
Linear Complementarity for Regularized Policy
Evaluation and Improvement

Jeff Johns Christopher Painter-Wakefield Ronald Parr
Department of Computer Science

Duke University
Durham, NC 27708

{johns, paint007, parr}@cs.duke.edu

Abstract

Recent work in reinforcement learning has emphasized the power of L1 regular-
ization to perform feature selection and prevent overfitting. We propose formulat-
ing theL1 regularized linear fixed point problem as a linear complementarity prob-
lem (LCP). This formulation offers several advantages over the LARS-inspired
formulation, LARS-TD. The LCP formulation allows the use of efficient off-the-
shelf solvers, leads to a new uniqueness result, and can be initialized with starting
points from similar problems (warm starts). We demonstrate that warm starts, as
well as the efficiency of LCP solvers, can speed up policy iteration. Moreover,
warm starts permit a form of modified policy iteration that can be used to approxi-
mate a “greedy” homotopy path, a generalization of the LARS-TD homotopy path
that combines policy evaluation and optimization.

1 Introduction

L1 regularization has become an important tool over the last decade with a wide variety of ma-
chine learning applications. In the context of linear regression, its use helps prevent overfitting and
enforces sparsity in the problem’s solution. Recent work has demonstrated how L1 regularization
can be applied to the value function approximation problem in Markov decision processes (MDPs).
Kolter and Ng [1] included L1 regularization within the least-squares temporal difference learning
[2] algorithm as LARS-TD, while Petrik et al. [3] adapted an approximate linear programming algo-
rithm. In both cases, L1 regularization automates the important task of selecting relevant features,
thereby easing the design choices made by a practitioner.

LARS-TD provides a homotopy method for finding the L1 regularized linear fixed point formulated
by Kolter and Ng. We reformulate the L1 regularized linear fixed point as a linear complementarity
problem (LCP). This formulation offers several advantages. It allows us to draw upon the rich theory
of LCPs and optimized solvers to provide strong theoretical guarantees and fast performance. In
addition, we can take advantage of the “warm start” capability of LCP solvers to produce algorithms
that are better suited to the sequential nature of policy improvement than LARS-TD, which must
start from scratch for each new policy.

2 Background

First, we introduce MDPs and linear value function approximation. We then review L1 regulariza-
tion and feature selection for regression problems. Finally, we introduce LCPs. We defer discussion
of L1 regularization and feature selection for reinforcement learning (RL) until section 3.

1

2.1 MDP and Value Function Approximation Framework

We aim to discover optimal, or near-optimal, policies for Markov decision processes (MDPs) defined
by the quintupleM = (S,A, P,R, γ). Given a state s ∈ S, the probability of a transition to a state
s′ ∈ S when action a ∈ A is taken is given by P (s′|s, a). The reward function is a mapping from
states to real numbers R : S "→ R. A policy π forM is a mapping from states to actions π : s "→ a
and the transition matrix induced by π is denoted Pπ. Future rewards are discounted by γ ∈ [0, 1).

The value function at state s for policy π is the expected total γ-discounted reward for following π
from s. In matrix-vector form, this is written:

V π = TπV π = R + γPπV π,

where Tπ is the Bellman operator for policy π and V π is the fixed point of this operator. An optimal
policy, π∗, maximizes state values, has value function V ∗, and is the fixed point of the T ∗ operator:

T ∗V (s) = R(s) + γ max
a∈A

∑

s′∈S

P (s′|s, a)V (s′).

Of the many algorithms that exist for finding π∗, policy iteration is most relevant to the presentation
herein. For any policy πj , policy iteration computes V πj , then determines πj+1 as the “greedy”
policy with respect to V πj :

πj+1(s) = arg max
a∈A

[R(s) + γ
∑

s′∈S

P (s′|s, a)V πj (s′)].

This is repeated until some convergence condition is met. For an exact representation of each V πj ,
the algorithm will converge to an optimal policy and the unique, optimal value function V ∗.

The value function, transition model, and reward function are often too large to permit an exact rep-
resentation. In such cases, an approximation architecture is used for the value function. A common
choice is V̂ = Φw, wherew is a vector of k scalar weights andΦ stores a set of k features in an n×k
matrix with one row per state. Since n is often intractably large, Φ can be thought of as populated
by k linearly independent basis functions, ϕ1 . . . ϕk, implicitly defining the columns of Φ.

