
Supplementary Material for “Predicting Execution
Time of Computer Programs Using Sparse

Polynomial Regression”

1 Proof of Theorem 3.1

Let S be a subset of{1, 2, . . . , p} and its complementSc = {1, 2, . . . , p} \ S. Write the feature
matrixX asX = [X(S), X(Sc)]. Let responseY = f(X(S)) + ǫ, wheref(·) is any function and
ǫ is additive noise. Letn be the number of observations ands the size ofS. We assume thatX is
deterministic,p ands are fixed, andǫ′is are i.i.d. and follow the Gaussian distribution with mean0
and varianceσ2. Our results also hold for zero mean sub-Gaussian noise withparameterσ2. More
general results regarding general scaling ofn, p ands can also be obtained.

Recall that the LASSO is defined as

β̂ =
1

2
‖Y − Xβ‖2

2 + λ‖β‖1. (1)

Under the following conditions, we show that Step 1 of SPORE-LASSO, the linear LASSO, selects
the relevant features even if the responseY depends on predictorsX(S) nonlinearly:

1. The columns (Xj, j = 1, . . . , p) of X are standardized:1
n
XT

j Xj = 1, for all j;

2. Λmin(
1
n
XT

S XS) ≥ c with a constantc > 0;

3. min |(XT
S XS)−1XT

S f(XS)| > α with a constantα > 0;

4. XT

Sc [I−XS(XT

S
XS)−1XT

S
]f(XS)

n
< ηαc

2
√

s+1
, for some0 < η < 1;

5. ‖XT
ScXS(XT

S XS)−1‖∞ ≤ 1 − η;

whereΛmin(·) denotes the minimum eigen value of a matrix,‖A‖∞ is defined asmaxi

[

∑

j |Aij |
]

and the inequalities are defined element-wise.

By standard convex optimization theory, ifβ̂ = (β̂S , β̂Sc) with β̂S 6= 0 andβ̂Sc = 0 satisfies

XT
S (Y − XS β̂S) = λsgn(β̂S), (2)

|XT
Sc(Y − XS β̂S)| < λ, (3)

then it is the unique solution of the LASSO (1).

From Equation (2), we get

β̂S = (XT
S XS)−1XT

S f(XS) + (XT
S XS)−1[XT

S ǫ − λsgn(β̂S)]. (4)

Let~b be the the sign vector of(XT
S XS)−1XT

S f(XS). Setsgn(β̂S) = ~b, substitute it into equation
(4), and then we have

β̂S = (XT
S XS)−1XT

S f(XS) + (XT
S XS)−1[XT

S ǫ − λ~b]. (5)

1

It can be verified that if
max

∣

∣

∣
(XT

S XS)−1[XT
S ǫ − λ~b]

∣

∣

∣
< α, (6)

thenβ̂S defined in Equation (5) satisfies Equation (2).

Substituteβ̂S with (5) into Inequality (3), we get
∣

∣XT
Sc [f(XS) − XS(XT

S XS)−1XT
S f(XS)]

+XT
Sc [I − XS(XT

S XS)−1XT
S]ǫ

+ λXT
ScXS(XT

S XS)−1~b
∣

∣

∣
< λ. (7)

By assumption,
|XT

ScXS(XT
S XS)−1~b| ≤ 1 − η,

so,
∣

∣XT
Sc [f(XS) − XS(XT

S XS)−1XT
S f(XS)]

∣

∣ +
∣

∣XT
Sc [I − XS(XT

S XS)−1XT
S]ǫ

∣

∣ < λη/2 (8)

is sufficient for Inequality (3).

According to the previous discussion, it suffices to prove that (6) and (8) hold with probability→ 1
asn → ∞.

We analyze (8) first.XT
Sc [I − XS(XT

S XS)−1XT
S]ǫ is a Gaussian random vector with mean0 and

variance of each element at mostnσ2. So,

P [max |XT
Sc [I − XS(XT

S XS)−1XT
S]ǫ| > t] ≤ 2(p − s) exp

{

− t2

2nσ2

}

.

Settingt = λη
2 −

∣

∣XT
Sc [f(XS) − XS(XT

S XS)−1XT
S f(XS)]

∣

∣, we obtain that

P [(8) holds] ≥ 1 − 2(p − s) exp

{

− (
∣

∣XT
Sc [f(XS) − XS(XT

S XS)−1XT
S f(XS)]

∣

∣ − λη
2)2

2nσ2

}

.

Set

λ =
2

η

{
∣

∣XT
Sc [f(XS) − XS(XT

S XS)−1XT
S f(XS)]

∣

∣ + κ
√

n log n
}

, (9)

whereκ is a constant. It is easy to see that the above probability goes to 1. From Condition 4.,λ has
the property thatλ/n ≤ αc√

s+1
asn → ∞.

Now we analyze (6). We have|(XT
S XS)−1[XT

S ǫ − λ~b]‖ ≤ |(XT
S XS)−1XT

S ǫ‖ + |(XT
S XS)−1λ~b‖.

Since ‖(XT
S XS)−1‖2 ≤ 1

nc
, we have the variance of each element of Gaussian vector

|(XT
S XS)−1[XT

S ǫ]| at mostσ
2

nc
.

So

P [max
∣

∣(XT
S XS)−1[XT

S ǫ]
∣

∣ > t] ≤ 2s exp

{

−nct2

2σ2

}

.

|(XT
S XS)−1λ~b]| ≤

√
sλ

nc
.

Sett2 = 1√
n

and setλ such that
√

sλ

nc
< α (note that the previous choice ofλ in Equation (9) satisfies

this requirement), then (6) holds with probability greaterthan1 − 2s exp{− c
√

n

2σ2 } → 1.

2 Full version of SPORE-FoBa algorithm

2

Algorithm 1 SPORE-FoBa

Input: data(xi, yi), i = 1, . . . , n, the maximum degreed, ǫ
Output: polynomial termsT (k) and the coefficientsβ(k).
1: Let T (0) = ∅, S(0) = ∅
2: let k = 0 (number of terms)
3: let RSS(0) =

∑

i y2
i

4: while Truedo
5: RSSJ = ‖Y − T (k)β(k)‖2

2
6: for j = 1, . . . , p do
7: let C = {t : t = xd1

j Πl∈Sxdl

l with d1 > 0, dl ≥ 0, d1 +
∑

dl ≤ d }
8: // Forward step: add terms fromC
9: while Truedo

10: let k = k + 1
11: let [t(k), β(k)] = arg mint∈C,β ‖Y − [T k−1, t]β‖2

2

12: let RSS(k) = ‖Y − [T (k−1), t(k)]β(k)‖2
2

13: let δ(k) = RSS(k−1) − RSS(k)

14: T (k) = T (k−1) ∪ t(k)

15: if δ(k) ≤ ǫ then
16: k = k − 1
17: break
18: end if
19: // backward step: remove terms from active setT (k)

20: while Truedo
21: RRSpre = RRS(k)

22: let [t, βnow] = arg mint∈T k,β ‖Y − [T (k) \ t]β‖2
2

23: let RSSnow = ‖Y − [T (k) \ t]βnow‖2
2

24: δ′ = RSSnow − RRSpre

25: if δ′ > 0.5δ(k) then
26: break
27: end if
28: let k = k-1
29: let T (k) = T (k+1) \ {t}
30: let β(k) = βnow

31: let RSS(k) = RSSnow

32: end while
33: end while
34: if Featurej is added into the active setT (k) then
35: S = S ∪ j
36: end if
37: end for
38: if RSS(k) − RSSJ ≤ ǫ then
39: break
40: end if
41: end while

3

