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Abstract

Bayesian methods of matrix factorization (MF) have been actively explored re-
cently as promising alternatives to classical singular value decomposition. In this
paper, we show that, despite the fact that the optimization problem is non-convex,
the global optimal solution of variational Bayesian (VB) MF can be computed
analytically by solving a quartic equation. This is highly advantageous over a
popular VBMF algorithm based on iterated conditional modes since it can only
find a local optimal solution after iterations. We further show that the global opti-
mal solution of empirical VBMF (hyperparameters are also learned from data) can
also be analytically computed. We illustrate the usefulness of our results through
experiments.

1 Introduction

The problem of finding a low-rank approximation of a target matrix through matrix factorization
(MF) attracted considerable attention recently since it can be used for various purposes such as
reduced rank regression [19], canonical correlation analysis [8], partial least-squares [27, 21],
multi-class classification [1], and multi-task learning [7, 29].

Singular value decomposition (SVD) is a classical method for MF, which gives the optimal low-
rank approximation to the target matrix in terms of the squared error. Regularized variants of SVD
have been studied for the Frobenius-norm penalty (i.e., singular values are regularized by the ℓ2-
penalty) [17] or the trace-norm penalty (i.e., singular values are regularized by the ℓ1-penalty) [23].
Since the Frobenius-norm penalty does not automatically produce a low-rank solution, it should be
combined with an explicit low-rank constraint, which is non-convex. In contrast, the trace-norm
penalty tends to produce sparse solutions, so a low-rank solution can be obtained without explicit
rank constraints. This implies that the optimization problem of trace-norm MF is still convex, and
thus the global optimal solution can be obtained. Recently, optimization techniques for trace-norm
MF have been extensively studied [20, 6, 12, 25].

Bayesian approaches to MF have also been actively explored. A maximum a posteriori (MAP)
estimation, which computes the mode of the posterior distributions, was shown [23] to correspond to
the ℓ1-MF when Gaussian priors are imposed on factorized matrices [22]. The variational Bayesian
(VB) method [3, 5], which approximates the posterior distributions by factorized distributions, has
also been applied to MF [13, 18]. The VB-based MF method (VBMF) was shown to perform well
in experiments, and its theoretical properties have been investigated [15].
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U = A⊤L M BHL M H
Figure 1: Matrix factorization model. H ≤ L ≤ M . A = (a1, . . . , aH) and B = (b1, . . . , bH).

However, the optimization problem of VBMF is non-convex. In practice, the VBMF solution is
computed by the iterated conditional modes (ICM) [4, 5], where the mean and the covariance of the
posterior distributions are iteratively updated until convergence [13, 18]. One may obtain a local
optimal solution by the ICM algorithm, but many restarts would be necessary to find a good local
optimum.

In this paper, we first show that, although the optimization problem is non-convex, the global opti-
mal solution of VBMF can be computed analytically by solving a quartic equation. This is highly
advantageous over the standard ICM algorithm since the global optimum can be found without any
iterations and restarts. We next consider an empirical VB (EVB) scenario where the hyperparam-
eters (prior variances) are also learned from data. Again, the optimization problem of EVBMF is
non-convex, but we still show that the global optimal solution of EVBMF can be computed analyti-
cally. The usefulness of our results is demonstrated through experiments.

Recently, the global optimal solution of VBMF when the target matrix is square has been obtained
in [15]. Thus, our contribution to VBMF can be regarded as an extension of the previous result to
general rectangular matrices. On the other hand, for EVBMF, this is the first paper that gives the
analytic global solution, to the best of our knowledge. The global analytic solution for EVBMF is
shown to be highly useful in experiments.

2 Bayesian Matrix Factorization

In this section, we formulate the MF problem and review a variational Bayesian MF algorithm.

2.1 Formulation

The goal of MF is to approximate an unknown target matrix U (∈ RL×M ) from its n observations

Vn = {V (i) ∈ RL×M}n
i=1.

We assume that L ≤ M . If L > M , we may simply re-define the transpose U⊤ as U so that L ≤ M
holds. Thus this does not impose any restriction.

A key assumption of MF is that U is a low-rank matrix. Let H (≤ L) be the rank of U . Then
the matrix U can be decomposed into the product of A ∈ RM×H and B ∈ RL×H as follows (see
Figure 1):

U = BA⊤.