For the purposes of estimating w, it is common to replace Φ with Φ̂, which samples rows of Φ,
though for conciseness of presentation we will use Φ for both, since algorithms for estimating w are
essentially identical if Φ̂ is substituted for Φ. Typical linear function approximation algorithms [2]
solve for the w which is a fixed point:

Φw = Π(R + γΦ′πw) = ΠTπΦw,

where Π is the L2 projection into the span of Φ and Φ′π is PπΦ in the explicit case and composed
of sampled next features in the sampled case. Likewise, we overload Tπ for the sampled case.

2.2 L1 Regularization and Feature Selection in Regression

In regression, the L1 regularized least squares problem is defined as:

w = arg min
x∈Rk

1

2
‖Φx − y‖2

2 + β‖x‖1, (1)

where y ∈ Rn is the target function and β ∈ R≥0 is a regularization parameter. This penalized
regression problem is equivalent to the Lasso [4], which minimizes the squared residual subject to a
constraint on ‖x‖1. The use of the L1 norm in the objective function prevents overfitting, but also
serves a secondary purpose of promoting sparse solutions (i.e., coefficients w containing many 0s).
Therefore, we can think of L1 regularization as performing feature selection. The Lasso’s objective
function is convex, ensuring the existence of a global (though not necessarily unique) minimum.

Even though the optimal solution to the Lasso can be computed in a fairly straightforward manner
using convex programming, this approach is not very efficient for large problems. This is a mo-
tivating factor for the least angle regression (LARS) algorithm [5], which can be thought of as a
homotopy method for solving the Lasso for all nonnegative values of β. We do not repeat the de-
tails of the algorithm here, but point out that this is easier than it might sound at first because the
homotopy path in β-space is piecewise linear (with finitely many segments). Furthermore, there
exists a closed form solution for moving from one piecewise linear segment to the next segment.
An important benefit of LARS is that it provides solutions for all values of β in a single run of the
algorithm. Cross-validation can then be performed to select an appropriate value.

2

2.3 LCP and BLCP

Given a square matrix M and a vector q, a linear complementarity problem (LCP) seeks vectors
w ≥ 0 and z ≥ 0 with wT z = 0 and

w = q + Mz.

The problem is thus parameterized by LCP(q,M). Even though LCPs may appear to be simple
feasibility problems, the framework is rich enough to express any convex quadratic program.

The bounded linear complementarity problem (BLCP) [6] includes box constraints on z. The BLCP
computes w and z where w = q + Mz and each variable zi meets one of the following conditions:

zi = ui =⇒ wi ≤ 0 (2a)
zi = li =⇒ wi ≥ 0 (2b)

li < zi < ui =⇒ wi = 0 (2c)

with bounds−∞ ≤ li < ui ≤ ∞. The parameterization is written BLCP(q,M, l, u). Notice that an
LCP is a special case of a BLCP with li = 0 and ui = ∞, ∀i. Like the LCP, the BLCP has a unique
solution whenM is a P-matrix1 and there exist algorithms which are guaranteed to find this solution
[6, 7]. When the lower and upper bounds on the BLCP are finite, the BLCP can in fact be formulated
as an equivalent LCP of twice the dimensionality of the original problem. A full derivation of this
equivalence is shown in the appendix (supplementary materials).

There are many algorithms for solving (B)LCPs. Since our approach is not tied to a particular algo-
rithm, we review some general properties of (B)LCP solvers. Optimized solvers can take advantage
of sparsity in z. A zero entry in z effectively cancels out a column in M . If M is large, efficient
solvers can avoid usingM directly, instead using a smallerM ′ that is induced by the nonzero entries
of z. The columns ofM ′ can be thought of as the “active” columns and the procedure of swapping
columns in and out ofM ′ can be thought of as a pivoting operation, analogous to pivots in the sim-
plex algorithm. Another important property of some (B)LCP algorithms is their ability to start from
an initial guess at the solution (i.e., a “warm start”). If the initial guess is close to a solution, this can
significantly reduce the solver’s runtime.

