
CUR from a Sparse Optimization Viewpoint

Jacob Bien∗

Department of Statistics
Stanford University
Stanford, CA 94305

jbien@stanford.edu

Ya Xu∗

Department of Statistics
Stanford University
Stanford, CA 94305

yax.stanford@gmail.com

Michael W. Mahoney
Department of Mathematics

Stanford University
Stanford, CA 94305

mmahoney@cs.stanford.edu

Abstract

The CUR decomposition provides an approximation of a matrixX that has low
reconstruction error and that is sparse in the sense that theresulting approximation
lies in the span of only a few columns ofX. In this regard, it appears to be simi-
lar to many sparse PCA methods. However, CUR takes a randomized algorithmic
approach, whereas most sparse PCA methods are framed as convex optimization
problems. In this paper, we try to understand CUR from a sparse optimization
viewpoint. We show that CUR is implicitly optimizing a sparse regression objec-
tive and, furthermore, cannot be directly cast as a sparse PCA method. We also
observe that the sparsity attained by CUR possesses an interesting structure, which
leads us to formulate a sparse PCA method that achieves a CUR-like sparsity.

1 Introduction

CUR decompositions are a recently-popular class of randomized algorithms that approximate a data
matrixX ∈ R

n×p by using only a small number of actual columns ofX [12, 4]. CUR decomposi-
tions are often described as SVD-like low-rank decompositions that have the additional advantage of
being easily interpretable to domain scientists. The motivation to produce a more interpretable low-
rank decomposition is also shared by sparse PCA (SPCA) methods, which are optimization-based
procedures that have been of interest recently in statistics and machine learning.

Although CUR and SPCA methods start with similar motivations, they proceed very differently. For
example, most CUR methods have been randomized, and they take a purely algorithmic approach.
By contrast, most SPCA methods start with a combinatorial optimization problem, and they then
solve a relaxation of this problem. Thus far, it has not been clear to researchers how the CUR and
SPCA approaches are related. It is the purpose of this paper to understand CUR decompositions
from a sparse optimization viewpoint, thereby elucidatingthe connection between CUR decompo-
sitions and the SPCA class of sparse optimization methods.

To do so, we begin by putting forth a combinatorial optimization problem (see (6) below) which
CUR is implicitly approximately optimizing. This formulation will highlight two interesting features
of CUR: first, CUR attains a distinctive pattern of sparsity,which has practical implications from
the SPCA viewpoint; and second, CUR is implicitly optimizing a regression-type objective. These
two observations then lead to the three main contributions of this paper: (a) first, we formulate a
non-randomized optimization-based version of CUR (see Problem 1:GL-REG in Section 3) that is
based on a convex relaxation of the CUR combinatorial optimization problem; (b) second, we show
that, in contrast to the original PCA-based motivation for CUR, CUR’s implicit objective cannot
be directly expressed in terms of a PCA-type objective (see Theorem 3 in Section 4); and (c) third,
we propose an SPCA approach (see Problem 2:GL-SPCA in Section 5) that achieves the sparsity
structure of CUR within the PCA framework. We also provide a brief empirical evaluation of our
two proposed objectives. While our proposedGL-REG andGL-SPCA methods are promising in
and of themselves, our purpose in this paper is not to explorethem as alternatives to CUR; instead,
our goal is to use them to help clarify the connection betweenCUR and SPCA methods.

∗Jacob Bien and Ya Xu contributed equally.
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We conclude this introduction with some remarks on notation. Given a matrixA, we useA(i) to
denote itsith row (as a row-vector) andA(i) its ith column. Similarly, given a set of indicesI,
AI andA

I denote the submatrices ofA containing only theseI rows and columns, respectively.
Finally, we letLcol(A) denote the column space ofA.

2 Background

In this section, we provide a brief background on CUR and SPCAmethods, with a particular em-
phasis on topics to which we will return in subsequent sections. Before doing so, recall that, given
an input matrixX, Principal Component Analysis (PCA) seeks thek-dimensional hyperplane with
the lowest reconstruction error. That is, it computes ap× k orthogonal matrixW that minimizes

ERR(W) = ||X−XWW
T ||F . (1)

Writing the SVD ofX asUΣV
T , the minimizer of (1) is given byVk, the firstk columns ofV. In

the data analysis setting, each column ofV provides a particular linear combination of the columns
of X. These linear combinations are often thought of as latent factors. In many applications, in-
terpreting such factors is made much easier if they are comprised of only a small number of actual
columns ofX, which is equivalent toVk only having a small number of nonzero elements.