Assume that the observed matrix V is subject to the following additive-noise model:

V = U + E ,

where E (∈ RL×M ) is a noise matrix. Each entry of E is assumed to independently follow the
Gaussian distribution with mean zero and variance σ2. Then, the likelihood p(Vn|A,B) is given by

p(Vn|A,B) ∝ exp

(
− 1

2σ2

n∑
i=1

∥V (i) − BA⊤∥2
Fro

)
,

where ∥ · ∥Fro denotes the Frobenius norm of a matrix.
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2.2 Variational Bayesian Matrix Factorization

We use the Gaussian priors on the parameters A = (a1, . . . , aH) and B = (b1, . . . , bH):

φ(U) = φA(A)φB(B), where φA(A) ∝ exp

(
−

H∑
h=1

∥ah∥2

2c2
ah

)
and φB(B) ∝ exp

(
−

H∑
h=1

∥bh∥2

2c2
bh

)
.

c2
ah

and c2
bh

are hyperparameters corresponding to the prior variance. Without loss of generality, we
assume that the product cah

cbh
is non-increasing with respect to h.

Let r(A, B|Vn) be a trial distribution for A and B, and let FVB be the variational Bayes (VB) free
energy with respect to r(A,B|Vn):

FVB(r|Vn) =
〈

log
r(A,B|Vn)
p(Vn, A,B)

〉
r(A,B|Vn)

,

where 〈·〉p denotes the expectation over p.

The VB approach minimizes the VB free energy FVB(r|Vn) with respect to the trial distribution
r(A,B|Vn), by restricting the search space of r(A,B|Vn) so that the minimization is computation-
ally tractable. Typically, dissolution of probabilistic dependency between entangled parameters (A
and B in the case of MF) makes the calculation feasible:1

r(A, B|Vn) =
H∏

h=1

rah(ah|Vn)rbh(bh|Vn). (1)

The resulting distribution is called the VB posterior. The VB solution ÛVB is given by the VB
posterior mean:

ÛVB = 〈BA⊤〉r(A,B|Vn).

By applying the variational method to the VB free energy, we see that the VB posterior can be
expressed as follows:

r(A, B|Vn) =
H∏

h=1

NM (ah; µah
, Σah

)NL(bh; µbh
, Σbh

),

where Nd(·; µ, Σ) denotes the d-dimensional Gaussian density with mean µ and covariance matrix
Σ. µah

, µbh
, Σah

, and Σbh
satisfy

µah
=Σah

Ξ⊤
h µbh

, µbh
=Σbh

Ξhµah
, Σah

=
(nβh

σ2
+c−2

ah

)−1

IM , Σbh
=

(nαh

σ2
+c−2

bh

)−1

IL, (2)

where Id denotes the d-dimensional identity matrix, and
αh = ∥µah

∥2 + tr(Σah
), βh = ∥µbh

∥2 + tr(Σbh
),

Ξh =
n

σ2

(
V −

∑
h′ ̸=h

µbh′ µ
⊤
ah′

)
, V =

1
n

n∑
i=1

V (i).

The iterated conditional modes (ICM) algorithm [4, 5] for VBMF (VB-ICM) iteratively updates
µah

, µbh
, Σah

, and Σbh
by Eq.(2) from some initial values until convergence [13, 18], allowing one

to obtain a local optimal solution. Finally, an estimator of U is computed as

ÛVB−ICM =
H∑

h=1

µbh
µ⊤

ah
.

When the noise variance σ2 is unknown, it may be estimated by the following re-estimation formula:

σ2 =
1

σ2LM

 1
n

n∑
i=1

∥∥∥∥∥V (i) −
H∑

h=1

µbh
µ⊤

ah

∥∥∥∥∥
2

Fro

+
H∑

h=1

(
αhβh − ∥µah

∥2∥µbh
∥2

) ,

which corresponds to the derivative of the VB free energy with respect to σ2 set to zero (see Eq.(4)
in Section 3). This can be incorporated in the ICM algorithm by updating σ2 from some initial value
by the above formula in every iteration of the ICM algorithm.

