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Abstract

We consider structured multi-armed bandit problems based on the Generalized
Linear Model (GLM) framework of statistics. For these bandits, we propose a new
algorithm, called GLM-UCB. We derive finite time, high probability bounds on
the regret of the algorithm, extending previous analyses developed for the linear
bandits to the non-linear case. The analysis highlights a key difficulty in generaliz-
ing linear bandit algorithms to the non-linear case, which is solved in GLM-UCB
by focusing on the reward space rather than on the parameter space. Moreover, as
the actual effectiveness of current parameterized bandit algorithms is often poor in
practice, we provide a tuning method based on asymptotic arguments, which leads
to significantly better practical performance. We present two numerical experi-
ments on real-world data that illustrate the potential of the GLM-UCB approach.
Keywords: multi-armed bandit, parametric bandits, generalized linear models,
UCB, regret minimization.

1 Introduction

In the classicalK-armed bandit problem, an agent selects at each time step oneof theK arms and
receives a reward that depends on the chosen action. The aim of the agent is to choose the sequence
of arms to be played so as to maximize the cumulated reward. There is a fundamental trade-off
between gathering experimental data about the reward distribution (exploration) and exploiting the
arm which seems to be the most promising.

In the basic multi-armed bandit problem, also called the independent bandits problem, the
rewards are assumed to be random and distributed independently according to a probability
distribution that is specific to each arm –see [1, 2, 3, 4] and references therein. Recently,structured
bandit problemsin which the distributions of the rewards pertaining to eacharm are connected
by a common unknown parameter have received much attention [5, 6, 7, 8, 9]. This model is
motivated by the many practical applications where the number of arms is large, but the payoffs are
interrelated. Up to know, two different models were studiedin the literature along these lines. In
one model, in each times step, a side-information, or context, is given to the agent first. The payoffs
of the arms depend both on this side information and the indexof the arm. Thus the optimal arm
changes with the context [5, 6, 9]. In the second, simpler model, that we are also interested in here,
there is no side-information, but the agent is given a model that describes the possible relations
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between the arms’ payoffs. In particular, in “linear bandits” [10, 8, 11, 12], each arma ∈ A is
associated with somed-dimensional vectorma ∈ R

d known to the agent. The expected payoffs
of the arms are given by the inner product of their associatedvector and some fixed, but initially
unknown parameter vectorθ∗. Thus, the expected payoff of arma is m′

aθ∗, which is linear inθ∗.1

In this article, we study a richergeneralized linear model(GLM) in which the expectation of
the reward conditionally to the actiona is given byµ(m′

aθ∗), whereµ is a real-valued, non-linear
function called the (inverse) link function. This generalization allows to consider a wider class
of problems, and in particular cases where the rewards are counts or binary variables using,
respectively, Poisson or logistic regression. Obviously,this situation is very common in the fields of
marketing, social networking, web-mining (see example of Section 5.2 below) or clinical studies.

Our first contribution is an “optimistic” algorithm, termedGLM-UCB, inspired by theUpper Con-
fidence Bound(UCB) approach [2]. GLM-UCB generalizes the algorithms studied by [10, 8, 12].
Our next contribution are finite-time bounds on the statistical performance of this algorithm. In
particular, we show that the performance depends on the dimension of the parameter but not on the
number of arms, a result that was previously known in the linear case. Interestingly, the GLM-UCB
approach takes advantage of the particular structure of theparameter estimate of generalized linear
models andoperates only in the reward space. In contrast, the parameter-space confidence region
approach adopted by [8, 12] appears to be harder to generalize to non-linear regression models.
Our second contribution is a tuning method based on asymptotic arguments. This contribution
addresses the poor empirical performance of the current algorithms that we have observed for small
or moderate sample-sizes when these algorithms are tuned based on finite-sample bounds.

The paper is organized as follows. The generalized linear bandit model is presented in Section 2,
together with a brief survey of needed statistical results.Section 3 is devoted to the description
of the GLM-UCB algorithm, which is compared to related approaches. Section 4 presents our
regret bounds, as well as a discussion, based on asymptotic arguments, on the optimal tuning of the
method. Section 5 reports the results of two experiments on real data sets.

2 Generalized Linear Bandits, Generalized Linear Models

We consider a structured bandit model with a finite, but possibly very large, number of arms. At
each timet, the agent chooses an armAt from the setA (we shall denote the cardinality ofA by K).
The prior knowledge available to the agent consists of a collection of vectors{ma}a∈A of features
which are specific to each arm and a so-called (inverse)link functionµ : R → R.