Recently, Kim and Park [8] derived a connection between the BLCP and the Karush-Kuhn-Tucker
(KKT) conditions for LARS. In particular, they noted the solution to the minimization problem in
equation (1) has the form:

x
︸︷︷︸

w

= (ΦT Φ)−1ΦT y
︸ ︷︷ ︸

q

+(ΦT Φ)−1

︸ ︷︷ ︸

M

(−c)
︸︷︷︸

z

,

where the vector −c follows the constraints in equation (2) with li = −β and ui = β. Although we
describe the equivalence between the BLCP and LARS optimality conditions usingM ≡ (ΦT Φ)−1,
the inverse can take place inside the BLCP algorithm and this operation is feasible and efficient as
it is only done for the active columns of Φ. Kim and Park [8] used a block pivoting algorithm,
originally introduced by Júdice and Pires [6], for solving the Lasso. Their experiments show the
block pivoting algorithm is significantly faster than both LARS and Feature Sign Search [9].

3 Previous Work

Recent work has emphasized feature selection as an important problem in reinforcement learn-
ing [10, 11]. Farahmand et al. [12] consider L2 regularized RL. An L1 regularized Bellman residual
minimization algorithm was proposed by Loth et al. [13]2. Johns and Mahadevan [14] investigate
the combination of least squares temporal difference learning (LSTD) [2] with different variants
of the matching pursuit algorithm [15, 16]. Petrik et al. [3] consider L1 regularization in the con-
text of approximate linear programming. Their approach offers some strong guarantees, but is not
well-suited to noisy, sampled data.

1A P-matrix is a matrix for which all principal minors are positive.
2Loth et al. claim to adapt LSTD to L1 regularization, but in fact describe a Bellman residual minimization

algorithm and not a fixed point calculation.

3

The work most directly related to our own is that of Kolter and Ng [1]. They propose augmenting
the LSTD algorithm with an L1 regularization penalty. This results in the following L1 regularized
linear fixed point (L1TD) problem:

w = arg min
x∈Rk

1

2
‖Φx − (R + γΦ′πw)‖2

2 + β‖x‖1. (3)

Kolter and Ng derive a set of necessary and sufficient conditions characterizing the above fixed
point3 in terms of β, w, and a vector c of correlations between the features and the Bellman residual
TπV̂ − V̂ . More specifically, the correlation ci associated with feature ϕi is given by:

ci = ϕT
i (TπV̂ − V̂) = ϕT

i (R + γΦ′πw − Φw). (4)

Introducing the notation I to denote the set of indices of active features in the model (i.e., I = {i :
wi #= 0}), the fixed point optimality conditions can be summarized as follows:

C1. All features in the active set share the same absolute correlation, β: ∀i ∈ I, |ci| = β.

C2. Inactive features have less absolute correlation than active features: ∀i /∈ I, |ci| < β.

C3. Active features have correlations and weights agreeing in sign: ∀i ∈ I, sgn(ci) = sgn(wi).

Kolter and Ng show that it is possible to find the fixed point using an iterative procedure adapted
from LARS. Their algorithm, LARS-TD, computes a sequence of fixed points, each of which sat-
isfies the optimality conditions above for some intermediate L1 parameter β̄ ≥ β. Successive
solutions decrease β̄ and are computed in closed form by determining the point at which a feature
must be added or removed in order to further decrease β̄ without violating one of the fixed point
requirements. The algorithm (as applied to action-value function approximation) is a special case of
the algorithm presented in the appendix (see Fig. 2). Kolter and Ng prove that if ΦT (Φ − γΦ′π) is
a P-matrix, then for any β ≥ 0, LARS-TD will find a solution to equation (3).

LARS-TD inherits many of the benefits and limitations of LARS. The fact that it traces an entire
homotopy path can be quite helpful because it does not require committing to a particular value of
β. On the other hand, the incremental nature of LARS may not be the most efficient solution for any
single value of the regularization parameter, as shown by Lee et al. [9] and Kim and Park [8].

It is natural to employ LARS-TD in an iterative manner within the least squares policy iteration
(LSPI) algorithm [17], as Kolter and Ng did. In this usage, however, many of the benefits of LARS
are lost. When a new policy is selected in the policy iteration loop, LARS-TD must discard its
solution from the previous policy and start an entirely new homotopy path, making the value of the
homotopy path in this context not entirely clear. One might cross-validate a choice of regularization
parameter by measuring the performance of the final policy, but this requires guessing a value of β
for all policies and then running LARS-TD up to this value for each policy. If a new value of β is
tried, all of the work done for the previous value must be discarded.