1Although a weaker constraint, r(A, B|Vn)=rA(A|Vn)rB(B|Vn), is sufficient to derive a tractable itera-
tive algorithm [13], we assume the stronger one (1) used in [18], which makes our theoretical analysis tractable.
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2.3 Empirical Variational Bayesian Matrix Factorization

In the VB framework, hyperparameters (c2
ah

and c2
bh

in the current setup) can also be learned from
data by minimizing the VB free energy, which is called the empirical VB (EVB) method [5].

By setting the derivatives of the VB free energy with respect to c2
ah

and c2
bh

to zero, the following
optimality condition can be obtained (see also Eq.(4) in Section 3):

c2
ah

= αh/M and c2
bh

= βh/L. (3)

The ICM algorithm for EVBMF (EVB-ICM) is to iteratively update c2
ah

and c2
bh

by Eq.(3), in addi-
tion to µah

, µbh
, Σah

, and Σbh
by Eq.(2). Again, one may obtain a local optimal solution by this

algorithm.

3 Analytic-form Expression of Global Optimal Solution of VBMF

In this section, we derive an analytic-form expression of the VBMF global solution.

The VB free energy can be explicitly expressed as follows.

FVB(r|Vn) =
nLM

2
log σ2+

H∑
h=1

(
M

2
log c2

ah
− 1

2
log |Σah

|+ αh

2c2
ah

+
L

2
log c2

bh
− 1

2
log |Σbh

|+ βh

2c2
bh

)

+
1

2σ2

n∑
i=1

∥∥∥∥∥V (i) −
H∑

h=1

µbh
µ⊤

ah

∥∥∥∥∥
2

Fro

+
n

2σ2

H∑
h=1

(
αhβh − ∥µah

∥2∥µbh
∥2

)
, (4)

where | · | denotes the determinant of a matrix. We solve the following problem:

Given (c2
ah

, c2
bh

) ∈ R2
++ (∀h = 1, . . . ,H), σ2 ∈ R++,

min FVB({µah
,µbh

, Σah
, Σbh

; h = 1, . . . ,H})
s.t. µah

∈ RM , µbh
∈ RL, Σah

∈ SM
++, Σbh

∈ SL
++ (∀h = 1, . . . ,H),

where Sd
++ denotes the set of d × d symmetric positive-definite matrices. This is a non-convex

optimization problem, but still we show that the global optimal solution can be analytically obtained.

Let γh (≥ 0) be the h-th largest singular value of V , and let ωah
and ωbh

be the associated right
and left singular vectors:2

V =
L∑

h=1

γhωbh
ω⊤

ah
.

Let γ̂h be the second largest real solution of the following quartic equation with respect to t:

fh(t) := t4 + ξ3t
3 + ξ2t

2 + ξ1t + ξ0 = 0, (5)

where the coefficients are defined by

ξ3 =
(L − M)2γh

LM
, ξ2 = −

(
ξ3γh +

(L2 + M2)η̂2
h

LM
+

2σ4

n2c2
ah

c2
bh

)
, ξ1 = ξ3

√
ξ0,

ξ0 =

(
η̂2

h − σ4

n2c2
ah

c2
bh

)2

, η̂2
h =

(
1 − σ2L

nγ2
h

)(
1 − σ2M

nγ2
h

)
γ2

h.

Let

γ̃h =

√√√√√ (L + M)σ2

2n
+

σ4

2n2c2
ah

c2
bh

+

√√√√(
(L + M)σ2

2n
+

σ4

2n2c2
ah

c2
bh

)2

− LMσ4

n2
. (6)

Then we can analytically express the VBMF solution ÛVB as in the following theorem.
2In our analysis, we assume that V has no missing entry, and its singular value decomposition (SVD) is

easily obtained. Therefore, our results cannot be directly applied to missing entry prediction.
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Theorem 1 The global VB solution can be expressed as

ÛVB =
H∑

h=1

γ̂VB
h ωbh

ω⊤
ah

, where γ̂VB
h =

{
γ̂h if γh > γ̃h,

0 otherwise.

Sketch of proof: We first show that minimizing (4) amounts to a reweighed SVD and any minimizer
is a stationary point. Then, by analyzing the stationary condition (2), we obtain an equation with
respect to γ̂h as a necessary and sufficient condition to be a stationary point (note that its quadratic
approximation gives bounds of the solution [15]). Its rigorous evaluation results in the quartic equa-
tion (5). Finally, we show that only the second largest solution of the quartic equation (5) lies within
the bounds, which completes the proof.

