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Abstract

Optimal control entails combining probabilities and utilities. However, for most
practical problems, probability densities can be represented only approximately.
Choosing an approximation requires balancing the benefits of an accurate approx-
imation against the costs of computing it. We propose a variational framework for
achieving this balance and apply it to the problem of how a neural population code
should optimally represent a distribution under resource constraints. The essence
of our analysis is the conjecture that population codes are organized to maximize
a lower bound on the log expected utility. This theory can account for a plethora
of experimental data, including the reward-modulation of sensory receptive fields,
GABAergic effects on saccadic movements, and risk aversion in decisions under
uncertainty.

1 Introduction

Acting optimally under uncertainty requires comparing the expected utility of each possible action,
but in most situations of practical interest this expectation is impossible to calculate exactly: the
hidden states that must be integrated over may be high-dimensional and the probability density may
not take on any simple form. As a consequence, approximations must inevitably be used. Typically
one has a choice of approximation, with more exact approximations demanding more computational
resources, a penalty that can be naturally incorporated into the utility function. The question we
address in this paper is: given a family of approximations and their associated resource demands,
what approximation will lead as close as possible to the optimal control policy?

This is a poignant problem for the brain, which expends a collosal amount of metabolic energy in
building an internal model of the world. Previous theoretical work has studied how “energy-efficient
codes” might be constructed by the brain to maximize information transfer with the least possible
energy consumption [10]. However, maximizing information transfer is only one component of
adaptive behavior; the utility of information must be taken into account when choosing a code [15],
and this may interact in complicated ways with the computational costs of approximate inference.

Our contribution is to place this problem within a decision-theoretic framework by representing the
choice of approximation as a “meta-decision” with its own expected utility. Central to our analysis
is the observation that while this expected utility cannot be maximized directly, it is possible to
maximize a variational lower bound on log expected utility (see also [17, 5] for related approaches).
We study the properties of this lower bound and show how it accounts for some intriguing empirical
properties of neural codes.

1



2 Optimal control with approximate densities

Let a denote an action and s denote a hidden state variable drawn from some probability density
p(s).1 Given a utility function U(a; s), the optimal action ap is the one that maximizes expected
utility Vp(a):

ap = argmax
a

Vp(a), (1)

where

Vp(a) = Ep[U(a; s)] =

∫
s

p(s)U(a; s)ds. (2)

Computing the expected utility for each action requires solving a possibly intractable integral. An
approximation of expected utility can be obtained by substituting an alternative density q(s) for
which the expected utility is tractable. For example, one might choose q(s) to be a Gaussian with
some mean and variance, or a Monte Carlo approximation, or even a delta function at some point.

Using an approximate density presents the “meta-decision” of which density to use. If one chooses
optimally under q(s), then the expected utility is given by Ep[U(aq; s)] = Vp(aq), therefore the
optimal density q∗ should be chosen according to

q∗ = argmax
q∈Q

Vp(aq), (3)

where Q is some family of densities. To understand Eq. 3, consider the optimization as consisting
of two parts: first, select an approximate density q(s) and choose the optimal action with respect to
this density; then evaluate the true value of that action under the target density. Clearly, if p ∈ Q,
then q = p is the optimal solution. In general, we cannot optimize this function directly because it
requires solving precisely the integral we are trying to avoid: the expected utility under p(s). We
can, however, use the approximate density to lower-bound the log expected utility under p(s) by
appealing to Jensen’s inequality:

log Vp(a) ≥
∫
s

q(s) log
p(s)U(a; s)

q(s)
ds

= Eq[logU(a; s)] + Eq[log p(s)]− Eq[log q(s)], (4)

Notice the similarity to the evidence lower bound used in variational Bayesian inference [9]: whereas
in variational inference we attempt to lower-bound the log marginal likelihood (evidence), in varia-
tional decision theory we attempt to lower-bound the log expected utility.

Examining the utility lower bound, we see that the terms exert conceptually distinct influences:

1. A utility component, Eq[logU(a; s)], the expected log utility under the approximate den-
sity.

2. A cross-entropy component, −Eq[log p(s)], reflecting the mismatch between the approxi-
mate density and the target density. This can be thought of as a form of “sensory prediction
error.”

