
Implicit Differentiation by Perturbation

Justin Domke
Rochester Institute of Technology

justin.domke@rit.edu

Abstract

This paper proposes a simple and efficient finite difference method for im-
plicit differentiation of marginal inference results in discrete graphical mod-
els. Given an arbitrary loss function, defined on marginals, we show that
the derivatives of this loss with respect to model parameters can be obtained
by running the inference procedure twice, on slightly perturbed model pa-
rameters. This method can be used with approximate inference, with a
loss function over approximate marginals. Convenient choices of loss func-
tions make it practical to fit graphical models with hidden variables, high
treewidth and/or model misspecification.

1 Introduction

As graphical models are applied to more complex problems, it is increasingly necessary to
learn parameters from data. Though the likelihood and conditional likelihood are the most
widespread training objectives, these are sometimes undesirable and/or infeasible in real
applications.

With low treewidth, if the data is truly distributed according to the chosen graphical model
with some parameters, any consistent loss function will recover those true parameters in the
high-data limit, and so one might select a loss function according to statistical convergence
rates [1]. In practice, the model is usually misspecified to some degree, meaning no "true"
parameters exist. In this case, different loss functions lead to different asymptotic parameter
estimates. Hence, it is useful to consider the priorities of the user when learning. For low-
treewidth graphs, several loss functions have been proposed that prioritize different types
of accuracy (section 2.2). For parameters θ, these loss functions are given as a function
L(µ(θ)) of marginals µ(θ). One can directly calculate ∂L

∂µ
. The parameter gradient dL

dθ
can

be efficiently computed by loss-specific message-passing schemes[2, 3].

The likelihood may also be infeasible to optimize, due to the computational intractability
of computing the log-partition function or its derivatives in high treewidth graphs. On the
other hand, if an approximate inference algorithm will be used at test time, it is logical to
design the loss function to compensate for defects in inference. The surrogate likelihood
(the likelihood with an approximate partition function) can give superior results to the true
likelihood, when approximate inference is used at test time[4].

The goal of this paper is to efficiently fit parameters to optimize an arbitrary function of
predicted marginals, in a high-treewidth setting. If µ(θ) is the function mapping parameters
to (approximate) marginals, and there is some loss function L(µ) defined on those marginals,
we desire to recover dL

dθ
. This enables the use of the marginal-based loss functions mentioned

previously, but defined on approximate marginals.

There are two major existing approaches for calculating dL
dθ

. First, after performing infer-
ence, this gradient can be obtained by solving a large, sparse linear system[5]. The major
disadvantage of this approach is that standard linear solvers can perform poorly on large

1

True (y) Noisy (x) Surrogate
likelihood

Clique
likelihood

Univariate
likelihood

Smooth
class. error

Figure 1: Example images from the Berkeley dataset, along with marginals for a conditional
random field fit with various loss functions.

graphs, meaning that calculating this gradient can be more expensive than performing infer-
ence (Section 4). A second option is the Back Belief Propagation (BBP) algorithm[6]. This
is based on application of reverse-mode automatic differentiation (RAD) to message passing.
Crucially, this can be done without storing all intermediate messages, avoiding the enormous
memory requirements of a naive application of RAD. This is efficient, with running-time in
practice similar to inference. However, it is tied to a specific entropy approximation (Bethe)
and algorithm (Loopy Belief Propagation). Extension to similar message-passing algorithms
appears possible, but extension to more complex inference algorithms [7, 8, 9] is unclear.

Here, we observe that the loss gradient can be calculated by far more straightforward means.
Our basic result is extremely simple: dL

dθ
≈ 1

r
(µ(θ + r ∂L

∂µ
)−µ(θ)

)

, with equality in the limit

r → 0. This result follows from, first, the well-known trick of approximating Jacobian-
vector products by finite differences and, second, the special property that for marginal
inference, the Jacobian matrix dµ

dθT is symmetric. This result applies when marginal inference
takes place over the local polytope with an entropy that is concave and obeys a minor
technical condition. It can also be used with non-concave entropies, with some assumptions
on how inference recovers different local optima. It is easy to use this to compute the
gradient of essentially any differentiable loss function defined on marginals. Effectively, all
one needs to do is re-run the inference procedure on a set of parameters slightly "perturbed"
in the direction ∂L

∂µ
. Conditional training and tied or nonlinear parameters can also be

accommodated.

One clear advantage of this approach is simplicity and ease of implementation. Aside from
this, like the matrix inversion approach, it is independent of the algorithm used to perform
independence, and applicable to a variety of different inference approximations. Like BBP,
the method is efficient in that it makes only two calls to inference.

