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Abstract

The CUR decomposition provides an approximation of a marithat has low
reconstruction error and that is sparse in the sense theg$ldting approximation
lies in the span of only a few columns &. In this regard, it appears to be simi-
lar to many sparse PCA methods. However, CUR takes a ranédralgorithmic
approach, whereas most sparse PCA methods are framed axagtimization
problems. In this paper, we try to understand CUR from a spapimization
viewpoint. We show that CUR is implicitly optimizing a spanegression objec-
tive and, furthermore, cannot be directly cast as a spargeR€thod. We also
observe that the sparsity attained by CUR possesses agstibgy structure, which
leads us to formulate a sparse PCA method that achieves alik&JBqarsity.

1 Introduction

CUR decompositions are a recently-popular class of rangdedralgorithms that approximate a data
matrix X € R™*P by using only a small number of actual columnsX1{12, 4]. CUR decomposi-
tions are often described as SVD-like low-rank decompasgithat have the additional advantage of
being easily interpretable to domain scientists. The natitm to produce a more interpretable low-
rank decomposition is also shared by sparse PCA (SPCA) megtlwhich are optimization-based
procedures that have been of interest recently in statiaticl machine learning.

Although CUR and SPCA methods start with similar motivasigthey proceed very differently. For
example, most CUR methods have been randomized, and theew talirely algorithmic approach.
By contrast, most SPCA methods start with a combinatoriihtipation problem, and they then
solve a relaxation of this problem. Thus far, it has not bdeardo researchers how the CUR and
SPCA approaches are related. It is the purpose of this papemderstand CUR decompositions
from a sparse optimization viewpoint, thereby elucidatimg connection between CUR decompo-
sitions and the SPCA class of sparse optimization methods.

To do so, we begin by putting forth a combinatorial optimiaatproblem (see (6) below) which
CUR is implicitly approximately optimizing. This formuliain will highlight two interesting features
of CUR: first, CUR attains a distinctive pattern of sparsityiich has practical implications from
the SPCA viewpoint; and second, CUR is implicitly optimigia regression-type objective. These
two observations then lead to the three main contributidrtkie paper: (a) first, we formulate a
non-randomized optimization-based version of CUR (seélPro 1: GL-REG in Section 3) that is
based on a convex relaxation of the CUR combinatorial ogtition problem; (b) second, we show
that, in contrast to the original PCA-based motivation f&R; CUR'’s implicit objective cannot
be directly expressed in terms of a PCA-type objective (desofem 3 in Section 4); and (c) third,
we propose an SPCA approach (see Problem2SPCA in Section 5) that achieves the sparsity
structure of CUR within the PCA framework. We also providereebempirical evaluation of our
two proposed objectives. While our proposeid REG andGL-SPCA methods are promising in
and of themselves, our purpose in this paper is not to exphena as alternatives to CUR; instead,
our goal is to use them to help clarify the connection betw@egiR and SPCA methods.

*Jacob Bien and Ya Xu contributed equally.



We conclude this introduction with some remarks on notatiGiven a matrixA, we useA ;) to

denote itsith row (as a row-vector) and (%) its ith column. Similarly, given a set of indicés
A7 andA7” denote the submatrices @f containing only thes& rows and columns, respectively.
Finally, we let£..;(A) denote the column space Af.

2 Background

In this section, we provide a brief background on CUR and SP@thods, with a particular em-
phasis on topics to which we will return in subsequent sestidefore doing so, recall that, given
an input matrixX, Principal Component Analysis (PCA) seeks thdimensional hyperplane with
the lowest reconstruction error. That is, it computes>ak orthogonal matrixW that minimizes

ERRW) = || X - XWWT||. 1)

Writing the SVD ofX asUX VT, the minimizer of (1) is given bW, the firstk columns ofV. In

the data analysis setting, each columrvoprovides a particular linear combination of the columns
of X. These linear combinations are often thought of as latertofa. In many applications, in-
terpreting such factors is made much easier if they are ciseghof only a small number of actual
columns ofX, which is equivalent t&/;, only having a small number of nonzero elements.