3. An entropy component, −Eq[log q(s)], embodying a maximum entropy principle [8]: for a
fixed utility and cross-entropy, choose the distribution with maximal entropy.

Intuitively, a more accurate approximate density q(s) should incur a larger computational cost. One
way to express this notion of cost is to incorporate it directly into the utility function. That is,
we consider an augmented utility function U(a, q; s) that depends on the approximate density. If
we assume that the utility function takes the form logU(a, q; s) = logR(a; s) − logC(q), where
R(a; s) represents a reward function and C(q) represents a computational cost function, we arrive
at the following modification to the utility lower bound:

L(q, a) = Eq[logR(a; s)] + Eq[log p(s)]− Eq[log q(s)]− logC(q). (5)

1For the sake of notational simplicity, we implicitly condition on any observed variables. We also refer
throughout this paper to probability densities over a multimdensional, continuous state variable, but our results
still apply to one dimensional and discrete variables (in which case the probability densities are replaced with
probability mass functions).
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The assumption that the log utility decomposes into additive reward and cost components is intu-
itive: it implies that reward is measured relative to the computational cost of earning it. In summary,
the utility lower bound L(q, a) provides an objective function for simultaneously choosing an action
and choosing an approximate density over hidden states. Whereas in classical decision theory, opti-
mization is performed over the action space, in variational decision theory optimization is performed
over the joint space of actions and approximate densities. Perception and action are thereby treated
as a single optimization problem.

3 Choosing a probabilistic population code

While the theory developed in the previous section applies to any representation scheme, in this
section, for illustrative purposes, we focus on one specific family of approximate densities defined
by the firing rate of neurons in a network. Specifically, we consider a population ofN neurons tasked
with encoding a probability density over s. One way to do this, known as a kernel density estimate
(KDE) code [1, 28], is to associate with each neuron a kernel density fn(s) and then approximate
the target density with a convex combination of the kernel densities:

q(s) =
1

Z

N∑
n=1

exnfn(s), (6)

where xn denotes the firing rate of neuron n and Z =
∑N

n=1 e
xn . We assume that the kernel density

functions are Gaussian, parameterized by a preferred stimulus (mean) sn and a standard deviation
σn:

fn(s) =
1√
2πσn

exp

(
− (s− sn)2

2σ2
n

)
(7)

For simplicity, in this paper we will focus on the limiting case in which σ ⇒ 0.2 In this case q(s)
degenerates onto a collection of delta functions:

q(s) =
1

Z

N∑
n=1

exnδ(s− sn), (8)

where δ(·) is the Dirac delta function. This density corresponds to a collection of sharply tuned
neurons; provided that the preferred values {s1, . . . , sN} densely cover the state space, q(s) can
represent arbitrarily complicated densities by varying the firing rates x.

3.1 Optimizing the bound

Assuming for the moment that there is only a single action, we can state the optimization problem
as follows: given the family of approximate densities parameterized by x, choose the density that
maximizes the utility lower bound

L(q, a) = 1

Z

N∑
n=1

exn [logU(a; sn) + log p̃(sn)− xn] + logZ − logB − logC(q), (9)

where p(s) = p̃(s)/B (i.e., p̃(s) is the un-normalized target density). Note also that B =
∫
s
p̃(s)ds

does not depend on xn, and hence can be ignored for the purposes of optimization. Techni-
cally, the lower bound is not well defined in the limit because the target density is non-atomic
(i.e., has zero mass at any given value). However, approximating the expectations in Eq. 5 by
Eq[g(s)] ≈ Z−1

∑N
n=1 e

xng(sn), as we do above, can be justified in terms of first-order Taylor
series expansions around the preferred stimuli, which will be arbitrarily accurate as σ → 0.

In the rest of this paper, we shall assume that the cost function takes the following form:

C(q) = βN + γ

N∑
n=1

xn, (10)

2The case of small, finite σ can be addressed by using a Laplace approximation to the integrals and leads to
small correction terms in the following equations.
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Figure 1: Comparison between coding schemes. The leftmost panel shows a collection of prob-
ability distributions with different variances, and the other panels show different neural representa-
tions of these distributions.

where β is the fixed cost of maintaining a neuron, and γ is the cost of a spike (c.f. [10]).