4 The L1 Regularized Fixed Point as an LCP

We show that the optimality conditions for the L1TD fixed point correspond to the solution of a
(B)LCP. This reformulation allows for (1) new algorithms to compute the fixed point using (B)LCP
solvers, and (2) a new guarantee on the uniqueness of a fixed point.

The L1 regularized linear fixed point is described by a vector of correlations c as defined in equation
(4). We introduce the following variables:

A = ΦT (Φ − γΦ′π) b = ΦT R,

3For fixedw, the RHS of equation (3) is a convex optimization problem; a sufficient condition for optimality
of some vector x∗ is that the zero vector is in the subdifferential of the RHS at x∗. The fixed point conditions
follow from the equality between the LHS and RHS.

4

that allow equation (4) to be simplified as c = b − Aw. Assuming A is a P-matrix, A is invert-
ible4 [18] and we can write:

w
︸︷︷︸

w

= A−1b
︸ ︷︷ ︸

q

+A−1
︸︷︷︸

M

(−c)
︸︷︷︸

z

.

Consider a solution (w and z) to the equation above where z is bounded as in equation (2) with
l = −β and u = β to specify a BLCP. It is easy to verify that coefficients w satisfying this BLCP
acheive the L1TD optimality conditions as detailed in section 3. Thus, any appropriate solver for
the BLCP(A−1b, A−1, −β, β) can be thought of as a linear complementarity approach to solving
for the L1TD fixed point. We refer to this class of solvers as LC-TD algorithms and parameterize
them as LC-TD(Φ,Φ′π, R, γ,β).
Proposition 1 If A is a P-matrix, then for any R, the L1 regularized linear fixed point exists, is
unique, and will be found by a basic-set BLCP algorithm solving BLCP(A−1b, A−1, −β, β).

This proposition follows immediately from some basic BLCP results. We note that if A is a P-
matrix, so is A−1 [18], that BLCPs for P-matrices have a unique solution for any q ([7], Chp. 3),
and that the the basic-set algorithm of Júdice and Pires [19] is guaranteed to find a solution to any
BLCP with a P-matrix. This strengthens the theorem by Kolter and Ng [1], which guaranteed only
that the LARS-TD algorithm would converge to a solution when A is a P-matrix.

This connection to the LCP literature has practical benefits as well as theoretical ones. Decoupling
the problem from the solver allows a variety of algorithms to be exploited. For example, the ability
of many solvers to use a warm start during initialization offers a significant computational advantage
over LARS-TD (which always begins with a null solution). In the experimental section of this paper,
we demonstrate that the ability to use warm starts during policy iteration can significantly improve
computational efficiency. We also find that (B)LCP solvers can be more robust than LARS-TD, an
issue we address further in the appendix.

5 Modified Policy Iteration using LARS-TD and LC-TD

As mentioned in section 3, the advantages of LARS-TD as a homotopy method are less clear when
it is used in a policy iteration loop since the homotopy path is traced only for specific policies. It is
possible to incorporate greedy policy improvements into the LARS-TD loop, leading to a homotopy
path for greedy policies. The greedy L1 regularized fixed point equation is:

w = arg min
x∈Rk

1

2
‖Φx − max

π
(R + γΦ′πw)‖2

2 + β‖x‖1. (5)

We propose a modification to LARS-TD called LARQ which, along with conditions C1-C3 in sec-
tion 3, maintains an additional invariant:

C4. The current policy π is greedy with respect to the current solution.

It turns out that we can change policies and avoid violating the LARS-TD invariants if we make
policy changes at points where applying the Bellman operator yields the same value for both the
old policy (π) and the new policy (π′): TπV̂ = Tπ′

V̂ . The LARS-TD invariants all depend on
the correlation of features with the residual TπV̂ − V̂ of the current solution. When the above
equation is satisfied, the residual is equal for both policies. Thus, we can change policies at such
points without violating any of the LARS-TD invariants. Due to space limitations, we defer a full
presentation of the LARQ algorithm to the appendix.

When run to completion, LARQ provides a set of action-values that are the greedy fixed point for
all settings of β. In principle, this is more flexible than LARS-TD with policy iteration because it
produces these results in a single run of the algorithm. In practice, LARQ suffers two limitations.