2.1 CUR matrix decompositions

CUR decompositions were proposed by Drineas and Mahoney[1@ provide a low-rank approx-
imation to a data matriX by using only a small number of actual columns and/or ronX of-ast
randomized variants [3], deterministic variants [5], Ngsb-based variants [1, 11], and heuristic
variants [17] have also been considered. Observing thatgberankk approximation to the SVD
provides the best set @flinear combinations of all the columns, one can ask for thst bet ofk
actualcolumns. Most formalizations of “best” lead to intractabtembinatorial optimization prob-
lems [12], but one can take advantage of oversampling (¢hgstightly more thark columns) and
randomness as computational resources to obtain strotitygofaapproximation guarantees.
Theorem 1 (Relative-error CUR [12]) Given an arbitrary matrixX € R™*? and an integerk,
there exists a randomized algorithm that chooses a randdmeid C {1,...,p} of sizec =
O(klog klog(1/68)/e?) such thatXZ, then x ¢ submatrix containing thosecolumns ofX, satisfies

X - XPXT X[ = min [[X ~X"B||r < (1+ )X ~ X[, )
with probability at leastl — 9, whereX}, is the best rank approximation taX.

The algorithm referred to by Theorem 1 is very simple:

1) Compute theormalized statistical leverage scoretefined below in (3).

2) FormZ by randomly sampling columns ofX, using these normalized statistical leverage scores
as an importance sampling distribution.

3) Return ther x ¢ matrix X7 consisting of these selected columns.

The key issue here is the choice of the importance samplstglalition. Let thep x k matrix Vi,
be the topk right singular vectors oK. Then thenormalized statistical leverage scorase

1
mi = 2l Vi I, ®

foralli = 1,...,p, whereV,; denotes the-th row of V.. These scores, proportional to the
Euclidean norms of theows of the top#4 right singular vectors, define the relevant nonuniformity
structure to be used to identify good (in the sense of Thedreoolumns. In addition, these scores
are proportional to the diagonal elements of the projectiatrix onto the topk right singular
subspace. Thus, they generalize the so-called hat majriaf@ they have a natural interpretation
as capturing the “statistical leverage” or “influence” of imamn column on the best low-rank fit of
the data matrix [8, 12].

2.2 Regularized sparse PCA methods

SPCA methods attempt to make PCA easier to interpret for doexperts by finding sparse approx-
imations to thecolumnsof V.* There are several variants of SPCA. For example, Jokiffal. [10]

*For SPCA, we only consider sparsity in the right singulateexV and not in the left singular vectofs.
This is similar to considering only the choice of columns ad of both columns and rows in CUR.



and Wittenet al.[19] use the maximum variance interpretation of PCA and jgl@an optimization
problem which explicitly encourages sparsityVhbased on a Lasso constraint [18]. d’Aspremont
et al.[2] take a similar approach, but instead formulate the probas an SDP.

Zou et al. [21] use the minimum reconstruction error interpretatidiP€A to suggest a different
approach to the SPCA problem; this formulation will be m@évant to our present purpose. They
begin by formulating PCA as the solution to a regressiorefymblem.

Theorem 2(Zouet al.[21]). Given an arbitrary matrixX € R™*? and an integek, let A andW
bep x k matrices. Then, for any > 0, let

(A*,V}) = argming wepex+||X — XWAT||Z + A[[W[|7 st ATA =1, (4)
Then, the minimizing matrices* and V; satisfyA*() = s,V and V" = s, E?ﬁ/\V(i), where

s; =1lor—1.

That is, up to signsA* consists of the tog- right singular vectors ofX, and V; consists of
those same vectors “shrunk” by a factor depending on theespanding singular value. Given this
regression-type characterization of PCA, Zetal. [21] then “sparsify” the formulation by adding
an L, penalty onW:

(A*,V}) = argming wegoxr|[X = XWAT[|Z + A[[W[E + M |[W][1 st ATA =T, (5)
where[[W[|; = >, [W;;|. This regularization tends to sparsii¥ element-wise, so that the
solution'V; gives a sparse approximation uf.

3 Expressing CUR as an optimization problem

In this section, we present an optimization formulation &ffC Recall, from Section 2.1, that CUR
takes a purely algorithmic approach to the problem of apjpmaxing a matrix in terms of a small
number of its columns. That s, it achieves sparsity indiygay randomly selecting columns, and
it does so in such a way that the reconstruction error is swigilhigh probability (Theorem 1). By
contrast, SPCA methods are generally formulated as thd sghtion to an optimization problem.

From Theorem 1, it is clear that CUR seeks a sulfsftsizec for whichmingcgex» || X — XZB||p
is small. In this sense, CUR can be viewed as a randomizedthlgfor approximately solving the
following combinatorial optimization problem:

min min ||X - X'B||r st |Z] <ec (6)

IcC{1,...,p} BERexP

In words, this objective asks for the subsetablumns ofX which best describes the entire matrix
X. Notice that relaxindZ| = ¢ to |Z| < ¢ does not affect the optimum. This optimization problem
is analogous to all-subsets multivariate regression [Ajctvis known to be NP-hard.