The coefficients of the quartic equation (5) are analytic, so γ̂h can also be obtained analytically3,
e.g., by Ferrari’s method [9] (we omit the details due to lack of space). Therefore, the global VB
solution can be analytically computed. This is a strong advantage over the standard ICM algorithm
since many iterations and restarts would be necessary to find a good solution by ICM.

Based on the above result, the complete VB posterior can also be obtained analytically as follows.

Corollary 2 The VB posteriors are given by

rA(A|Vn) =
H∏

h=1

NM (ah;µah
, Σah

), rB(B|Vn) =
H∏

h=1

NM (bh; µbh
, Σbh

),

where, for γ̂VB
h being the solution given by Theorem 1,

µah
= ±

√
γ̂VB

h δ̂h · ωah
, µbh

= ±
√

γ̂VB
h δ̂−1

h · ωbh
,

Σah
=

(
−

(
nη̂2

h − σ2(M − L)
)

+
√

(nη̂2
h − σ2(M − L))2 + 4Mnσ2η̂2

h

2nM(γ̂VB
h δ̂−1

h + n−1σ2c−2
ah )

)
IM ,

Σbh
=

(
−

(
nη̂2

h + σ2(M − L)
)

+
√

(nη̂2
h + σ2(M − L))2 + 4Lnσ2η̂2

h

2nL(γ̂VB
h δ̂h + n−1σ2c−2

bh
)

)
IL,

δ̂h =
n(M − L)(γh − γ̂VB

h ) +
√

n2(M − L)2(γh − γ̂VB
h )2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

,

η̂2
h =

{
η2

h if γh > γ̃h,
σ2

ncah
cbh

otherwise.

When the noise variance σ2 is unknown, one may use the minimizer of the VB free energy with
respect to σ2 as its estimate. In practice, this single-parameter minimization may be carried out
numerically based on Eq.(4) and Corollary 2.

4 Analytic-form Expression of Global Optimal Solution of Empirical VBMF

In this section, we solve the following problem to obtain the EVBMF global solution:

Given σ2 ∈ R++,

min FVB({µah
,µbh

, Σah
, Σbh

, c2
ah

, c2
bh

;h = 1, . . . ,H})
s.t. µah

∈ RM , µbh
∈ RL, Σah

∈ SM
++, Σbh

∈ SL
++, (c2

ah
, c2

bh
) ∈ R2

++ (∀h = 1, . . . ,H),

where Rd
++ denotes the set of the d-dimensional vectors with positive elements. We show that, al-

though this is again a non-convex optimization problem, the global optimal solution can be obtained
analytically. We can observe the invariance of the VB free energy (4) under the transform{

(µah
, µbh

, Σah
, Σbh

, c2
ah

, c2
bh

)
}
→

{
(shµah

, s−1
h µbh

, s2
hΣah

, s−2
h Σbh

, s2
hc2

ah
, s−2

h c2
bh

)
}

3In practice, one may solve the quartic equation numerically, e.g., by the ‘roots’ function in MATLAB R⃝.
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Figure 2: Profiles of the VB free energy (4) when L = M = H = 1, n = 1, and σ2 = 1 for
observations V = 1.5, 2.1, and 2.7. (a) When V = 1.5 < 2 = γ

h
, the VB free energy is monotone

increasing and thus the global solution is given by ch → 0. (b) When V = 2.1 > 2 = γ
h

, a local
minimum exists at ch = c̆h ≈ 1.37, but ∆h ≈ 0.12 > 0 so ch → 0 is still the global solution. (c)
When V = 2.7 > 2 = γ

h
, ∆h ≈ −0.74 ≤ 0 and thus the minimizer at ch = c̆h ≈ 2.26 is the global

solution.

for any {sh ̸= 0; h = 1, . . . ,H}. Accordingly, we fix the ratios to cah
/cbh

= S > 0, and refer to
ch := cah

cbh
also as a hyperparameter.

Let

c̆2
h =

1
2LM

γ2
h − (L + M)σ2

n
+

√(
γ2

h − (L + M)σ2

n

)2

− 4LMσ4

n2

 , (7)

γ
h

= (
√

L +
√

M)σ/
√

n.