We next seek a neuronal update rule that performs gradient ascent on the utility lower bound. Hold-
ing the firing rate of all neurons except n fixed, taking the partial derivative of L(q, a) with respect
to xn and setting it to 0, we arrive at the following update rule:

xn ←

logU(a; sn) + log p̃(sn) +
1

Z

N∑
j=1

exj [xj − logU(a; sj)− log p̃(sj)]−
Zγ

exnC(q)


+

(11)

where [·]+ denotes linear rectification.3 This update rule defines an attractor network whose Lya-
punov function is the (negative) utility lower bound. When multiple actions are involved, the bound
can be jointly optimized over a and q by coordinate ascent. While somewhat untraditional, we
note that this update rule is biologically plausible in the sense that it only involves local pairwise
interactions between neurons.

4 Relation to other probability coding schemes

4.1 Exponential, convolutional and gain coding

The probability coding scheme proposed in Eq. 8 is closely related to the exponential coding de-
scribed in [16]. That scheme also encodes probabilities using exponentiated activities, although
it uses the representation in a very different way and in a network with very different dynamics,
focusing on sequential inference problems instead of the arbitrary decision problems we consider
here. Other related schemes include convolutional coding [28], in which a distribution is encoded
by convolving it with a neural tuning function, and gain coding [11, 27], in which the variance of
the distribution is inversely proportional to the gain of the neural response.

In Figure 1, we show how these three different ways of encoding probability distributions represent
three different Gaussians with variance 2 (black line in Figure 1a), 4 (red) and 10 (blue) units.
Convolutional coding (Figure 1b) is characterized by a neural response pattern that gets broader as
the distribution gets broader. This has been one of the major criticisms of this type of encoding
scheme as this result does not seem to be borne out experimentally (e.g., [19, 2]). In contrast, gain
coding schemes (Figure 1c) posit that changes in uncertainty only change the overall gain, and not
the shape, of the neural response. This leads to predictions that are consistent with experiments, but
limits the type of distributions that can be represented to the exponential family [11].

Finally, Figure 1d shows how the exponential coding scheme we propose represents the distributions
in a manner that can be thought of as in between convolutional coding and gain encoding, with
a population response that gets broader as the encoded distribution broadens, but in a much less

3This update is equivalent to performing gradient ascent on L with a variable learning rate parameter given
by Z

exn . We chose this rule as it converges faster and seems more neurally plausible than the pure gradient
ascent.
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pronounced way than pure convolutional coding. This point is crucial for the biological plausibility
of this scheme, as it seems unlikely that these minute differences in population response width would
be easily measured experimentally.

It is also important to note that both the convolutional and gain coding schemes ignore the utility
function in constructing probabilistic representations. As we explore in later sections, rewards and
costs place strong constraints on the types of codes that are learned by the variational objective, and
the available experimental data is congruent with this view. “Pure” probabilistic representations may
not exist in the brain.

4.2 Connection to Monte Carlo approximation

Substantial interest has been generated recently in the idea that the brain might use some form of
sampling (i.e., Monte Carlo algorithm) to approximate complicated probability densities. Psycho-
logical phenomena like perceptual multistability [6] and speech perception [21] are parsimoniously
explained by a model in which a density over the complete hypothesis space is replaced by a small
set of discrete samples. Thus, it is reasonable to speculate whether our theory of population coding
relates to these at the neural level.

When each neuron’s tuning curve is sharply peaked, the resulting population code resembles impor-
tance sampling, a common Monte Carlo method for approximating probability densities, wherein
the approximation consists of a weighted set of samples:

p(s) ≈
N∑

n=1

w(n)δ(s− s(n)), (12)

where s(n) is drawn from a proposal density π(s) andw(n) ∝ p(s(n))/π(s(n)). In fact, we can make
this correspondence precise: for any population code of the form in Eq. 8, there exists an equivalent
importance sampling approximation. The corresponding proposal density takes the form:

π(s) ∝
∑
n

p(sn)

exn
δ(s− sn). (13)

This means that optimizing the bound with respect to x is equivalent to selecting a proposal density
so as to maximize utility under resource constraints. A related analysis was made by Vul et al. [26],
though in a more restricted setting, showing that maximal utility is achieved with very few samples
when sampling is costly. Similarly, π(s) will be sensitive to the computational costs inherent in the
utility lower bound, favoring a small number of samples.