2.1 CUR matrix decompositions

CUR decompositions were proposed by Drineas and Mahoney [12, 4] to provide a low-rank approx-
imation to a data matrixX by using only a small number of actual columns and/or rows ofX. Fast
randomized variants [3], deterministic variants [5], Nyström-based variants [1, 11], and heuristic
variants [17] have also been considered. Observing that thebest rank-k approximation to the SVD
provides the best set ofk linear combinations of all the columns, one can ask for the best set ofk
actualcolumns. Most formalizations of “best” lead to intractablecombinatorial optimization prob-
lems [12], but one can take advantage of oversampling (choosing slightly more thank columns) and
randomness as computational resources to obtain strong quality-of-approximation guarantees.
Theorem 1 (Relative-error CUR [12]). Given an arbitrary matrixX ∈ R

n×p and an integerk,
there exists a randomized algorithm that chooses a random subsetI ⊂ {1, . . . , p} of sizec =
O(k log k log(1/δ)/ǫ2) such thatXI , then×c submatrix containing thosec columns ofX, satisfies

||X−X
I
X

I+
X||F = min

B∈Rc×p
||X−X

I
B||F ≤ (1 + ǫ)||X−Xk||F , (2)

with probability at least1− δ, whereXk is the best rankk approximation toX.

The algorithm referred to by Theorem 1 is very simple:

1) Compute thenormalized statistical leverage scores, defined below in (3).
2) FormI by randomly samplingc columns ofX, using these normalized statistical leverage scores

as an importance sampling distribution.
3) Return then× c matrixX

I consisting of these selected columns.

The key issue here is the choice of the importance sampling distribution. Let thep × k matrix Vk

be the top-k right singular vectors ofX. Then thenormalized statistical leverage scoresare

πi =
1

k
||Vk(i)||

2
2, (3)

for all i = 1, . . . , p, whereVk(i) denotes thei-th row of Vk. These scores, proportional to the
Euclidean norms of therows of the top-k right singular vectors, define the relevant nonuniformity
structure to be used to identify good (in the sense of Theorem1) columns. In addition, these scores
are proportional to the diagonal elements of the projectionmatrix onto the top-k right singular
subspace. Thus, they generalize the so-called hat matrix [8], and they have a natural interpretation
as capturing the “statistical leverage” or “influence” of a given column on the best low-rank fit of
the data matrix [8, 12].

2.2 Regularized sparse PCA methods

SPCA methods attempt to make PCA easier to interpret for domain experts by finding sparse approx-
imations to thecolumnsof V.1 There are several variants of SPCA. For example, Jolliffeet al. [10]

1For SPCA, we only consider sparsity in the right singular vectorsV and not in the left singular vectorsU.
This is similar to considering only the choice of columns andnot of both columns and rows in CUR.
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and Wittenet al. [19] use the maximum variance interpretation of PCA and provide an optimization
problem which explicitly encourages sparsity inV based on a Lasso constraint [18]. d’Aspremont
et al. [2] take a similar approach, but instead formulate the problem as an SDP.

Zou et al. [21] use the minimum reconstruction error interpretation of PCA to suggest a different
approach to the SPCA problem; this formulation will be most relevant to our present purpose. They
begin by formulating PCA as the solution to a regression-type problem.
Theorem 2(Zouet al. [21]). Given an arbitrary matrixX ∈ R

n×p and an integerk, let A andW

bep× k matrices. Then, for anyλ > 0, let

(A∗,V∗
k) = argminA,W∈Rp×k ||X−XWA

T ||2F + λ||W||2F s.t. AT
A = Ik. (4)

Then, the minimizing matricesA∗ andV
∗
k satisfyA∗(i) = siV

(i) andV
∗(i)
k = si

Σ
2
ii

Σ2
ii

+λ
V

(i), where
si = 1 or −1.