However, by using ideas from the optimization literature @@ approximate this combinatorial
problem as a regularized regression problem that is coriviest, notice that (6) is equivalent to

p
BIer]ggPHX—XBHF s.t. Z]I{HBU)HZ#O} <c, (7
=1
where we now optimize overax p matrix B. To see the equivalence between (6) and (7), note that
the constraintin (7) is the same as finding some subséth |Z| < ¢ such thaBz. = 0.

The formulation in (7) provides a natural entry point to ppsmg a convex optimization approach
corresponding to CUR. First notice that (7) usedgmorm on the rows 0B, which is not convex.
However, we can approximate tlig constraint by ayroup lassgenalty, which uses a well-known
convex heuristic proposed by Yuat al. [20] that encourages prespecifigtbupsof parameters
to be simultaneously sparse. Thus, the combinatorial probh (6) can be approximated by the
following convex (and thus tractable) problem:

Problem 1 (Group lasso regression:GL-REG). Given an arbitrary matrixX € R"*?, letB €
RP*P andt > 0. TheGL-REG problem is to solve

P
B* = argming|[X — XB|[r s.t. Y _[Byll2 <t, (8)
1=1
wheret is chosen to get nonzero rows irB*.



Since the rows oB are grouped together in the penaity,_, ||B ;)||2, the row vectoB,;, will tend

to be either dense or entirely zero. Note also that the algorto solve Problem 1 is a special case
of Algorithm 1 (see below), which solves tle.-SPCA problem, to be introduced later. (Finally,
as a side remark, note that our proposedREG is strikingly similar to a recently proposed method
for sparse inverse covariance estimation [6, 15].)

4 Distinguishing CUR from SPCA

Our original intention in casting CUR in the optimizatiorafnework was to understand better
whether CUR could be seen as an SPCA-type method. So far, veedstiablished CUR’s con-
nection to regression by showing that CUR can be thought ahagpproximation algorithm for the
sparse regression problem (7). In this section, we disdwessetiationship between regression and
PCA, and we show that CUR cannot be directly cast as an SPChoahet

To do this, recall that regression, in particular “self” regsion, finds 8 € R?*? that minimizes

X — XBl[r. 9)
On the other hand, PCA-type methods find a set of directi@hthat minimize
ERRW) := [|X - XWWT||5. (10)

Here, unlike in (1), we do not assume thaf is orthogonal, since the minimizer produced from
SPCA methods is often not required to be orthogonal (reeadtiSn 2.2).

Clearly, with no constraints oB or W, we can trivially achieve zero reconstruction error in both
cases by takin® = I, andW anyp x p full-rank matrix. However, with additional constraints,
these two problems can be very different. It is common to cersparsity and/or rank constraints.
We have seen in Section 3 that CUR effectively requiBet® be row-sparse; in the standard PCA
setting, W is taken to be rank (with & < p), in which case (10) is minimized by, and obtains
the optimal valueRR(Vy,) = || X — Xy || ; finally, for SPCA,W is further required to be sparse.

To illustrate the difference between the reconstructiaorsr(9) and (10) when extra constraints
are imposed, consider the 2-dimensional toy example inrEidgu In this example, we compare
regression with a row-sparsity constraint to PCA with batink and sparsity constraints. With
X e R"*2, we plotX(? againstX(!) as the solid points in both plots of Figure 1. Constraining
B (2) = 0 (giving row-sparsity, as with CUR methods), (9) becomssp,, || X2 — X By,||,,
which is a simple linear regression, represented by thekhaick line and minimizing the sum
of squared vertical errors as shown. The red line (left pdbipws the first principal component
direction, which minimize€rRrR(W') among all rank-one matricéd/’. Here,ERR(W) is the sum
of squared projection distances (red dotted lines). RNAIIW is further required to be sparse in
the X() direction (as with SPCA methods), we get the rank-one, spamsjection represented by
the green line in Figure 1 (right). The two sets of dotteddiireeach plot clearly differ, indicating
that their corresponding reconstruction errors are diffe¢ias well. Since we have shown that CUR
is minimizing a regression-based objective, this toy exampggests that CUR may not in fact be
optimizing a PCA-type objective such as (10). Next, we widka this intuition more precise.