Interestingly, importance sampling has been proposed as a neurally-plausible mechanism for
Bayesian inference [22]. In that treatment, the proposal density was assumed to be the prior, leading
to the prediction that neurons with preferred stimulus s∗ should occur with frequency proportional
to the prior probability of s∗. One source of evidence for this prediction comes from the oblique
effect: the observation that more V1 neurons are tuned to cardinal orientations than to oblique ori-
entations [3], consistent with the statistics of the natural visual environment. In contrast, our model
predicts that the proposal density will be sensitive to rewards in addition to the prior; as we argue in
the section 5.1, a considerable amount of evidence favors this view.

5 Results

In the following sections, we examine some of the neurophysiological and psychological implica-
tions of the variational objective. Tying these diverse topics together is the central idea that utilities,
costs and probabilistic beliefs exert a synergistic effect on neural codes and their behavioral outputs.
One consequence of the variational objective is that a clear separation of these components in the
brain may not exist: rewards and costs infiltrate very early sensory areas. These influences result in
distortions of probabilistic belief that appear robustly in experiments with humans and animals.

5.1 Why are sensory receptive fields reward-modulated?

Accumulating evidence indicates that perceptual representations in the brain are modulated by re-
ward expectation. For example, Shuler and Bear [23] paired retinal stimulation of the left and right
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Figure 2: Grasshopper auditory coding. Probability density of natural sounds and the optimized
approximate density, with black lines demarcating the region of behaviorally relevant sounds.

eyes with reward after different delays and recorded neurons in primary visual cortex that switched
from representing purely physical attributes of the stimulation (e.g., eye of origin) to coding reward
timing. Similarly, Serences [20] showed that spatially selective regions of visual cortex are biased
by the prior reward associated with different spatial locations. These studies raise the possibility that
the brain does not encode probabilistic beliefs separately from reward; indeed, this idea has been
enshrined by a recent theoretical account [4]. One important ramification of this conflation is that it
would appear to violate one of the axioms of statistical decision theory: probabilistic sophistication
[18]. On the other hand, the variational framework we have described accounts for these findings by
showing that decision-making using approximate densities leads automatically to reward-modulated
probabilistic beliefs. Thus, the apparent inconsistency with statistical decision theory may be an
artifact of rational responses to the information-processing constraints of the brain.

To drive this point home, we now analyze one example in more detail. Machens et al. [12] recorded
the responses of grasshopper auditory neurons to different stimulus ensembles and found that the en-
sembles that elicited the optimal response differed systematically from the natural auditory statistics
of the grasshopper’s environment. In particular, the optimal ensembles were restricted to a region of
stimulus space in which behaviorally important sounds live, namely species-specific mating signals.
In the words of Machens et al., “an organism may seek to distribute its sensory resources according
to the behavioral relevance of the natural stimuli, rather than according to purely statistical prin-
ciples.” We modeled this phenomenon by constructing a relatively wide density of natural sounds
with a narrow region of behaviorally relevant sounds (in which states are twice as rewarding). Fig-
ure 2 shows the results, confirming that maximizing the utility lower bound selects a kernel density
estimate that is narrower than the target density of natural sounds.

5.2 Changing the cost of a spike

Experimentally, there are at least two ways to manipulate the cost of a spike. One is by changing
the amount of inhibition in the network (e.g., using injections of muscimol, a GABA agonist) and
hence increasing the metabolic requirements for action potential generation. A second method is
by manipulating the availability of glucose [7], either by making the subject hypoglycemic or by
administering local infusions of glucose directly into the brain. We predict that increasing spik-
ing costs (either by reducing glucose levels or increasing GABAergic transmission) will result in a
diminished ability to detect weak signals embedded in noise. Consistent with this prediction, con-
trolled hypoglycemia reduces the speed with which visual changes are detected amidst distractors
[13].