That is, up to signs,A∗ consists of the top-k right singular vectors ofX, andV
∗
k consists of

those same vectors “shrunk” by a factor depending on the corresponding singular value. Given this
regression-type characterization of PCA, Zouet al. [21] then “sparsify” the formulation by adding
anL1 penalty onW:

(A∗,V∗
k) = argmin

A,W∈Rp×k ||X−XWA
T ||2F + λ||W||2F + λ1||W||1 s.t. AT

A = Ik, (5)

where||W||1 =
∑

ij |Wij |. This regularization tends to sparsifyW element-wise, so that the
solutionV

∗
k gives a sparse approximation ofVk.

3 Expressing CUR as an optimization problem

In this section, we present an optimization formulation of CUR. Recall, from Section 2.1, that CUR
takes a purely algorithmic approach to the problem of approximating a matrix in terms of a small
number of its columns. That is, it achieves sparsity indirectly by randomly selectingc columns, and
it does so in such a way that the reconstruction error is smallwith high probability (Theorem 1). By
contrast, SPCA methods are generally formulated as the exact solution to an optimization problem.

From Theorem 1, it is clear that CUR seeks a subsetI of sizec for whichminB∈Rc×p ||X−X
I
B||F

is small. In this sense, CUR can be viewed as a randomized algorithm for approximately solving the
following combinatorial optimization problem:

min
I⊂{1,...,p}

min
B∈Rc×p

||X−X
I
B||F s.t. |I| ≤ c. (6)

In words, this objective asks for the subset ofc columns ofX which best describes the entire matrix
X. Notice that relaxing|I| = c to |I| ≤ c does not affect the optimum. This optimization problem
is analogous to all-subsets multivariate regression [7], which is known to be NP-hard.

However, by using ideas from the optimization literature wecan approximate this combinatorial
problem as a regularized regression problem that is convex.First, notice that (6) is equivalent to

min
B∈Rp×p

||X−XB||F s.t.

p∑

i=1

1{||B(i)||2 6=0} ≤ c, (7)

where we now optimize over ap×p matrixB. To see the equivalence between (6) and (7), note that
the constraint in (7) is the same as finding some subsetI with |I| ≤ c such thatBIc = 0.

The formulation in (7) provides a natural entry point to proposing a convex optimization approach
corresponding to CUR. First notice that (7) uses anL0 norm on the rows ofB, which is not convex.
However, we can approximate theL0 constraint by agroup lassopenalty, which uses a well-known
convex heuristic proposed by Yuanet al. [20] that encourages prespecifiedgroupsof parameters
to be simultaneously sparse. Thus, the combinatorial problem in (6) can be approximated by the
following convex (and thus tractable) problem:
Problem 1 (Group lasso regression:GL -REG). Given an arbitrary matrixX ∈ R

n×p, let B ∈
R

p×p andt > 0. TheGL-REG problem is to solve

B
∗ = argminB||X−XB||F s.t.

p∑

i=1

||B(i)||2 ≤ t, (8)

wheret is chosen to getc nonzero rows inB∗.
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Since the rows ofB are grouped together in the penalty
∑p

i=1 ||B(i)||2, the row vectorB(i) will tend
to be either dense or entirely zero. Note also that the algorithm to solve Problem 1 is a special case
of Algorithm 1 (see below), which solves theGL-SPCA problem, to be introduced later. (Finally,
as a side remark, note that our proposedGL-REG is strikingly similar to a recently proposed method
for sparse inverse covariance estimation [6, 15].)

4 Distinguishing CUR from SPCA

Our original intention in casting CUR in the optimization framework was to understand better
whether CUR could be seen as an SPCA-type method. So far, we have established CUR’s con-
nection to regression by showing that CUR can be thought of asan approximation algorithm for the
sparse regression problem (7). In this section, we discuss the relationship between regression and
PCA, and we show that CUR cannot be directly cast as an SPCA method.

To do this, recall that regression, in particular “self” regression, finds aB ∈ R
p×p that minimizes

||X−XB||F . (9)

On the other hand, PCA-type methods find a set of directionsW that minimize

ERR(W) := ||X−XWW
+||F . (10)

Here, unlike in (1), we do not assume thatW is orthogonal, since the minimizer produced from
SPCA methods is often not required to be orthogonal (recall Section 2.2).

