 3. There existdR,,.x > 0 such that forany > 1,0 < R; < Ry holds a.s. Let
€ = Ry — p(m’y,0x). Forallt > 1, it holds thatE [e;[m a,, €;—1, ..., ma,, €1, ma,] = 0as.

As for the standard UCB algorithm, the regret can be analyzéstms of the difference between
the expected reward received playing an optimal arm andfitae best sub-optimal arm:

A 9* - . 1*9* - /9* .
( ) a:u(m/aﬁfr)li?t(m;*e*)ﬂ(ma ) M(ma )

Theorentll establishes a high probability bound on the regr¢rlying using GLM-UCB with

p(t) = Zutlimas /o et log2dT0) (®)

Cu

40f course, the linear bandit algorithms also share thisgntgpvith our algorithm.



whereT is the fixed time horizons = /3 + 2log(1 + 2¢2,/\¢) and Ao denotes the smallest
eigenvalue 012?:1 mq,m,,,, which by our previous assumption is positive.

Theorem 1(Problem Dependent Upper Bound)ets = max(1,c2, /o). Then, under Assumptions
3, for allT > 1, the regret satisfies:

2 32K%R2 k2
P <Regfeir < (d+1)Rmax + % log? [s T]log [MTTD >1-§ with ¢ = “maxu Cgﬂa" L

Note that the above regret bound depends on the true valietbfoughA(6,). The following
theorem provides an upper-bound of the regret independeitthed...

Theorem 2 (Problem Independent Upper Bound)et s = max(1,c2,/\g). Then, under
AssumptionBl13-3, for all' > 1, the regret satisfies

2dT

P (REQV% < (d+1)Ruyax + Cdlog [sT] [T log [T}) >1-6 with C = 8 Rimaxkuti

Cu

The proofs of Theorenid -2 can be found in the supplementatgrial. The main idea is to use
the explicit form of the estimator given by (6) to show that

t—1
E mAk €k
k=1

Bounding the last term on the right-hand side is then caoigdollowing the lines ofi[12].

. k
/ 4 £
‘M(mAte*) — /L(mAtet)‘ < u ||mAt ||]\/L:1 ‘M;l ’

4.2 Asymptotic Upper Confidence Bound

Preliminary experiments carried out using the valuep@ defined equation18), including the
case where; is the identity function —i.e., using the algorithm desedtby (8, 12], revealed poor
performance for moderate sample sizes. A look into the pobdifie regret bound easily explains
this observation as the mathematical involvement of theraemnts is such that some approximations
seem unavoidable, in particular several applications ef @tauchy-Schwarz inequality, leading
to pessimistic confidence bounds. We provide here some dejimprguments that suggest to
choose significantly smaller exploration bonuses, whidhiwiturn be validated by the numerical
experiments presented in Sectidn 5.

Consider the canonical GLM associated with an inverse lunkcfion ;. and assume that the
vectors of covariateX are drawn independently under a fixed distribution. Thisdom design
model would for instance describe the situation when thesaare drawn randomly from a fixed
distribution. Standard statistical arguments show thatRisher information matrix pertaining to

this model is given byl = E[;(X’0,)X X'] and that the maximum likelihood estimatgis such
thatt=1/2(6, — 6,) i»J\/(O, Jh, where -2 stands for convergence in distribution. Moreover,
t~1 M, 25 %> whereX = E[X X']. Hence, using the delta-method and Slutsky’s lemma

— A D . _
20y (2 00) = p(m02)) — N (O, fu(m 0 ) [ 152 g 51

The right-hand variance is smaller thap/c, asJ > ¢,X. Hence, forany sampling distribution
such that/ andX are positive definite and sufficiently largand smalb,

P (Il (00 — m'0.)) > 20/ Tox(1/6) )

is asymptotically bounded by. Based on the above asymptotic argument, we postulate $hrag u

p(t) = \/2k,/c,log(t), i.e., inflating the exploration bonus by a factor g, /c,, compared to
the usual UCB setting, is sufficient. This is the setting usedtie simulations below.

5 Experiments

To the best of our knowledge, there is currently no publicdhemark available to test bandit

methods on real world data. On simulated data, the propostidonh unsurprisingly outperforms

its competitors when the data is indeed simulated from a-sgtified generalized linear model.
In order to evaluate the potential of the method in more ehaling scenarios, we thus carried out
two experiments using real world datasets.