The generalized linear bandit modelinvestigated in this work is based on the assumption that
the payoffRt received at timet is conditionally independent of the past payoffs and choices and it
satisfies

E [Rt|At] = µ(m′
At

θ∗) , (1)

for some unknown parameter vectorθ∗ ∈ R
d. This framework generalizes the linear bandit model

considered by [10, 8, 12]. Just like the linear bandit model builds on linear regression, our model
capitalizes on the well-known statistical framework of Generalized Linear Models (GLMs). The
advantage of this framework is that it allows to address various, specific reward structures widely
found in applications. For example, when rewards are binary-valued, a suitable choice ofµ is
µ(x) = exp(x)/(1 + exp(x)), leading to thelogistic regression model. For integer valued rewards,
the choiceµ(x) = exp(x) leads to thePoisson regression model. This can be easily extended to the
case ofmultinomial (or polytomic) logistic regression, which is appropriate to model situations in
which the rewards are associated with categorical variables.

To keep this article self-contained, we briefly review the main properties of GLMs [13]. A
univariate probability distribution is said to belong to acanonical exponential familyif its density
with respect to a reference measure is given by

pβ(r) = exp (rβ − b(β) + c(r)) , (2)

whereβ is a real parameter,c(·) is a real function and the functionb(·) is assumed to be twice
continuously differentiable. This family contains the Gaussian and Gamma distributions when the
reference measure is the Lebesgue measure and the Poisson and Bernoulli distributions when the

1Throughout the paper we use the prime to denote transposition.
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reference measure is the counting measure on the integers. For a random variableR with density
defined in (2),E(R) = ḃ(β) andVar(R) = b̈(β), whereḃ andb̈ denote, respectively, the first and
second derivatives ofb. In addition,b̈(β) can also be shown to be equal to the Fisher information
matrix for the parameterβ. The functionb is thus strictly convex.

Now, assume that, in addition to the response variableR, we have at hand a vector of covariates
X ∈ R

d. The canonical GLM associated to (2) postulates thatpθ(r|x) = px′θ(r), whereθ ∈ R
d

is a vector of parameter. Denote byµ = ḃ the so-calledinverse link function. From the properties
of b, we know thatµ is continuously differentiable, strictly increasing, andthus one-to-one. The
maximum likelihood estimator̂θt, based on observations(R1, X1), . . . (Rt−1, Xt−1), is defined as
the maximizer of the function

t−1
∑

k=1

log pθ(Rk|Xk) =

t−1
∑

k=1

RkX ′
kθ − b(X ′

kθ) + c(Rk) ,

a strictly concave function inθ.2 Upon differentiating, we obtain that̂θt is the unique solution of
the following estimating equation

t−1
∑

k=1

(Rk − µ(X ′
kθ)) Xk = 0 , (3)

where we have used the fact thatµ = ḃ. In practice, the solution of (3) may be found efficiently
using, for instance, Newton’s algorithm.

A semi-parametric version of the above model is obtained by assuming only thatEθ[R|X ] =
µ(X ′θ) without (much) further assumptions on the conditional distribution of R givenX . In this
case, the estimator obtained by solving (3) is referred to asthemaximum quasi-likelihood estimator.
It is a remarkable fact that this estimator is consistent under very general assumptions as long as the
design matrix

∑t−1
k=1 XkX ′

k tends to infinity [14]. As we will see, this matrix also plays acrucial
role in the algorithm that we propose for bandit optimization in the generalized linear bandit model.

3 The GLM-UCB Algorithm

According to (1), the agent receives, upon playing arma, a random reward whose expected value is
µ(m′

aθ∗), whereθ∗ ∈ Θ is the unknown parameter. The parameter setΘ is an arbitrary closed subset
of R

d. Any arm with largest expected reward is calledoptimal. The aim of the agent is to quickly find
an optimal arm in order to maximize the received rewards. Thegreedy actionargmaxa∈A µ(m′

aθ̂t)
may lead to an unreliable algorithm which does not sufficiently explore to guarantee the selection of
an optimal arm. This issue can be addressed by resorting to an“optimistic approach”. As described
by [8, 12] in the linear case, an optimistic algorithm consists in selecting, at timet, the arm

At = argmax
a

max
θ

Eθ [Rt |At = a] s.t. ‖θ − θ̂t‖Mt
≤ ρ(t) , (4)

whereρ is an appropriate, “slowly increasing” function,

Mt =
t−1
∑

k=1

mAk
m′

Ak
(5)

is the design matrix corresponding to the firstt − 1 timesteps and‖v‖M =
√

v′Mv denotes the
matrix norm induced by the positive semidefinite matrixM . The region‖θ − θ̂t‖Mt