Clearly, with no constraints onB or W, we can trivially achieve zero reconstruction error in both
cases by takingB = Ip andW anyp × p full-rank matrix. However, with additional constraints,
these two problems can be very different. It is common to consider sparsity and/or rank constraints.
We have seen in Section 3 that CUR effectively requiresB to be row-sparse; in the standard PCA
setting,W is taken to be rankk (with k < p), in which case (10) is minimized byVk and obtains
the optimal valueERR(Vk) = ||X−Xk||F ; finally, for SPCA,W is further required to be sparse.

To illustrate the difference between the reconstruction errors (9) and (10) when extra constraints
are imposed, consider the 2-dimensional toy example in Figure 1. In this example, we compare
regression with a row-sparsity constraint to PCA with both rank and sparsity constraints. With
X ∈ R

n×2, we plotX(2) againstX(1) as the solid points in both plots of Figure 1. Constraining
B(2) = 0 (giving row-sparsity, as with CUR methods), (9) becomesminB12 ||X

(2) −X
(1)B12||2,

which is a simple linear regression, represented by the black thick line and minimizing the sum
of squared vertical errors as shown. The red line (left plot)shows the first principal component
direction, which minimizesERR(W) among all rank-one matricesW. Here,ERR(W) is the sum
of squared projection distances (red dotted lines). Finally, if W is further required to be sparse in
theX

(2) direction (as with SPCA methods), we get the rank-one, sparse projection represented by
the green line in Figure 1 (right). The two sets of dotted lines in each plot clearly differ, indicating
that their corresponding reconstruction errors are different as well. Since we have shown that CUR
is minimizing a regression-based objective, this toy example suggests that CUR may not in fact be
optimizing a PCA-type objective such as (10). Next, we will make this intuition more precise.

The first step to showing that CUR is an SPCA method would be to produce a matrixVCUR for
which X

I
X

I+
X = XVCURV

+
CUR, i.e. to express CUR’s approximation in the form of an SPCA

approximation. However, this equality impliesLcol(XVCURV
+
CUR) ⊆ Lcol(X

I), meaning that
(VCUR)Ic = 0. If such aVCUR existed, then clearlyERR(VCUR) = ||X − X

I
X

I+
X||F , and so

CUR could be regarded as implicitly performing sparse PCA inthe sense that (a)VCUR is sparse;
and (b) by Theorem 1 (with high probability),ERR(VCUR) ≤ (1 + ǫ)ERR(Vk). Thus, the existence
of such aVCUR would cast CUR directly as a randomized approximation algorithm for SPCA. How-
ever, the following theorem states that unless an unrealistic constraint onX holds, there does not
exist a matrixVCUR for which ERR(VCUR) = ||X − X

I
X

I+
X||F . The larger implication of this

theorem is that CUR cannot be directly viewed as an SPCA-typemethod.

Theorem 3. LetI ⊂ {1, . . . , p} be an index set and supposeW ∈ R
p×p satisfiesWIc = 0. Then,

||X−XWW
+||F > ||X−X

I
X

I+
X||F ,

unlessLcol(X
I) ⊥ Lcol(X

Ic

), in which case “≥” holds.
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Figure 1: Example of the difference in reconstruction errors (9) and (10), when additional constraints
imposed. Left: regression with row-sparsity constraint (black) compared with PCA with low rank
constraint (red). Right: regression with row-sparsity constraint (black) compared with PCA with
low rank and sparsity constraint (green). In both plots, thecorresponding errors are represented by
the dotted lines.

Proof.

||X−XWW
+||2F = ||X−X

I
WIW

+||2F = ||X−X
I
WI(WT

I WI)−1
W

T ||2F

= ||XI −X
I
WIW

+
I ||

2
F + ||XIc

||2F ≥ ||X
Ic

||2F

= ||XIc

−X
I
X

I+
X

Ic

||2F + ||XI
X

I+
X

Ic

||2F

= ||X−X
I
X

I+
X||2F + ||XI

X
I+

X
Ic

||2F ≥ ||X−X
I
X

I+
X||2F .