4Even when A is not invertible, we can still use a BLCP solver as long as the principal submatrix of A
associated with the active features is invertible. As with LARS-TD, the inverse only occurs for this principal
submatrix. In fact, we discuss in the appendix how one need never explicitly compute A. Alternatively, we can
convert the BLCP to an LCP (appendix A.1) thereby avoiding A−1 in the parameterization of the problem.

5

The first is that it can be slow. LARS-TD enumerates every point at which the active set of features
might change, a calculation that must be redone every time the active set changes. LARQ must
do this as well, but it must also enumerate all points at which the greedy policy can change. For k
features and n samples, LARS-TD must checkO(k) points, but LARQ must checkO(k+n) points.
Even though LARS-TD will run multiple times within a policy iteration loop, the number of such
iterations will typically be far fewer than the number of training data points. In practice, we have
observed that LARQ runs several times slower than LARS-TD with policy iteration.

A second limitation of LARQ is that it can get “stuck.” This occurs when the greedy policy for a
particular β is not well defined. In such cases, the algorithm attempts to switch to a new policy
immediately following a policy change. This problem is not unique to LARQ. Looping is possible
with most approximate policy iteration algorithms. What makes it particularly troublesome for
LARQ is that there are few satisfying ways of addressing this issue without sacrificing the invariants.

To address these limitations, we present a compromise between LARQ and LARS-TD with policy
iteration. The algorithm, LC-MPI, is presented as Algorithm 1. It avoids the cost of continually
checking for policy changes by updating the policy only at a fixed set of values, β(1) . . . β(m). Note
that the β values are in decreasing order with β(1) set to the maximum value (i.e., the point such
that w(1) is the zero vector). At each β(j), the algorithm uses a policy iteration loop to (1) determine
the current policy (greedy with respect to parameters ŵ(j)), and (2) compute an approximate value
function Φw(j) using LC-TD. The policy iteration loop terminates when w(j) ≈ ŵ(j) or some
predefined number of iterations is exceeded. This use of LC-TD within a policy iteration loop will
typically be quite fast because we can use the current feature set as a warm start. The warm start is
indicated in Algorithm 1 by supp(ŵ(j)), where the function supp determines the support, or active
elements, in ŵ(j); many (B)LCP solvers can use this information for initialization.

Once the policy iteration loop terminates for point β(j), LC-MPI simply begins at the next point
β(j+1) by initializing the weights with the previous solution, ŵ(j+1) ← w(j). This was found
to be a very effective technique. As an alternative, we tested initializing ŵ(j+1) with the result of
running LARS-TD with the greedy policy implicit in w(j) from the point (β(j), w(j)) to β(j+1). This
initialization method performed worse experimentally than the simple approach described above.
We can view LC-MPI as approximating LARQ’s homotopy path since the two algorithms agree for
any β(j) reachable by LARQ. However, LC-MPI is more efficient and avoids the problem of getting
stuck. By compromising between the greedy updates of LARQ and the pure policy evaluation
methods of LARS-TD and LC-TD, LC-MPI can be thought of as form of modified policy iteration
[20]. The following table summarizes the properties of the algorithms described in this paper.

LARS-TD Policy Iteration LC-TD Policy Iteration LARQ LC-MPI
Warm start for each new β N N Y Y
Warm start for each new policy N Y Y Y
Greedy policy homotopy path N N Y Approximate
Robust to policy cycles Y Y N Y

6 Experiments

We performed two types of experiments to highlight the potential benefits of (B)LCP algorithms.
First, we used both LARS-TD and LC-TD within policy iteration. These experiments, which were
run using a single value of the L1 regularization parameter, show the benefit of warm starts for
LC-TD. The second set of experiments demonstrates the benefit of using the LC-MPI algorithm. A
single run of LC-MPI results in greedy policies for multiple values of β, allowing the use of cross-
validation to pick the best policy. We show this is significantly more efficient than running policy
iteration with either LARS-TD or LC-TD multiple times for different values of β. We discuss the
details of the specific LCP solver we used in the appendix.