2 Background

2.1 Marginal Inference

This section briefly reviews the aspects of graphical models and marginal inference that are
required for the rest of the paper. Let x denote a vector of discrete random variables. We
use the exponential family representation

p(x; θ) = exp
(

θ · f(x) −A(θ)
)

, (1)

where f(x) is the features of the observation x, and A = log
∑

x
exp θ · f(x) assures normal-

ization. For graphical models, f is typically a vector of indicator functions for each possible
configuration of each factor and variable. With a slight abuse of set notation to represent

2

a vector, this can be written as f(x) = {I[xα]} ∪ {I[xi]}. It is convenient to refer to the
components of vectors like those in Eq. 1 using function notation. Write θ(xα) to refer to
the component of θ corresponding to the indicator function I[xα], and similarly for θ(xi).
This gives an alternative representation for p, namely

p(x; θ) = exp
(

∑

α

θ(xα) +
∑

i

θ(xi)−A(θ)
)

. (2)

Marginal inference means recovering the expected value of f or, equivalently, the marginal
probability that each factor or variable have a particular value.

µ(θ) =
∑

x

p(x; θ)f(x) (3)

Though marginals could, in principle, be computed by the brute-force sum in Eq. 3, it is
useful to consider the paired variational representation [10, Chapter 3]

A(θ) = max
µ∈M

θ · µ + H(µ) (4)

µ(θ) =
dA

dθ
= arg max

µ∈M
θ · µ + H(µ), (5)

in which A and µ can both be recovered from solving the same optimization problem. Here,
M = {µ(θ)|θ ∈ ℜn} is the marginal polytope– those marginals µ resulting from some
parameter vector θ. Similarly, H(µ) is the entropy of p(x; θ′), where θ′ is the vector of
parameters that produces the marginals µ.

AsM is a convex set, and H a concave function, Eq. 5 is equivalent to a convex optimization
problem. Nevertheless it is difficult to characterizeM or compute H(µ) in high-treewidth
graphs. A variety of approximate inference methods can be seen as solving a modification
of Eqs. 4 and 5, with the marginal polytope and entropy replaced with tractable approxi-
mations. Notice that these are also paired; the approximate µ is the exact gradient of the
approximate A.

The commonest relaxation of M is the local polytope

L = {µ ≥ 0 |µ(xi) =
∑

xα\i

µ(xα),
∑

xi

µ(xi) = 1}. (6)

This underlies loopy belief propagation, as well as tree-reweighted belief propagation. Since
a valid set of marginals must obey these constraints, L ⊇ M. Note that since the equality
constraints are linear, there exists a matrix B and vector d such that

L = {µ ≥ 0|Bµ = d}. (7)

A variety of entropy approximations exist. The Bethe approximation implicit in loopy belief
propagation [11] is non-concave in general, which results in sometimes failing to achieve
the global optimum. Concave entropy functions include the tree-reweighted entropy [12],
convexified Bethe entropies [13], and the class of entropies obeying Heskes’ conditions [14].

2.2 Loss Functions

Given some data, {x̂}, we will pick the parameters θ to minimize the empirical risk

∑

x̂

L(x̂; θ). (8)

Likelihood. The (negative) likelihood is the classic loss function for training graphical
models. Exploiting the fact that dA/dθ = µ(θ), the gradient is available in closed-form.

3

L(x̂; θ) = − log p(x̂; θ)

= −θ · f(x̂) + A(θ). (9)

dL

dθ
= −f(x̂) + µ(θ). (10)

Surrogate Likelihood. Neither A nor µ is tractable with high treewidth. However, if
written in variational form (Eqs. 4 and 5), they can be approximated using approximate in-
ference. The surrogate likelihood [4] is simply the likelihood as in Eq. 9 with an approximate
A. It has the gradient as in Eq. 10, but with approximate marginals µ.

Unlike the losses below, the surrogate likelihood is convex when based on a concave inference
method. See Ganapathi et al.[15] for a variant of this for inference with local optima.

Univariate Likelihood. If the application will only make use of univariate marginals at
test time, one might fit parameters specifically to make these univariate marginals accurate.
Kakade et al.[3] proposed the loss

L(x̂; θ) = −
∑

i

log µ(x̂i; θ). (11)

This can be computed in treelike graphs, after running belief propagation to compute
marginals. A message-passing scheme can efficiently compute the gradient.