The last inequality is strict unlessXI
X

I+
X

Ic

= 0.

5 CUR-type sparsity and the group lasso SPCA

Although CUR cannot be directly cast as an SPCA-type method,in this section we propose a sparse
PCA approach (which we call the group lasso SPCA orGL-SPCA) that accomplishes something
very close to CUR. Our proposal produces aV

∗ that has rows that are entirely zero, and it is mo-
tivated by the following two observations about CUR. First,following from the definition of the
leverage scores (3), CUR chooses columns ofX based on the norm of their corresponding rows of
Vk. Thus, it essentially “zeros-out” the rows ofVk with small norms (in a probabilistic sense).
Second, as we have noted in Section 4, if CUR could be expressed as a PCA method, its principal
directions matrix “VCUR” would havep − c rows that are entirely zero, corresponding to removing
those columns ofX.

Recall that Zouet al. [21] obtain a sparseV∗ by including in (5) an additionalL1 penalty from
the optimization problem (4). Since theL1 penalty is on the entire matrix viewed as a vector,
it encourages only unstructured sparsity. To achieve the CUR-type row sparsity, we propose the
following modification of (4):

Problem 2 (Group lasso SPCA:GL -SPCA). Given an arbitrary matrixX ∈ R
n×p and an integer

k, let A andW bep× k matrices, and letλ, λ1 > 0. TheGL-SPCA problem is to solve

(A∗,V∗) = argminA,W||X−XWA
T ||2F + λ||W||2F + λ1

p∑

i=1

||W(i)||2 s.t. AT
A = Ik. (11)

Thus, the lasso penaltyλ1||W||1 in (5) is replaced in (11) by a group lasso penalty
λ1

∑p
i=1 ||W(i)||2, where rows ofW are grouped together so that each row ofV

∗ will tend to
be either dense or entirely zero.

Importantly, theGL-SPCA problem is not convex inW andA together; it is, however, convex in
W, and it is easy to solve inA. Thus, analogous to the treatment in Zouet al. [21], we propose
an iterative alternate-minimization algorithm to solveGL-SPCA. This is described in Algorithm 1;
and the justification of this algorithm is given in Section 7.Note that if we fixA to beI throughout,
then Algorithm 1 can be used to solve theGL-REG problem discussed in Section 3.
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Algorithm 1: Iterative algorithm for solving theGL-SPCA (andGL-REG) problems.
(For theGL-REG problem, fixA = I throughout this algorithm.)

Input : Data matrixX and initial estimates forA andW

Output : Final estimates forA andW

repeat
1 Compute SVD ofXT

XW asUDV
T and thenA← UV

T ;
S ← {i : ||W(i)||2 6= 0};
for i ∈ S do

2 Computebi =
∑

j 6=i

(
X

(j)T
X

(i)
)
W

T
(j);

if ||AT
X

T
X

(i) − bi||2 ≤ λ1/2 then
3 W

T
(i) ← 0;

else
4 W

T
(i) ←

2
2||X(i)||22+λ+λ1/||W(i)||2

(
A

T
X

T
X

(i) − bi

)
;

until convergence;

We remark that such row-sparsity inV∗ can have either advantages or disadvantages. Consider, for
example, when there are a small number of informative columns inX and the rest are not important
for the task at hand [12, 14]. In such a case, we would expect that enforcing entire rows to be zero
would lead to better identification of the signal columns; and this has been empirically observed in
the application of CUR to DNA SNP analysis [14]. The unstructuredV

∗, by contrast, would not
be able to “borrow strength” across all columns ofV

∗ to differentiate the signal columns from the
noise columns. On the other hand, requiring such structuredsparsity is more restrictive and may
not be desirable. For example, in microarray analysis in which we have measuredp genes onn
patients, our goal may be to find several underlying factors.Biologists have identified “pathways”
of interconnected genes [16], and it would be desirable if each sparse factor could be identified with
a different pathway (that is, a different set of genes). Requiring all factors ofV∗ to exclude the same
p− c genes does not allow a different sparse subset of genes to be active in each factor.