The first step to showing that CUR is an SPCA method would beddyce a matrixV s for
which XZXZ+tX = XV xVdur, i.€. to express CUR’s approximation in the form of an SPCA
approximation. However, this equality implie%.o (X VeurVir) € Leo(XF), meaning that
(Veur)ze = 0. If such aV¢yg existed, then clearlgRR(Veyr) = ||X — XZX?+X]||r, and so
CUR could be regarded as implicitly performing sparse PChmsense that (&Y cur iS sparse;
and (b) by Theorem 1 (with high probabilitygRR(Vcur) < (1 + €)ERR(V}). Thus, the existence
of such aV¢yr would cast CUR directly as a randomized approximation dtigorfor SPCA. How-
ever, the following theorem states that unless an unreatisnstraint onX holds, there does not
exist a matrixVeyg for which ERR(Veur) = ||X — XZXZ+X]||r. The larger implication of this
theorem is that CUR cannot be directly viewed as an SPCAtypidod.

Theorem 3. LetZ C {1,...,p} be anindex set and suppo¥€ € RP*? satisfiesW . = 0. Then,
X = XWWH||r > || X - XIXITX||Fp,

unlessLeo (X7%) L Leo(XT"), in which case " holds.
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Figure 1: Example of the difference in reconstruction es(®) and (10), when additional constraints
imposed. Left: regression with row-sparsity constraina¢k) compared with PCA with low rank
constraint (red). Right: regression with row-sparsity stoaint (black) compared with PCA with
low rank and sparsity constraint (green). In both plots,dbeesponding errors are represented by
the dotted lines.

Proof.
X = XWWT|[5 = | X - XTWWH|} = || X - XIW(W7W1) ' W[
= ||IXF = XIWWH |7 + |IX7 |7 > [1X7 |7
= |IX* = XEXEEXE |G+ XXX R
= |IX = XIXEHX|F + || XXX 7 > ||X - XXX |7
The last inequality is strict unleS§”XZ+XZ" = 0. O

5 CUR-type sparsity and the group lasso SPCA

Although CUR cannot be directly cast as an SPCA-type metindtijs section we propose a sparse
PCA approach (which we call the group lasso SPCAs0fSPCA) that accomplishes something
very close to CUR. Our proposal produce¥& that has rows that are entirely zero, and it is mo-
tivated by the following two observations about CUR. Fiffstjowing from the definition of the
leverage scores (3), CUR chooses columnXdjased on the norm of their corresponding rows of
V. Thus, it essentially “zeros-out” the rows &f;, with small norms (in a probabilistic sense).
Second, as we have noted in Section 4, if CUR could be exgtessa PCA method, its principal
directions matrix Vyg” would havep — c rows that are entirely zero, corresponding to removing
those columns oK.

Recall that Zowet al. [21] obtain a spars&* by including in (5) an additional.; penalty from
the optimization problem (4). Since thie, penalty is on the entire matrix viewed as a vector,
it encourages only unstructured sparsity. To achieve th& Gjgpe row sparsity, we propose the
following modification of (4):

Problem 2 (Group lasso SPCA:GL-SPCA). Given an arbitrary matrixX € R"*? and an integer
k,let A andW bep x k matrices, and lei\, \; > 0. TheGL-SPCA problem is to solve

p
(A", V") = argming w|[X = XWA"||Z + A[W||% + A1 > [[Will2 st. ATA =T, (11)

i=1

Thus, the lasso penalty\;||W||; in (5) is replaced in (11) by a group lasso penalty
A >oP o [[Wipll2, where rows ofW are grouped together so that each row\of will tend to
be either dense or entirely zero.

Importantly, thecL-SPCA problem is not convex iW and A together; it is, however, convex in
W, and it is easy to solve iA. Thus, analogous to the treatment in Zetual. [21], we propose
an iterative alternate-minimization algorithm to solve-SP CA. This is described in Algorithm 1;
and the justification of this algorithm is given in SectiorNbte that if we fixA to bel throughout,
then Algorithm 1 can be used to solve the-REG problem discussed in Section 3.