Univariate Classification Error. Some applications only use the maximum probability
marginals. Gross at al.[2] considered the loss

L(x̂; θ) =
∑

i

S
(

max
xi 6=x̂i

µ(xi; θ)− µ(x̂i; θ)
)

, (12)

where S is the step function. This loss measures the number of incorrect components of
x̂ if each is predicted to be the “max marginal”. However, since this is non-differentiable,
it is suggested to approximate this by replacing S with a sigmoid function S(t) = (1 +
exp(−λt))−1, where λ controls the approximation quality. Our experiments use λ = 50.

As with the univariate likelihood, this loss can be computed if exact marginals are available.
Computing the gradient requires another message passing scheme.

Clique loss functions. One can easily define clique versions of the previous two loss
functions, where the summations are over α, rather than i. These measure the accuracy of
clique-wise marginals, rather than univariate marginals.

2.3 Implicit Differentiation

As noted in Eq. 7, the equality constraints in the local polytope are linear, and hence when
the positivity constraint can be disregarded, approximate marginal inference algorithms can
be seen as solving the optimization µ(θ) = arg maxµ,Bµ=d θ ·µ + H(µ). Domke showed[5],
in our notation, that

dL

dθ
=

(

D−1BT (BD−1BT)−1BD−1 −D−1
)dL

dµ
, (13)

where D = ∂2H
∂µ∂µT is the (diagonal) Hessian of the entropy approximation.

Unfortunately, this requires solving a sparse linear system for each training example and
iteration. As we will see below, with large or poorly conditioned problems, the computational
expense of this can far exceed that of inference. Note that BD−1BT is, in general, indefinite,
restricting what solvers can be used. Another limitation is that D can be singular if any
counting numbers (Eq. 16) are zero.

2.4 Conditional training and nonlinear parameters.

For simplicity, all the above discussion was confined to fully parametrized models. Nonlinear
and tied parameters are easily dealt with by considering θ(φ) to be a function of the “true”

4

Algorithm 1 Calculating loss derivatives (two-sided).

1. Do inference. µ∗ ← arg max
µ∈M

θ · µ + H(µ)

2. At µ∗, calculate the partial derivative
∂L

∂µ
.

3. Calculate a perturbation size r.

4. Do inference on perturbed parameters.

µ+ ← arg max
µ∈M

(θ + r
∂L

∂µ
) · µ + H(µ) µ− ← arg max

µ∈M
(θ − r

∂L

∂µ
) · µ + H(µ)

5. Recover full derivative.
dL

dθ
← 1

2r
(µ+ − µ−)

parameters φ. Once dL/dθ is known dL/dφ can be recovered by a simple application of
the chain rule, namely

dL

dφ
=

dθT

dφ

dL

dθ
. (14)

Conditional training is similar: define a distribution over a random variable y, parametrized
by θ(φ;x), the derivative on a particular pair (x,y) is given again by Eq. 14. Examples of
both of these are in the experiments.

3 Implicit Differentiation by Perturbation

This section shows that when µ(θ) = argmaxµ∈L θ · µ + H(µ), the loss gradient can be
computed by Alg. 1 for a concave entropy approximation of the form

H(µ) = −
∑

α

cα

∑

xα

µ(xα) log µ(xα)−
∑

i

ci

∑

xi

µ(xi) log µ(xi), (15)

when the counting numbers c obey (as is true of most proposed entropies)

cα > 0, ci +
∑

α,i∈α

cα > 0. (16)

For intuition, the following Lemma uses notation (µ, θ, H) suggesting the application to
marginal inference. However, note that the result is true for any functions satisfying the
stated conditions.

Lemma. If µ(θ) is implicitly defined by

µ(θ) = argmax
µ

µ · θ + H(µ) (17)

s.t Bµ− d = 0, (18)

where H(µ) is strictly convex and twice differentiable, then
dµ

dθT
exists and is symmetric.

Proof. First, form a Lagrangian enforcing the constraints on the objective function.

L = µ · θ + H(µ) + λT (Bµ− d) (19)

The solution is µ and λ such that dL/dµ = 0 and dL/dλ = 0.

[

θ + ∂H(µ)/∂µ + BT λ
Bµ− d

]

=

[

0
0

]

(20)

5

Recall the general implicit function theorem. If f(θ) is implicitly defined by the constraint
that h(θ, f) = 0, then

df

dθT
= −

(∂h

∂fT

)−1 ∂h

∂θT
. (21)

Using Eq. 20 as our definition of h, and differentiating with respect to both µ and λ, we
have

[

dµ/dθT

dλ/dθT

]

= −
[

∂2H/∂µ∂µT B
BT 0

]−1 [

I
0

]

. (22)

We see that −dµ/dθT is the upper left block of the matrix being inverted. The result
follows, since the inverse of a symmetric matrix is symmetric.