≤ ρ(t) is
a confidence ellipsoid around the estimated parameterθ̂t. Generalizing this approach beyond the
case of linear link functions looks challenging. In particular, in GLMs, the relevant confidence
regions may have a more complicated geometry in the parameter space than simple ellipsoids. As
a consequence, the benefits of this form of optimistic algorithms appears dubious.3

2Here, and in what followslog denotes the natural logarithm.
3Note that maximizingµ(m′

a
θ) over a convex confidence region is equivalent to maximizingm′

a
θ over the

same region sinceµ is strictly increasing. Thus, computationally, this approach is not more difficult than it is
for the linear case.
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An alternative approach consists in directly determining an upper confidence bound for the
expected reward of each arm, thus choosing the actiona that maximizes

Eθ̂t
[Rt |At = a] + ρ(t)‖ma‖M−1

t

.

In the linear case the two approaches lead to the same solution [12]. Interestingly, for non-linear
bandits, the second approach looks more appropriate.

In the rest of this section, we apply this second approach to the GLM bandit model defined in (1).
According to (3), the maximum quasi-likelihood estimator of the parameter in the GLM is the
unique solution of the estimating equation

t−1
∑

k=1

(

Rk − µ(m′
Ak

θ̂t)
)

mAk
= 0 , (6)

whereA1, . . . , At−1 denote the arms played so far andR1, . . . , Rt−1 are the corresponding rewards.
Let gt(θ) =

∑t−1
k=1 µ(m′

Ak
θ)mAk

be the invertible function such that the estimated parameter θ̂t

satisfiesgt(θ̂t) =
∑t−1

k=1 RkmAk
. Sinceθ̂t might be outside of the set of admissible parametersΘ,

we “project it” toΘ, to obtainθ̃t:

θ̃t = argmin
θ∈Θ

∥

∥

∥
gt(θ) − gt(θ̂t)

∥

∥

∥

M−1
t

= argmin
θ∈Θ

∥

∥

∥
gt(θ) −

t−1
∑

k=1

RkmAk

∥

∥

∥

M−1
t

. (7)

Note that ifθ̂t ∈ Θ (which is easy to check and which happened to hold always in the examples we
dealt with) then we can let̃θt = θ̂t. This is important since computing̃θt is non-trivial and we can
save this computation by this simple check. The proposed algorithm, GLM-UCB, is as follows:

Algorithm 1 GLM-UCB
1: Input: {ma}a∈A

2: Play actionsa1, . . . , ad, receiveR1, . . . , Rd.
3: for t > d do
4: Estimateθ̂t according to (6)
5: if θ̂t ∈ Θ let θ̃t = θ̂t elsecomputẽθt according to (7)

6: Play the actionAt = argmaxa

{

µ(m′
aθ̃t) + ρ(t)‖ma‖M−1

t

}

, receiveRt

7: end for

At time t, for each arma, an upper boundµ(m′
aθ̃t) + βa

t is computed, where the “exploration
bonus”βa

t = ρ(t)‖ma‖M−1

t

is the product of two terms. The quantityρ(t) is a slowly increasing
function; we prove in Section 4 thatρ(t) can be set to guarantee high-probability bounds on the
expected regret (for the actual form used, see (8)). Note that the leading term ofβa

t is ‖ma‖M−1

t

which decreases to zero ast increases.

As we are mostly interested in the case when the number of armsK is much larger than the
dimensiond, the algorithm is simply initialized by playing actionsa1, . . . , ad such that the vectors
ma1

. . . , mad
form a basis ofM = span(ma, a ∈ A). Without loss of generality, here and in what

follows we assume that the dimension ofM is equal tod. Then, by playinga1, . . . , ad in the first
d steps the agent ensures thatMt is invertible for allt. An alternative strategy would be to initialize
M0 = λ0I, whereI is thed × d identify matrix.

3.1 Discussion

The purpose of this section is to discuss some properties of Algorithm 1, and in particular the
interpretation of the role played by‖ma‖M−1

t

.

Generalizing UCB The standard UCB algorithm forK arms [2] can be seen as a special case of
GLM-UCB where the vectors of covariates associated with thearms form an orthogonal system and
µ(x) = x. Indeed, taked = K, A = {1, . . . , K}, define the vectors{ma}a∈A as the canonical basis
{ea}a∈A of R

d, and takeθ ∈ R
d the vector whose componentθa is the expected reward for arma.