Algorithm 1: Iterative algorithm for solving theL-SPCA (andsL-REG) problems.
(For theGL-REG problem, fixA = I throughout this algorithm.)
Input: Data matrixX and initial estimates foA andW
Output: Final estimates foA andW
repeat
Compute SVD ofX”XW asUDVT and thenA — UVT:;
S {i: [[Wgll2 # 0}
for . € Sdo
R T 7 T .
Computeb; =3, (XDTXO) W
if ||ATXTX(7) — b7||2 < A1/2 then
| Wi <0
else
L Wi —

(ATXTX —b,);

2
2[[XD[ZHA+A1/1TW (i) []2

until convergence

We remark that such row-sparsity WVi* can have either advantages or disadvantages. Consider, for
example, when there are a small number of informative cokimiX and the rest are not important
for the task at hand [12, 14]. In such a case, we would expatethforcing entire rows to be zero
would lead to better identification of the signal columngj émis has been empirically observed in
the application of CUR to DNA SNP analysis [14]. The unstouet V*, by contrast, would not
be able to “borrow strength” across all columns\f to differentiate the signal columns from the
noise columns. On the other hand, requiring such structspagsity is more restrictive and may
not be desirable. For example, in microarray analysis inctviwie have measuredgenes om
patients, our goal may be to find several underlying factBislogists have identified “pathways”
of interconnected genes [16], and it would be desirabledhesparse factor could be identified with
a different pathway (that is, a different set of genes). Réggall factors ofV* to exclude the same
p — c genes does not allow a different sparse subset of genes tibe ia each factor.

We finish this section by pointing out that while most SPCA moels only enforce unstructured
zeros inV*, the idea of having a structured sparsity in the PCA contest Very recently been
explored [9]. OurcL-SPCA problem falls within the broad framework of this idea.

6 Empirical Comparisons

In this section, we evaluate the performance of the four oeshdiscussed above on both syn-
thetic and real data. In particular, we compare the randeth2QUR algorithm of Mahoney and
Drineas [12, 4] to ouGL-REG (of Problem 1), and we compare the SPCA algorithm proposed
by Zouet al. [21] to ourGL-SPCA (of Problem 2). We have also compared against the SPCA
algorithm of Wittenet al.[19], and we found the results to be very similar to those ai £bal.

6.1 Simulations

We first consider synthetic examples of the fokn= X + E, whereX is the underlying signal
matrix andE is a matrix of noise. In all our simulation® has i.i.d. A(0,1) entries, while the

signalX has one of the following forms:

Case I)X = [Onx(p_c);f(*] where then x ¢ matrix X* is the nonzero part X. In other words,
X hasc nonzero columns and does not necessarily have a low-ramdtste.

Case ll) X = UVT whereU andV each consist of < p orthogonal columns. In addition to
being low-rank,V has entire rows equal to zeriog, it is row-sparse).

Case lll) X = UVT whereU andV each consist ot < p orthogonal columns. Her® is
low-rank and sparse, but the sparsity is not structuredif is scattered-sparse).

A successful method attains low reconstruction error oftthe signalX and has high precision in
identifying correctly the zeros in the underlying model. previously discussed, the four methods



optimize for different types of reconstruction error. Thirs comparing CUR andsL-REG, we
use the regression-type reconstruction eEBR.;(Z) = || X — XZXZ*+X||r, whereas for the
comparison of SPCA andL-SPCA, we use the PCA-type errr(V) = || X — XVV*||p.

Table 1 presents the simulation results from the three cag#scomparisons use. = 100 and

p = 1000. In Case Il and lll, the signal matrix has rahk= 10. The underlying sparsity level is
20%, i.e. 80% of the entries ofX (Case I) andV (Case 11&lll) are zeros. Note that all methods
except forcL-REG require the rank: as an input, and we always take it to be 10 even in Case I. For
easy comparison, we have tuned each method to have thetdotedaaumber of zeros. The results
are averaged over 5 trials.

Methods Case | Case ll Case lll
ERReeq (7) CUR 316.29 (0.835) 315.28(0.797) 315.64 (0.166)
reg GL-REG 316.29(0.989) 315.28(0.750) 315.64 (0.107)
ERR(V) SPCA 177.92 (0.809) 44.388(0.799) 44.995(0.792)

GL-SPCA 141.85(0.998) 37.310(0.767) 45.500 (0.804)

Table 1: Simulation results: The reconstruction errors tedpercentages of correctly identified
zeros (in parentheses).

We notice in Table 1 that the two regression-type methods @UE&RGL-REG have very similar
performance. As we would expect, since CUR only uses inftioman the topk singular vectors, it
does slightly worse thagL-REG in terms of precision when the underlying signal is not lamk
(Case ). In addition, both methods perform poorly if thersfig is not structured as in Case Ill. The
two PCA-type methods perform similarly as well. Again, theuyp lasso method seems to work
better in Case I. We note that the precisions reported herbaged on element-wise sparsity—if we
were measuring row-sparsity, methods like SPCA would perjooorly since they do not encourage
entire rows to be zero.