Then, we have the following lemma:

Lemma 3 If γh ≥ γ
h

, the VB free energy function (4) can have two local minima, namely, ch → 0
and ch = c̆h. Otherwise, ch → 0 is the only local minimum of the VB free energy.

Sketch of proof: Analyzing the region where ch is so small that the VB solution given ch is γ̂h = 0,
we find a local minimum ch → 0. Combining the stationary conditions (2) and (3), we derive a
quadratic equation with respect to c2

h whose larger solution is given by Eq.(7). Showing that the
smaller solution corresponds to saddle points completes the proof.

Figure 2 shows the profiles of the VB free energy (4) when L = M = H = 1, n = 1, and σ2 = 1
for observations V = 1.5, 2.1, and 2.7. As illustrated, depending on the value of V , either ch → 0
or ch = c̆h is the global solution.

Let

∆h := M log
( nγh

Mσ2
γ̆VB

h + 1
)

+ L log
( nγh

Lσ2
γ̆VB

h + 1
)

+
n

σ2

(
−2γhγ̆VB

h + LMc̆2
h

)
, (8)

where γ̆VB
h is the VB solution for ch = c̆h. We can show that the sign of ∆h corresponds to that of

the difference of the VB free energy at ch = c̆h and ch → 0. Then, we have the following theorem
and corollary.

Theorem 4 The hyperparameter ĉh that globally minimizes the VB free energy function (4) is given
by ĉh = c̆h if γh > γ

h
and ∆h ≤ 0. Otherwise ĉh → 0.

Corollary 5 The global EVB solution can be expressed as

ÛEVB =
H∑

h=1

γ̂EVB
h ωbh

ω⊤
ah

, where γ̂EVB
h :=

{
γ̆VB

h if γh > γ
h

and ∆h ≤ 0,

0 otherwise.

Since the optimal hyperparameter value ĉh can be expressed in a closed-form, the global EVB
solution can also be computed analytically using the result given in Section 3. This is again a strong
advantage over the standard ICM algorithm since ICM would require many iterations and restarts to
find a good solution.
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5 Experiments

In this section, we experimentally evaluate the usefulness of our analytic-form solutions using arti-
ficial and benchmark datasets. The MATLAB R⃝ code will be available at [14].

5.1 Artificial Dataset

We randomly created a true matrix V ∗ =
∑H∗

h=1 b∗
ha∗⊤

h with L = 30, M = 100, and H∗ = 10,
where every element of {ah, bh} was drawn independently from the standard Gaussian distribution.
We set n = 1, and an observation matrix V was created by adding independent Gaussian noise with
variance σ2 = 1 to each element. We used the full-rank model, i.e., H = L = 30. The noise
variance σ2 was assumed to be unknown, and estimated from data (see Section 2.2 and Section 3).

We first investigate the learning curve of the VB free energy over EVB-ICM iterations. We created
the initial values of the EVB-ICM algorithm as follows: µah

and µbh
were set to randomly created

orthonormal vectors, Σah
and Σbh

were set to identity matrices multiplied by scalars σ2
ah

and σ2
bh

,
respectively. σ2

ah
and σ2

bh
as well as the noise variance σ2 were drawn from the χ2-distribution with

degree-of-freedom one. 10 learning curves of the VB free energy were plotted in Figures 3(a). The
value of the VB free energy of the global solution computed by our analytic-form solution was also
plotted in the graph by the dashed line. The graph shows that the EVB-ICM algorithm reduces the
VB free energy reasonably well over iterations. However, for this artificial dataset, the convergence
speed was quite slow once in 10 runs, which was actually trapped in a local minimum.

Next, we compare the computation time. Figure 3(b) shows the computation time of EVB-ICM over
iterations and our analytic form-solution. The computation time of EVB-ICM grows almost linearly
with respect to the number of iterations, and it took 86.6 [sec] for 100 iterations on average. On the
other hand, the computation of our analytic-form solution took only 0.055 [sec] on average, includ-
ing the single-parameter search for σ2. Thus, our method provides the reduction of computation
time in 4 orders of magnitude, with better accuracy as a minimizer of the VB free energy.