4



Then,Mt is a diagonal matrix whosea-th diagonal element is the numberNt(a) of times the
a-th arm has been played up to timet. Therefore, the exploration bonus in GLM-UCB is given by
βa

t = ρ(t)/
√

Nt(a). Moreover, the maximum quasi-likelihood estimatorθ̂t satisfiesR̄a
t = θ̂t(a)

for all a ∈ A, whereR̄a
t = 1

Nt(a)

∑t−1
k=1 I{At=a}Rk is the empirical mean of the rewards received

while playing arma. Algorithm 1 then reduces to the familiar UCB algorithm. In this case, it
is known that the expected cumulated regret can be controlled upon setting the slowly varying
functionρ to ρ(t) =

√

2 log(t), assuming that the range of the rewards is bounded by one [2].

Generalizing linear bandits Obviously, settingµ(x) = x, we obtain a linear bandit model. In
this case, assuming thatΘ = R

d, the algorithm will reduce to those described in the papers [8, 12].
In particular, the maximum quasi-likelihood estimator becomes the least-squares estimator and as
noted earlier, the algorithm behaves identically to one which chooses the parameter optimistically
within the confidence ellipsoid{θ : ‖θ − θ̂t‖Mt

≤ ρ(t)}.

Dependence in the Number of Arms In contrast to an algorithm such as UCB, Algorithm 1
does not need that all arms be played even once.4 To understand this phenomenon, observe that,

asMt+1 = Mt + mAt
m′

At
, ‖ma‖2

M−1

t+1

= ‖ma‖2
M−1

t

−
(

m′
aM−1

t mAt

)2/
(1 + ‖mAt

‖2
M−1

t

) for

any arma. Thus the exploration bonusβa
t+1 decreases for all arms, except those which are exactly

orthogonal tomAt
(in theM−1

t metric). The decrease is most significant for arms that are colinear
to mAt

. This explains why the regret bounds obtained in Theorems 1 and 2 below depend ond but
not onK.

4 Theoretical analysis

In this section we first give our finite sample regret bounds and then show how the algorithm can be
tuned based on asymptotic arguments.

4.1 Regret Bounds

To quantify the performance of the GLM-UCB algorithm, we consider thecumulated (pseudo)
regret defined as the expected difference between the optimal reward obtained by always playing
an optimal arm and the reward received following the algorithm:

RegretT =

T
∑

t=1

µ(m′
a∗θ∗) − µ(m′

At
θ∗) .

For the sake of the analysis, in this section we shall assume that the following assumptions hold:

Assumption 1. The link functionµ : R → R is continuously differentiable, Lipschitz with constant
kµ and such thatcµ = infθ∈Θ,a∈A µ̇(m′

aθ) > 0.

For the logistic functionkµ = 1/4, while the value ofcµ depends onsupθ∈Θ,a∈A
|m′

aθ|.
Assumption 2. The norm of covariates in{ma : a ∈ A} is bounded: there existscm < ∞ such
that for all a ∈ A, ‖ma‖2 ≤ cm.

Finally, we make the following assumption on the rewards:

Assumption 3. There existsRmax > 0 such that for anyt ≥ 1, 0 ≤ Rt ≤ Rmax holds a.s. Let
ǫt = Rt − µ(m′

At
θ∗). For all t ≥ 1, it holds thatE [ǫt|mAt

, ǫt−1, . . . , mA2
, ǫ1, mA1

] = 0 a.s.

As for the standard UCB algorithm, the regret can be analyzedin terms of the difference between
the expected reward received playing an optimal arm and thatof the best sub-optimal arm:

∆(θ∗) = min
a:µ(m′

a
θ∗)<µ(m′

a∗θ∗)
µ(m′

a∗θ∗) − µ(m′
aθ∗) .

Theorem 1 establishes a high probability bound on the regretunderlying using GLM-UCB with

ρ(t) =
2kµκRmax

cµ

√

2d log(t) log(2 d T/δ) , (8)

4Of course, the linear bandit algorithms also share this property with our algorithm.
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whereT is the fixed time horizon,κ =
√

3 + 2 log(1 + 2c2
m/λ0) and λ0 denotes the smallest

eigenvalue of
∑d

i=1 mai
m′

ai
, which by our previous assumption is positive.