The following is the main result driving this paper. Again, this uses notation suggesting
the application to implicit differentiation and marginal inference, but holds true for any
functions satisfying the stated conditions.

Theorem. Let µ(θ) be defined as in the previous Lemma, and let L(θ) be defined by L(θ) =
M

(

µ(θ)
)

for some differentiable function M(µ). Then the derivative of L with respect to θ
is given by

dL

dθ
= lim

r→0

1

r

(

µ(θ + r
∂M

∂µ
)− µ(θ)

)

. (23)

Proof. First note that, by the vector chain rule,

dL

dθ
=

dµT

dθ

∂M

∂µ
. (24)

Next, take some vector v. By basic calculus, the derivative of µ(θ) in the direction of v is

dµ

dθ
T
v = lim

r→0

1

r

(

µ(θ + rv) − µ(θ)
)

. (25)

The result follows from substituting ∂M/∂µ for v, and using the previous lemma to establish

that dµ/dθT = dµT /dθ.

Alg. 1 follows from applying this theorem to marginal inference. However, notice that this
does not enforce the constraint that µ ≥ 0. The following gives mild technical conditions
under which µ will be strictly positive, and so the above theorem applies.

Theorem. If H(µ) =
∑

α cαH(µc) +
∑

i ciH(µi), and µ∗ is a (possibly local) maximum
of θ · µ + H(µ), under the local polytope L, then

cα > 0, ci +
∑

α,i∈α

cα > 0 −→ µ∗ > 0. (26)

This is an extension of a previous result [11, Theorem 9] for the Bethe entropy. However,
extremely minor changes to the existing proof give this stronger result.

Most proposed entropies satisfy these conditions, including the Bethe entropy (cα = 1, ci +
∑

α,i∈α cα = 1), the TRW entropy (cα = ρ(α), ci +
∑

α,i∈α cα = 1, where ρ(α) > 0 is the

probability that α appears in a randomly chosen tree) and any entropy satisfying the slightly
strengthened versions on Heskes’ conditions [14, 16, Section 2].

What about non-concave entropies? The only place concavity was used above was in es-
tablishing that Eq. 20 has a unique solution. With a non-concave entropy this condition is
still valid, not not unique, since there can be local optima. BBP essentially calculates this

6

8 32 128 512

10
−2

10
−1

10
0

10
1

10
2

10
3

grid size

ru
nn

in
g

tim
e

(s
)

Bethe entropy

0.5 1 2

10
−2

10
−1

10
0

10
1

10
2

10
3

interaction strength

ru
nn

in
g

tim
e

(s
)

Bethe entropy

pert−BP
symmlq
BBP
direct
BP

8 32 128 512

10
−2

10
−1

10
0

10
1

10
2

10
3

grid size

ru
nn

in
g

tim
e

(s
)

TRW entropy

0.5 1 2

10
−2

10
−1

10
0

10
1

10
2

10
3

interaction strength

ru
nn

in
g

tim
e

(s
)

TRW entropy

pert−TRWS
symmlq
direct
TRWS

Figure 2: Times to compute dL/dθ by perturbation, Back Belief Propagation (BBP), sparse
matrix factorization (direct) and the iterative symmetric-LQ method (symmlq). Inference
with BP and TRWS are shown for reference. As these results use two-sided differences,
perturbation always takes twice the running time of the base inference algorithm. BBP takes
time similar BP. Results use a pairwise grid with xi ∈ {1, 2, ..., 5}, with univariate terms
θ(xi) taken uniformly from [−1, +1] and interaction strengths θ(xi, xj) from [−a, +a] for
varying a. Top Left: Bethe entropy for varying grid sizes, with a = 1. Matrix factorization
is efficient on small problems, but scales poorly. Top Right: Bethe entropy with a grid
size of 32 and varying interaction strengths a. High interactions strengths lead to poor
conditioning, slowing iterative methods. Bottom Left: Varying grid sizes with the TRW
entropy. Bottom Right: TRW entropy with a grid size of 32 and varying interactions.

derivative by “tracking” the local optima. If perturbed beliefs are calculated from constant
initial messages with a small step, one obtains the same result. Thus, BBP and perturbation
give the same gradient for the Bethe approximation. (This was also verified experimentally.)