We finish this section by pointing out that while most SPCA methods only enforce unstructured
zeros inV

∗, the idea of having a structured sparsity in the PCA context has very recently been
explored [9]. OurGL-SPCA problem falls within the broad framework of this idea.

6 Empirical Comparisons

In this section, we evaluate the performance of the four methods discussed above on both syn-
thetic and real data. In particular, we compare the randomized CUR algorithm of Mahoney and
Drineas [12, 4] to ourGL-REG (of Problem 1), and we compare the SPCA algorithm proposed
by Zou et al. [21] to our GL-SPCA (of Problem 2). We have also compared against the SPCA
algorithm of Wittenet al. [19], and we found the results to be very similar to those of Zou et al.

6.1 Simulations

We first consider synthetic examples of the formX = X̂ + E, whereX̂ is the underlying signal
matrix andE is a matrix of noise. In all our simulations,E has i.i.d. N (0, 1) entries, while the
signalX̂ has one of the following forms:

Case I) X̂ = [0n×(p−c); X̂
∗] where then× c matrix X̂

∗ is the nonzero part of̂X. In other words,

X̂ hasc nonzero columns and does not necessarily have a low-rank structure.

Case II) X̂ = UV
T whereU andV each consist ofk < p orthogonal columns. In addition to

being low-rank,V has entire rows equal to zero (i.e. it is row-sparse).

Case III) X̂ = UV
T whereU andV each consist ofk < p orthogonal columns. HereV is

low-rank and sparse, but the sparsity is not structured (i.e. it is scattered-sparse).

A successful method attains low reconstruction error of thetrue signalX̂ and has high precision in
identifying correctly the zeros in the underlying model. Aspreviously discussed, the four methods
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optimize for different types of reconstruction error. Thus, in comparing CUR andGL-REG, we
use the regression-type reconstruction errorERRreg(I) = ||X̂ − X

I
X

I+
X||F , whereas for the

comparison of SPCA andGL-SPCA, we use the PCA-type errorERR(V) = ||X̂−XVV
+||F .

Table 1 presents the simulation results from the three cases. All comparisons usen = 100 and
p = 1000. In Case II and III, the signal matrix has rankk = 10. The underlying sparsity level is
20%, i.e. 80% of the entries ofX̂ (Case I) andV (Case II&III) are zeros. Note that all methods
except forGL-REG require the rankk as an input, and we always take it to be 10 even in Case I. For
easy comparison, we have tuned each method to have the correct total number of zeros. The results
are averaged over 5 trials.

Methods Case I Case II Case III

ERRreg(I)
CUR 316.29 (0.835) 315.28 (0.797) 315.64 (0.166)
GL-REG 316.29 (0.989) 315.28 (0.750) 315.64 (0.107)

ERR(V)
SPCA 177.92 (0.809) 44.388 (0.799) 44.995 (0.792)
GL-SPCA 141.85 (0.998) 37.310 (0.767) 45.500 (0.804)

Table 1: Simulation results: The reconstruction errors andthe percentages of correctly identified
zeros (in parentheses).

We notice in Table 1 that the two regression-type methods CURand GL-REG have very similar
performance. As we would expect, since CUR only uses information in the topk singular vectors, it
does slightly worse thanGL-REG in terms of precision when the underlying signal is not low-rank
(Case I). In addition, both methods perform poorly if the sparsity is not structured as in Case III. The
two PCA-type methods perform similarly as well. Again, the group lasso method seems to work
better in Case I. We note that the precisions reported here are based on element-wise sparsity—if we
were measuring row-sparsity, methods like SPCA would perform poorly since they do not encourage
entire rows to be zero.