Theorem 1(Problem Dependent Upper Bound). Lets = max(1, c2
m/λ0). Then, under Assumptions

1–3, for allT ≥ 1, the regret satisfies:

P

(

RegretT ≤ (d + 1)Rmax +
C d2

∆(θ∗)
log2 [s T ] log

[

2d T

δ

])

≥ 1−δ with C =
32κ2R2

maxk
2
µ

c2
µ

.

Note that the above regret bound depends on the true value ofθ∗ through∆(θ∗). The following
theorem provides an upper-bound of the regret independently of theθ∗.
Theorem 2 (Problem Independent Upper Bound). Let s = max(1, c2

m/λ0). Then, under
Assumptions 1–3, for allT ≥ 1, the regret satisfies

P

(

RegretT ≤ (d + 1)Rmax + Cd log [s T ]

√

T log

[

2dT

δ

]

)

≥ 1 − δ with C =
8Rmaxkµκ

cµ
.

The proofs of Theorems 1–2 can be found in the supplementary material. The main idea is to use
the explicit form of the estimator given by (6) to show that

∣

∣

∣
µ(m′

At
θ∗) − µ(m′

At
θ̂t)
∣

∣

∣
≤ kµ

cµ
‖mAt

‖M−1

t

∥

∥

∥

t−1
∑

k=1

mAk
ǫk

∥

∥

∥

M−1

t

.

Bounding the last term on the right-hand side is then carriedout following the lines of [12].

4.2 Asymptotic Upper Confidence Bound

Preliminary experiments carried out using the value ofρ(t) defined equation (8), including the
case whereµ is the identity function –i.e., using the algorithm described by [8, 12], revealed poor
performance for moderate sample sizes. A look into the proofof the regret bound easily explains
this observation as the mathematical involvement of the arguments is such that some approximations
seem unavoidable, in particular several applications of the Cauchy-Schwarz inequality, leading
to pessimistic confidence bounds. We provide here some asymptotic arguments that suggest to
choose significantly smaller exploration bonuses, which will in turn be validated by the numerical
experiments presented in Section 5.

Consider the canonical GLM associated with an inverse link function µ and assume that the
vectors of covariatesX are drawn independently under a fixed distribution. Thisrandom design
model would for instance describe the situation when the arms are drawn randomly from a fixed
distribution. Standard statistical arguments show that the Fisher information matrix pertaining to
this model is given byJ = E[µ̇(X ′θ∗)XX ′] and that the maximum likelihood estimateθ̂t is such

that t−1/2(θ̂t − θ∗)
D−→N (0, J−1), where

D−→ stands for convergence in distribution. Moreover,
t−1Mt

a.s.−→Σ whereΣ = E[XX ′]. Hence, using the delta-method and Slutsky’s lemma

‖ma‖−1

M−1

t

(µ(m′
aθ̂t) − µ(m′

aθ∗))
D−→N (0, µ̇(m′

aθ∗)‖m′
a‖−2

Σ−1‖m′
a‖2

J−1) .

The right-hand variance is smaller thankµ/cµ asJ � cµΣ. Hence, forany sampling distribution
such thatJ andΣ are positive definite and sufficiently larget and smallδ,

P

(

‖ma‖−1

M−1

t

(µ(m′
aθ̂t) − µ(m′

aθ∗)) >
√

2kµ/cµ log(1/δ)

)

is asymptotically bounded byδ. Based on the above asymptotic argument, we postulate that using
ρ(t) =

√

2kµ/cµ log(t), i.e., inflating the exploration bonus by a factor of
√

kµ/cµ compared to
the usual UCB setting, is sufficient. This is the setting usedin the simulations below.

5 Experiments

To the best of our knowledge, there is currently no public benchmark available to test bandit
methods on real world data. On simulated data, the proposed method unsurprisingly outperforms
its competitors when the data is indeed simulated from a well-specified generalized linear model.
In order to evaluate the potential of the method in more challenging scenarios, we thus carried out
two experiments using real world datasets.
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5.1 Forest Cover Type Data