Both types of experiments were conducted on the 20-state chain [17] and mountain car [21] domains,
the same problems tested by Kolter and Ng [1]. The chain MDP consists of two stochastic actions,
left and right, a reward of one at each end of the chain, and γ = 0.9. One thousand samples were
generated using 100 episodes, each consisting of 10 random steps. For features, we used 1000
Gaussian random noise features along with five equally spaced radial basis functions (RBFs) and
a constant function. The goal in the mountain car MDP is to drive an underpowered car up a hill

6

Algorithm 1 LC-MPI
Inputs:

{si, ai, ri, s
′

i}
n
i=1, state transition and reward samples

ϕ : S × A → R
k, state-action features

γ ∈ [0, 1), discount factor
{β(j)}m

j=1, where β(1) = maxl

˛

˛

Pn
i=1 ϕl(si, ai)ri

˛

˛, β(j) < β(j−1) for j ∈ {2, . . . , m}, and β(m) ≥ 0
ε ∈ R+ and T ∈ N, termination conditions for policy iteration

Initialization:
Φ ← [ϕ(s1, a1) . . . ϕ(sn, an)]T , R ← [r1 . . . rn]T , w(1) ← 0

for j = 2 tom do
// Initialize with the previous solution
ŵ(j) ← w(j−1)

// Policy iteration loop
Loop:

// Select greedy actions and form Φ′

∀i : a′

i ← arg maxa ϕ(s′i, a)T ŵ(i)

Φ′ ← [ϕ(s′1, a
′

1) . . . ϕ(s′n, a′

n)]T

// Solve the LC-TD problem using a (B)LCP solver with a warm start
w(j) ← LC-TD(Φ, Φ′, R, γ, β(j)) with warm start supp(ŵ(j))
// Check for termination
if (‖w(j) − ŵ(j)‖2 ≤ ε) or (# iterations ≥ T)

then break loop
else ŵ(j) ← w(j)

Return {w(j)}m
j=1

by building up momentum. The domain is continuous, two dimensional, and has three actions. We
used γ = 0.99 and 155 radial basis functions (apportioned as a two dimensional grid of 1, 2, 3, 4, 5,
6, and 8 RBFs) and one constant function for features. Samples were generated using 75 episodes
where each episode started in a random start state, took random actions, and lasted at most 20 steps.

6.1 Policy Iteration

To compare LARS-TD and LC-TD when employed within policy iteration, we recorded the number
of steps used during each round of policy iteration, where a step corresponds to a change in the active
feature set. The computational complexity per step of each algorithm is similar; therefore, we used
the average number of steps per policy as a metric for comparing the algorithms. Policy iteration
was run either until the solution converged or 15 rounds were exceeded. This process was repeated
10 times for 11 different values of β. We present the results from these experiments in the first two
columns of Table 1. The two algorithms performed similarly for the chain MDP, but LC-TD used
significantly fewer steps for the mountain car MDP. Figure 1 shows plots for the number of steps
used for each round of policy iteration for a single (typical) trial. Notice the declining trend for
LC-TD; this is due to the warm starts requiring fewer steps to find a solution. The plot for the chain
MDP shows that LC-TD uses many more steps in the first round of policy iteration than does LARS-
TD. Lastly, in the trials shown in Figure 1, policy iteration using LC-TD converged in six iterations
whereas it did not converge at all when using LARS-TD. This was due to LARS-TD producing
solutions that violate the L1TD optimality conditions. We discuss this in detail in appendix A.5.

6.2 LC-MPI

When LARS-TD and LC-TD are used as subroutines within policy iteration, the process ends at a
single value of theL1 regularization parameter β. The policy iteration loop must be rerun to consider
different values of β. In this section, we show how much computation can be saved by running
LC-MPI once (to produce m greedy policies, each at a different value of β) versus running policy
iterationm separate times. The third column in Table 1 shows the average number of algorithm steps
per policy for LC-MPI. As expected, there is a significant reduction in complexity by using LC-MPI
for both domains. In the appendix, we give a more detailed example of how cross-validation can be

7

0 5 10 150

50

100

150

200

250

300

Round of Policy Iteration

N
um

be
r o

f S
te

ps

LARS−TD
LC−TD

(a) Chain

0 5 10 150

50

100

150

200

250

Round of Policy Iteration

N
um

be
r o

f S
te

ps

LARS−TD
LC−TD

(b) Mountain car

Figure 1: Number of steps used by algorithms LARS-TD and LC-TD during each round of policy
iteration for a typical trial. For LC-TD, note the decrease in steps due to warm starts.

Domain LARS-TD, PI LC-TD, PI LC-MPI
Chain 73 ± 13 77 ± 11 24 ± 11

Mountain car 214 ± 33 116 ± 22 21 ± 5

Table 1: Average number of algorithm steps per policy.

used to select a good value of the regularization parameter. We also offer some additional comments
on the robustness of the LARS-TD algorithm.