5.1 Forest Cover Type Data

In this first experiment, we test the performance of the psepanethod on a toy problem using the
“Forest Cover Type dataset” from the UCI repository. Theadat (centered and normalized with
constant covariate added, resulting in 11-dimensionalovecignoring all categorical variables)
has been partitioned inthh = 32 clusters using unsupervised k-means. The values of themssp
variable for the data points assigned to each cluster aveedi@s the outcomes of an arm while the
centroid of the cluster is taken as the 11-dimensional vexftoovariates characteristic of the arm.
To cast the problem into the logistic regression framewedch response variable is binarized by
associating the first class (“Spruce/Fir”) to a respoRse- 1 and all other six classes 8 = 0.
The proportions of responses equal to 1 in each cluster fasthier word, the expected reward
associated with each arm) ranges from 0.354 to 0.992, wineptoportion on the complete set
of 581,012 data points is equal to 0.367. In effect, we tryolmate as fast as possible the cluster
that contains the maximal proportion of trees from a giveecss. We are faced with a 32-arm
problem in a 11-dimensional space with binary rewards. @imsly, the logistic regression model
is not satisfied, although we do expect some regularity vépect to the position of the cluster’s
centroid as the logistic regression trained on all datalvesa 0.293 misclassification rate.
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Figure 1. Top: Regret of the UCB, GLM-UCB and thgyreedy algorithms. Bottom: Frequencies
of the 20 best arms draws using the UCB and GLM-UCB.

We compare the performance of three algorithms. First, th&1®CB algorithm, with
parameters tuned as indicated in Secfion 4.2. Second, ahdastd UCB algorithm that ignores
the covariates. Third, as-greedy algorithm that performs logistic regression arayplthe best
estimated actiond, = argmax, u(m;ét), with probability1 — e (with ¢ = 0.1). We observe in
the top graph of Figurgl 1 that the GLM-UCB algorithm achiethes smallest average regret by a
large margin. When the parameter is well estimated, thedgrafgorithm may find the best arm
in little time and then leads to small regrets. However, tkga@ration/exploitation tradeoff is not
correctly handled by the-greedy approach causing a large variability in the regrbe lower plot
of Figure[l shows the number of times each of #ebest arms have been played by the UCB
and GLM-UCB algorithms. The arms are sorted in decreasidgrasf expected reward. It can be
observed that GML-UCB only plays a small subset of all pdesiibms, concentrating on the bests.
This behavior is made possible by the predictive power ofctheriates: by sharing information
between arms, it is possible to obtain sufficiently accupagelictions of the expected rewards of all
actions, even for those that have never (or rarely) beereglay



5.2 Internet Advertisement Data

In this experiment, we used a large record of the activityntdrinet users provided by a major ISP.
The original dataset logs the visits to a set of 1222 pagesag& days period corresponding to
about5.108 page visits. The dataset also contains a record of the ulsgits on the ads that were
presented on these pages. We worked with a subset of 208 dds1ah users. The pages (ads)
were partitioned in 0 (respectivelyg) categories using Latent Dirichlet Allocatian [15] applito
their respective textual content (in the case of ads, thiidxontent was that of the page pointed
to by the ad’s link). This second experiment is much morelehging, as the predictive power of
the sole textual information turns out to be quite limiteak (hstance, Poisson regression trained on
the entire data does not even correctly identify the besj.arm

The action space is composed of the 80 pairs of pages and teg®Gas: when a pair is chosen,
it is presented to a group of 50 users, randomly selected fhendatabase, and the reward is the
number of recorded clicks. As the average reward is typiadual to 0.15, we use a logarithmic
link function corresponding to Poisson regression. Theoreof covariates for each pair is of
dimension 19: it is composed of an intercept followed by tbecatenation of two vectors of
dimension 10 and 8 representing, respectively, the catsgof the pages and the ads. In this
problem, the covariate vectors do not span the entire spa@gldress this issue, it is sufficient to
consider the pseudo-inverse, instead of the inverse.

On this data, we compared the GLM-UCB algorithm with the tvWieraatives described in
Sectiorf5ll. FigurEl2 shows that GLM-UCB once again outparfdts competitors, even though
the margin over UCB is now less remarkable. Given the ratingitdd predictive power of the
covariates in this example, this is an encouraging illtistnaof the potential of techniques which
use vectors of covariates in real-life applications.
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Figure 2: Comparison of the regret of the UCB, GLM-UCB and dlgreedy € = 0.1) algorithm
on the advertisement dataset.

6 Conclusions

We have introduced an approach that generalizes the lingeggsion model studied by [10, 8] 12].
As in the original UCB algorithm, the proposed GLM-UCB medhuperates directly in the reward
space. We discussed how to tune the parameters of the hlgantavoid exaggerated optimism,
which would slow down learning. In the numerical simulatiprthe proposed algorithm was
shown to be competitive and sufficiently robust to tackld-vearld problems. An interesting
open problem (already challenging in the linear case) stmai tightening the theoretical results
obtained so far in order to bridge the gap between the egigtiassimistic) confidence bounds and
those suggested by the asymptotic arguments presentedtior§é.2, which have been shown to
perform satisfactorily in practice.
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