6.2 Microarray example

We next consider a microarray dataset of soft tissue tumors studied by Nielsenet al. [13]. Ma-
honey and Drineas [12] apply CUR to this dataset ofn = 31 tissue samples andp = 5520 genes.
As with the simulation results, we use two sets of comparisons: we compare CUR withGL-REG,
and we compare SPCA withGL-SPCA. Since we do not observe the underlying truthX̂, we take
ERRreg(I) = ||X−X

I
X

I+
X||F andERR(V) = ||X−XVV

+||F . Also, since we do not observe
the true sparsity, we cannot measure the precision as we do inTable 1. The left plot in Figure 2
showsERRreg(I) as a function of|I|. We see that CUR andGL-REG perform similarly. (However,
since CUR is a randomized algorithm, on every run it gives a different result. From a practical
standpoint, this feature of CUR can be disconcerting to biologists wanting to report a single set of
important genes. In this light,GL-REG may be thought of as an attractive non-randomized alterna-
tive to CUR.) The right plot of Figure 2 comparesGL-SPCA to SPCA (specifically, Zouet al.[21]).
Since SPCA does not explicitly enforce row-sparsity, for a gene to be not used in the model requires
all of the (k = 4) columns ofV∗ to exclude it. This likely explains the advantage ofGL-SPCA over
SPCA seen in the figure.

7 Justification of Algorithm 1

The algorithm alternates between minimizing with respect to A andB until convergence.

Solving for A given B: If B is fixed, then the regularization penalty in (11) can be ignored, in
which case the optimization problem becomesminA ||X −XBA

T ||2F subject toAT
A = I. This

problem was considered by Zouet al. [21], who showed that the solution is obtained by computing
the SVD of(XT

X)B as(XT
X)B = UDV

T and then settinĝA = UV
T . This explains step 1 in

Algorithm 1.

Solving for B given A: If A is fixed, then (11) becomes an unconstrained convex optimization
problem inB. The subgradient equations (using thatA

T
A = Ik) are

2BT
X

T
X

(i) − 2AT
X

T
X

(i) + 2λB
T
(i) + λ1si = 0; i = 1, . . . , p, (12)
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Figure 2: Left: Comparison of CUR, multiple runs, withGL-REG; Right: Comparison ofGL-
SPCA with SPCA (specifically, Zouet al. [21]).

where the subgradient vectorssi = B
T
(i)/||B(i)||2 if B(i) 6= 0, or ||si||2 ≤ 1 if B(i) = 0. Let us

definebi =
∑

j 6=i(X
(j)T

X
(i))BT

(j) = B
T
X

T
X

(i)−||X(i)||22B
T
(i), so that the subgradient equations

can be written as

bi + (||X(i)||22 + λ)BT
(i) −A

T
X

T
X

(i) + (λ1/2)si = 0. (13)

The following claim explains Step 3 in Algorithm 1.

Claim 1. B(i) = 0 if and only if||AT
X

T
X

(i) − bi||2 ≤ λ1/2.

Proof. First, if B(i) = 0, the subgradient equations (13) becomebi−A
T
X

T
X

(i) + (λ1/2)si = 0.
Since ||si||2 ≤ 1 if B(i) = 0, we have||AT

X
T
X

(i) − bi||2 ≤ λ1/2. To prove the other
direction, recall thatB(i) 6= 0 implies si = B

T
(i)/||B(i)||2. Substituting this expression into

(13), rearranging terms, and taking the norm on both sides, we get2||AT
X

T
X

(i) − bi||2 =(
2||X(i)||22 + 2λ + λ1/||B(i)||2

)
||B(i)||2 > λ1.

By Claim 1, ||AT
X

T
X

(i) − bi||2 > λ1/2 implies thatB(i) 6= 0 which further impliessi =

B
T
(i)/||B(i)||2. Substituting into (13) gives Step 4 in Algorithm 1.

8 Conclusion

In this paper, we have elucidated several connections between two recently-popular matrix decom-
position methods that adopt very different perspectives onobtaining interpretable low-rank matrix
decompositions. In doing so, we have suggested two optimization problems,GL-REG and GL-
SPCA, that highlight similarities and differences betweenthe two methods. In general, SPCA
methods obtain interpretability by modifying an existing intractable objective with a convex regu-
larization term that encourages sparsity, and thenexactlyoptimizing that modified objective. On
the other hand, CUR methods operate by using randomness and approximation as computational re-
sources to optimizeapproximatelyan intractable objective, thereby implicitly incorporating a form
of regularization into the steps of the approximation algorithm. Understanding this concept ofim-
plicit regularization via approximate computationis clearly of interest more generally, in particular
for applications where the size scale of the data is expectedto increase.
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