6.2 Microarray example

We next consider a microarray dataset of soft tissue tumtoidiesd by Nielseret al. [13]. Ma-
honey and Drineas [12] apply CUR to this datasetcf 31 tissue samples angd= 5520 genes.
As with the simulation results, we use two sets of compagseve compare CUR witlksL-REG,
and we compare SPCA withL-SPCA. Since we do not observe the underlying tithwe take
ERRieg(Z) = ||X — XIXZ*X||r andERR(V) = || X — XVV*|| . Also, since we do not observe
the true sparsity, we cannot measure the precision as we @abie 1. The left plot in Figure 2
ShowSERR.¢(Z) as a function ofZ|. We see that CUR anelL-REG perform similarly. (However,
since CUR is a randomized algorithm, on every run it givesfierint result. From a practical
standpoint, this feature of CUR can be disconcerting todgiists wanting to report a single set of
important genes. In this lighGL-REG may be thought of as an attractive non-randomized alterna-
tive to CUR.) The right plot of Figure 2 compares-SPCA to SPCA (specifically, Zoet al.[21]).
Since SPCA does not explicitly enforce row-sparsity, foeagto be not used in the model requires
all of the (¢ = 4) columns ofV* to exclude it. This likely explains the advantagesaf SPCA over
SPCA seen in the figure.

7 Justification of Algorithm 1
The algorithm alternates between minimizing with respecitandB until convergence.

Solving for A given B: If B is fixed, then the regularization penalty in (11) can be igdoin
which case the optimization problem becomés 4 || X — XBA”||% subject toA” A = I. This
problem was considered by Zet al.[21], who showed that the solution is obtained by computing
the SVD of(X7X)B as(X7X)B = UDV” and then setting = UV7. This explains step 1 in
Algorithm 1.

Solving for B given A: If A is fixed, then (11) becomes an unconstrained convex optiioiza
problem inB. The subgradient equations (using tAst A = I,,) are

2BTXTX) — 2ATXTXW 4 2B + \isi = 0; i=1,....p, (12)
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Figure 2: Left: Comparison of CUR, multiple runs, withL.-REG; Right: Comparison ofGL-
SPCA with SPCA (specifically, Zoet al.[21]).

where the subgradient vectass = B%’;)/||B(i)||2 if Bi;y # 0, 0r[si|]2 < 1if B;) = 0. Letus
defineb; = > (XOTXO)BT) = BTXTX O —||X®|3B;), so that the subgradient equations
can be written as

b; + (IIX@3 + )BY) — ATXTX® 4 (A1 /2)s; = 0. (13)

The following claim explains Step 3 in Algorithm 1.
Claim 1. B;) = 0if and only if [ATXTX® — b,||> < A1 /2.

Proof. First, if B(;) = 0, the subgradient equations (13) becdme- ATXTX ) + (X, /2)s; = 0.
Since||s;|l2 < 1if By = 0, we have[[ATXTX® — b;||; < A;/2. To prove the other
direction, recall thaB;y # 0 impliess; = B(Ti)/||B(i)||2. Substituting this expression into

(13), rearranging terms, and taking the norm on both sides,get2||ATX7X® — b;||, =
2IXD[3 + 22+ M /1By ll2) 1By ll2 > Ar- O

By Claim 1, [[ATXTX® — b,|| > A;/2 implies thatB;, # 0 which further impliess; =
B(,)/IIB(;|l2- Substituting into (13) gives Step 4 in Algorithm 1.

8 Conclusion

In this paper, we have elucidated several connections legttveo recently-popular matrix decom-
position methods that adopt very different perspectivestaiaining interpretable low-rank matrix
decompositions. In doing so, we have suggested two optiloiz@roblems,GL-REG and GL-
SPCA, that highlight similarities and differences betwdlea two methods. In general, SPCA
methods obtain interpretability by modifying an existimgractable objective with a convex regu-
larization term that encourages sparsity, and teeactlyoptimizing that modified objective. On
the other hand, CUR methods operate by using randomnespprakanation as computational re-
sources to optimizapproximatelyan intractable objective, thereby implicitly incorporagia form
of regularization into the steps of the approximation aifpon. Understanding this concept ioifi-
plicit regularization via approximate computatiéclearly of interest more generally, in particular
for applications where the size scale of the data is expdotgtrease.
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