These predictions have received a more direct test in a recent visual search experiment by McPeek
and Keller [14], in which muscimol was injected into local regions of the superior colliculus, a
brain area known to control saccadic target selection. In the absence of distractors, response laten-
cies to the target were increased when it appeared in the receptive fields of the inhibited neurons.
In the presence of distractors, response latencies increased and choice accuracy decreased when
the target appeared in the receptive fields of the inhibited neurons. We simulated these findings
by constructing a cost-field γ(n) to represent the amount of GABAergic transmission at different
neurons induced by muscimol injections. In the distractor condition (Figure 3, top panel), accuracy
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Figure 3: Spiking cost in the superior colliculus. Top panels illustrate distractor condition. Bottom
panels illustrate no-distractor condition. (Left column) Target density, with larger bump in the top
panel representing the target; (Center column) neural code under different settings of cost-field γ(n);
(Right column) firing rates under different cost-fields.

decreases because the increased cost of spiking in the neurons representing the target location damp-
ens the probability density in that location. Increasing spiking cost also reduces the overall firing
rate in the target-representing neurons relative to the distractor-representing neurons. This predicts
increased response latencies if we assume a monotonic relationship with the relative firing rate in
the target-representing neurons. Similarly, in the no-distractor condition (Figure 3, bottom panel),
response latencies increase due to decreased firing rate in the target-representing neurons.

5.3 Non-linear probability weighting

In this section, we show that the variational objective provides a new perspective on some well-
known peculiarities of human probabilistic judgment. In particular, the ostensibly irrational non-
linear weighting of probabilities in risky choice emerges naturally from optimization of the varia-
tional objective under a natural assumption about the ecological distribution of rewards.

Tversky and Kahneman [25] observed that people tend to be risk-seeking (over-weighting probabil-
ities) for low-probability gains and risk-averse (under-weighting probabilities) for high-probability
gains. This pattern reverses for losses. The variational objective explains these phenomena by virtue
of the fact that under neural resource constraints, the approximate density will be biased towards
high reward regions of the state space. It is also necessary to assume that the magnitude of gains or
losses scales inversely with probability (i.e., large gains or losses are rare). With this assumption,
the optimized neural code produce the four-fold pattern of risk-attitudes observed by Tversky and
Kahneman (Figure 4).

6 Discussion

We have presented a variational objective function for neural codes that balances motivational, sta-
tistical and metabolic demands in the service of optimal behavior. The essential idea is that the
intractable problem of computing expected utilities can be finessed by instead computing expected
utilities under an approximate density that optimizes a variational lower bound on log expected
utility. This lower bound captures the neural costs of optimal control: more accurate approxima-
tions will require more metabolic resources, whereas less accurate approximations will diminish the
amount of earned reward. This principle can explain, among other things, why receptive fields of
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Figure 4: Probability weighting. Simulated calibration curve for gains and losses. Perfect calibra-
tion (i.e., linear weighting) is indicated by the dashed line.

sensory neurons have repeatedly been found to be sensitive to reward contingencies. Intuitively,
expending more resources on accurately approximating the complete density of natural sensory
statistics is inefficient (from an optimal control perspective) if the behaviorally relevant signals live
in a compact subspace. We showed that the approximation that maximizes the utility lower bound
concentrates its density within this subspace.

Our variational framework differs in important ways from the one recently proposed by Friston
[4]. In his treatment, utilities are not represented explicitly at all; rather, they are implicit in the
probabilistic structure of the environment. Based on an evolutionary argument, Friston suggests
that high utility states are precisely those that have high probability, since otherwise organisms who
find themselves frequently in low utility states are unlikely to survive. Thus, adopting a control
policy that minimizes a variational upper bound on surprise will lead to optimal behavior. However,
adopting this control policy may lead to pathological behaviors, such as attraction to malign states
that have been experienced frequently (e.g., a person who has been poor her whole life should reject
a winning lottery ticket). In contrast, our variational framework is motivated by quite different
considerations arising from the computational constraints of the brain’s architecture. Nonetheless,
these approaches have in common the idea that probabilistic beliefs will be shaped by the utility
structure of the environment.

The psychological concept of “bounded rationality” is an old one [24], classically associated with
the observation that humans sometimes adopt strategies for identifying adequate solutions rather
than optimal ones (“satisficing”). The variational framework offers a rather different perspective on
bounded rationality; it asserts that humans are indeed trying to find optimal solutions, but subject
to certain computational resource constraints. By making explicit what these constraints are, and
how they interact at a neural level, our work provides a foundation upon which to develop a more
complete neurobiological theory of optimal control under resource constraints.
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