In this first experiment, we test the performance of the proposed method on a toy problem using the
“Forest Cover Type dataset” from the UCI repository. The dataset (centered and normalized with
constant covariate added, resulting in 11-dimensional vectors, ignoring all categorical variables)
has been partitioned intoK = 32 clusters using unsupervised k-means. The values of the response
variable for the data points assigned to each cluster are viewed as the outcomes of an arm while the
centroid of the cluster is taken as the 11-dimensional vector of covariates characteristic of the arm.
To cast the problem into the logistic regression framework,each response variable is binarized by
associating the first class (“Spruce/Fir”) to a responseR = 1 and all other six classes toR = 0.
The proportions of responses equal to 1 in each cluster (or, in other word, the expected reward
associated with each arm) ranges from 0.354 to 0.992, while the proportion on the complete set
of 581,012 data points is equal to 0.367. In effect, we try to locate as fast as possible the cluster
that contains the maximal proportion of trees from a given species. We are faced with a 32-arm
problem in a 11-dimensional space with binary rewards. Obviously, the logistic regression model
is not satisfied, although we do expect some regularity with respect to the position of the cluster’s
centroid as the logistic regression trained on all data reaches a 0.293 misclassification rate.
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Figure 1: Top: Regret of the UCB, GLM-UCB and theǫ-greedy algorithms. Bottom: Frequencies
of the 20 best arms draws using the UCB and GLM-UCB.

We compare the performance of three algorithms. First, the GLM-UCB algorithm, with
parameters tuned as indicated in Section 4.2. Second, the standard UCB algorithm that ignores
the covariates. Third, anǫ-greedy algorithm that performs logistic regression and plays the best
estimated action,At = argmaxa µ(m′

aθ̂t), with probability1 − ǫ (with ǫ = 0.1). We observe in
the top graph of Figure 1 that the GLM-UCB algorithm achievesthe smallest average regret by a
large margin. When the parameter is well estimated, the greedy algorithm may find the best arm
in little time and then leads to small regrets. However, the exploration/exploitation tradeoff is not
correctly handled by theǫ-greedy approach causing a large variability in the regret.The lower plot
of Figure 1 shows the number of times each of the20 best arms have been played by the UCB
and GLM-UCB algorithms. The arms are sorted in decreasing order of expected reward. It can be
observed that GML-UCB only plays a small subset of all possible arms, concentrating on the bests.
This behavior is made possible by the predictive power of thecovariates: by sharing information
between arms, it is possible to obtain sufficiently accuratepredictions of the expected rewards of all
actions, even for those that have never (or rarely) been played.
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5.2 Internet Advertisement Data

In this experiment, we used a large record of the activity of internet users provided by a major ISP.
The original dataset logs the visits to a set of 1222 pages over a six days period corresponding to
about5.108 page visits. The dataset also contains a record of the users clicks on the ads that were
presented on these pages. We worked with a subset of 208 ads and 3.105 users. The pages (ads)
were partitioned in10 (respectively,8) categories using Latent Dirichlet Allocation [15] applied to
their respective textual content (in the case of ads, the textual content was that of the page pointed
to by the ad’s link). This second experiment is much more challenging, as the predictive power of
the sole textual information turns out to be quite limited (for instance, Poisson regression trained on
the entire data does not even correctly identify the best arm).

The action space is composed of the 80 pairs of pages and ads categories: when a pair is chosen,
it is presented to a group of 50 users, randomly selected fromthe database, and the reward is the
number of recorded clicks. As the average reward is typically equal to 0.15, we use a logarithmic
link function corresponding to Poisson regression. The vector of covariates for each pair is of
dimension 19: it is composed of an intercept followed by the concatenation of two vectors of
dimension 10 and 8 representing, respectively, the categories of the pages and the ads. In this
problem, the covariate vectors do not span the entire space;to address this issue, it is sufficient to
consider the pseudo-inverse ofMt instead of the inverse.

On this data, we compared the GLM-UCB algorithm with the two alternatives described in
Section 5.1. Figure 2 shows that GLM-UCB once again outperforms its competitors, even though
the margin over UCB is now less remarkable. Given the rather limited predictive power of the
covariates in this example, this is an encouraging illustration of the potential of techniques which
use vectors of covariates in real-life applications.
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Figure 2: Comparison of the regret of the UCB, GLM-UCB and theǫ-greedy (ǫ = 0.1) algorithm
on the advertisement dataset.

6 Conclusions

We have introduced an approach that generalizes the linear regression model studied by [10, 8, 12].
As in the original UCB algorithm, the proposed GLM-UCB method operates directly in the reward
space. We discussed how to tune the parameters of the algorithm to avoid exaggerated optimism,
which would slow down learning. In the numerical simulations, the proposed algorithm was
shown to be competitive and sufficiently robust to tackle real-world problems. An interesting
open problem (already challenging in the linear case) consists in tightening the theoretical results
obtained so far in order to bridge the gap between the existing (pessimistic) confidence bounds and
those suggested by the asymptotic arguments presented in Section 4.2, which have been shown to
perform satisfactorily in practice.
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