7 Conclusions

In this paper, we proposed formulating the L1 regularized linear fixed point problem as a linear
complementarity problem. We showed the LCP formulation leads to a stronger theoretical guarantee
in terms of the solution’s uniqueness than was previously shown. Furthermore, we demonstrated that
the “warm start” ability of LCP solvers can accelerate the computation of theL1TD fixed point when
initialized with the support set of a related problem. This was found to be particularly effective for
policy iteration problems when the set of active features does not change significantly from one
policy to the next.

We proposed the LARQ algorithm as an alternative to LARS-TD. The difference between these
algorithms is that LARQ incorporates greedy policy improvements inside the homotopy path. The
advantage of this “greedy” homotopy path is that it provides a set of action-values that are a greedy
fixed point for all settings of the L1 regularization parameter. However, this additional flexibility
comes with increased computational complexity. As a compromise between LARS-TD and LARQ,
we proposed the LC-MPI algorithm which only maintains the LARQ invariants at a fixed set of
values. The key to making LC-MPI efficient is the use of warm starts by using an LCP algorithm.

There are several directions for future work. An interesting question is whether there is a natural
way to incorporate policy improvement directly within the LCP formulation. Another concern for
L1TD algorithms is a better characterization of the conditions under which solutions exist and can
be found efficiently. In previous work, Kolter and Ng [1] indicated the P-matrix property can always
hold provided enough L2 regularization is added to the problem. While this is possible, it also
decreases the sparsity of the solution; therefore, it would be useful to find other techniques for
guaranteeing convergence while maintaining sparsity.

Acknowledgments

This work was supported by the National Science Foundation (NSF) under Grant #0937060 to the
Computing Research Association for the CIFellows Project, NSF Grant IIS-0713435, and DARPA
CSSG HR0011-06-1-0027. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation or the Computing Research Association.

8

References
[1] J. Kolter and A. Ng. Regularization and feature selection in least-squares temporal difference

learning. In Proc. ICML, pages 521–528, 2009.
[2] S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning.

Machine Learning, 22(1-3):33–57, 1996.
[3] M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization in

approximate linear programs for Markov decision processes. In To appear in Proc. ICML,
2010.

[4] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

[5] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
Statistics, 32(2):407–451, 2004.

[6] J. Júdice and F. Pires. A block principal pivoting algorithm for large-scale strictly monotone
linear complementarity problems. Computers and Operations Research, 21(5):587–596, 1994.

[7] K. Murty. Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag,
1988.

[8] J. Kim and H. Park. Fast active-set-type algorithms for L1-regularized linear regression. In
Proc. AISTAT, pages 397–404, 2010.

[9] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In Advances in
Neural Information Processing Systems 19, pages 801–808, 2007.

[10] S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. JMLR, 8:2169–2231, 2007.

[11] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. Littman. An analysis of linear models,
linear value-function approximation, and feature selection for reinforcement learning. In Proc.
ICML, 2008.

[12] A. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor. Regularized fitted Q-iteration
for planning in continuous-space Markovian decision problems. In Proc. ACC. IEEE Press,
2009.

[13] M. Loth, M. Davy, and P. Preux. Sparse temporal difference learning using LASSO. In IEEE
International Symposium on Approximate Dynamic Programming and Reinforcement Learn-
ing, 2007.

[14] J. Johns and S. Mahadevan. Sparse approximate policy evaluation using graph-based basis
functions. Technical Report UM-CS-2009-041, University of Massachusetts Amherst, Depart-
ment of Computer Science, 2009.

[15] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transac-
tions on Signal Processing, 41(12):3397–3415, 1993.

[16] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition. In Proceedings of the 27th Annual
Asilomar Conference on Signals, Systems, and Computers, volume 1, pages 40–44, 1993.

[17] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003.

[18] S. Lee and H. Seol. A survey on the matrix completion problem. Trends in Mathematics,
4(1):38–43, 2001.

[19] J. Júdice and F. Pires. Basic-set algorithm for a generalized linear complementarity problem.
Journal of Optimization Theory and Applications, 74(3):391–411, 1992.

[20] M. Puterman and M. Shin. Modified policy iteration algorithms for discounted Markov deci-
sion problems. Management Science, 24(11), 1978.

[21] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

9