Next, we investigate the generalization error of the global analytic solutions of VB and EVB, mea-
sured by G = ∥Û − V ∗∥2

Fro/(LM). Figure 3(c) shows the mean and error bars (min and max)
over 10 runs for VB with various hyperparameter values and EVB. A single hyperparameter value
was commonly used (i.e., c1 = · · · = cH ) in VB, while each hyperparameter ch was separately
optimized in EVB. The result shows that EVB gives slightly lower generalization errors than VB
with the best common hyperparameter. Thus, automatic hyperparameter selection of EVB works
quite well.

Figure 3(d) shows the hyperparameter values chosen in EVB sorted in the decreasing order. This
shows that, for all 10 runs, ch is positive for h ≤ H∗ (= 10) and zero for h > H∗. This implies that
the effect of automatic relevance determination [16, 5] works excellently for this artificial dataset.

5.2 Benchmark Dataset

MF can be used for canonical correlation analysis (CCA) [8] and reduced rank regression (RRR)
[19] with appropriately pre-whitened data. Here, we solve these tasks by VBMF and evaluate the
performance using the concrete slump test dataset [28] available from the UCI repository [2].

The experimental results are depicted in Figure 4, which is in the same format as Figure 3. The
results showed that similar trends to the artificial dataset can still be observed for the CCA task with
the benchmark dataset (the RRR results are similar and thus omitted from the figure). Overall, the
proposed global analytic solution is shown to be a useful alternative to the popular ICM algorithm.

6 Discussion and Conclusion

Overcoming the non-convexity of VB methods has been one of the important challenges in the
Bayesian machine learning community, since it sometimes prevented us from applying the VB meth-
ods to highly complex real-world problems. In this paper, we focused on the MF problem with no
missing entry, and showed that this weakness could be overcome by computing the global optimal
solution analytically. We further derived the global optimal solution analytically for the EVBMF
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Figure 4: Experimental results of CCA for the concrete slump test dataset.

method, where hyperparameters are also optimized based on data samples. Since no hand-tuning
parameter remains in EVBMF, our analytic-form solution is practically useful and computationally
highly efficient. Numerical experiments showed that the proposed approach is promising.

When cah
cbh

→ ∞, the priors get (almost) flat and the quartic equation (5) is factorized as

lim
cah

cbh
→∞

fh(t) =
“

t + M
L

“

1− σ2L
nγ2

h

”

γh

”“

t +
“

1− σ2M
nγ2

h

”

γh

”“

t −
“

1− σ2M
nγ2

h

”

γh

”“

t − M
L

“

1− σ2L
nγ2

h

”

γh

”

= 0.

Theorem 1 states that its second largest solution gives the VB estimator for γh > limcah
cbh

→∞ γ̃h =√
Mσ2/n. Thus we have

lim
cah

cbh
→∞

γ̂VB
h = max

(
0,

(
1 − Mσ2

nγ2
h

))
γh.

This is the positive-part James-Stein (PJS) shrinkage estimator [10], operated on each singular com-
ponent separately, and this coincides with the upper-bound derived in [15] for arbitrary cah

cbh
> 0.

The counter-intuitive fact—a shrinkage is observed even in the limit of flat priors—can be explained
by strong non-uniformity of the volume element of the Fisher metric, i.e., the Jeffreys prior [11], in
the parameter space. We call this effect model-induced regularization (MIR), because it is induced
not by priors but by structure of model likelihood functions. MIR was shown to generally appear in
Bayesian estimation when the model is non-identifiable (i.e., the mapping between parameters and
distribution functions is not one-to-one) and the parameters are integrated out at least partially [26].
Thus, it never appears in MAP estimation [15]. The probabilistic PCA can be seen as an example
of MF, where A and B correspond to latent variables and principal axes, respectively [24]. The
MIR effect is observed in its analytic solution when A is integrated out and B is estimated to be the
maximizer of the marginal likelihood.

Our results fully made use of the assumptions that the likelihood and priors are both spherical Gaus-
sian, the VB posterior is column-wise independent, and there exists no missing entry. They were
necessary to solve the free energy minimization problem as a reweighted SVD. An important fu-
ture work is to obtain the analytic global solution under milder assumptions. This will enable us to
handle more challenging problems such as missing entry prediction [23, 20, 6, 13, 18, 22, 12, 25].
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