It remains to select the perturbation size r. Though the gradient is exact in the limit
r → 0, numerical error eventually dominates. Following Andrei[17], the experiments here
use r =

√
ǫ(1 + |θ|∞)/|∂L

∂µ
|∞, where ǫ is machine epsilon.

4 Experiments

For inference, we used either loopy belief propagation, or tree-reweighted belief propagation.
As these experiments take place on grids, we are able to make use of the convergent TRWS
algorithm [18, Alg. 5], which we found to converge significantly faster than standard TRW.
BP/TRWS were iterated until predicted beliefs changed less than 10−5 between iterations.
BBP used a slightly looser convergence threshold of 10−4, which was similarly accurate.

Base code was implemented in Python, with C++ extensions for inference algorithms for
efficiency. Sparse systems were solved directly using an interface to Matlab, which calls
LAPACK. We selected the Symmetric LQ method as an iterative solver. Both solvers were
the fastest among several tested on these problems. (Recall, the system is indefinite.) BBP
results were computed by interfacing to the authors’ implementation included in the libDAI
toolkit[19]. We found the PAR mode, based on parallel updates [6, Eqs. 14-25] to be much
slower than the more sophisticated SEQ_FIX mode, based on sequential updates [6, extended

7

Table 1: Binary denoising results, comparing the surrogate likelihood against three loss
functions fit by implicit differentiation. All loss functions are per-pixel, based on tree-
reweighted belief propagation with edge inclusion probabilities of .5. The “Best Published”
results are the lowest previously reported pixelwise test errors using essentially loopy-belief
propagation based surrogate likelihood. (For all losses, lower is better.)

Bimodal Gaussian Berkeley Segmentation Data

Test Loss Class.
Error

Class.
Error

Surrogate
likelihood

Clique
likelihood

Univariate
likelihood

Class.
Error

Training Loss Train Test Train Test Train Test Train Test Train Test Train Test

Surrogate likelihood .0498 .0540 .0286 .0239 .251 .252 1.328 1.330 .417 .416 .141 .140

Clique likelihood .0488 .0535 .0278 .0236 .275 .277 1.176 1.178 .316 .315 .127 .126

Univariate likelihood .0493 .0541 .0278 .0235 .301 .303 1.207 1.210 .305 .305 .128 .127

Smooth Class. Error .0460 .0527 .0273 .0241 .281 .283 1.179 1.181 .311 .310 .127 .126

Best Published [20] .0548 .0251

version, Fig. 5]. Hence, all results here use the latter. Other modes exceeded the available
12 GB memory. All experiments use a single core of a 2.26 GHz machine.

Our first experiment makes use of synthetically generated grid models. This allows system-
atic variance of graph size and parameter strength. With the TRW entropy, we use uniform
edge appearance probabilities of ρ = .49, to avoid singularity in D. Our results (Fig. 2) can
be summarized as follows. Matrix inversion (Eq. 13) with a direct solver is very efficient on
small problems, but scales poorly. The iterative solver is expensive, and extremely sensitive
to conditioning. With the Bethe approximation, perturbation performs similarly to BBP.
TRWS converges faster than BP on poorly conditioned problems.

The second experiment considers a popular dataset for learning in high-treewidth graphical
models[21]. This consists of four base images, each corrupted with 50 random noise patterns
(either Gaussian or bimodal). Following the original work, 10 corrupted versions of the
first base image are used for training, and the remaining 190 for testing. This dataset
has been used repeatedly [22, 23], though direct comparison is sometimes complicated by
varying model types and training/test set divisions. This experiment uses a grid model over
neighboring pairs (i, j)

p(y|x) = exp
(

∑

i,j

θ(yi, yj) +
∑

i

θ(yi; xi)−A(θ(x))
)

, (27)

where θ(x) is a function of the input, with θ(yi, yj) = a(yi, yj) fully parametrized (inde-
pendent of x) and θ(yi; xi) = b(yi)xi + c(yi) an affine function of xi. Enforcing translation
invariance gives a total of eight free parameters: four for a(yi, yj), and two for b(yi), and

c(yi)
1. Once dL

dθ
is known, we can, following Eq. 14, recover derivatives with respect to tied

parameters2.

Because the previous dataset is quite limited (only four base 64x64 images), all methods
perform relatively well. Hence, we created a larger and more challenging dataset, consisting
of 200 200x300 images from the Berkeley segmentation dataset, split half for training and
testing. These are binarized by setting yi = 1 if a pixel is above the image mean, and yi = 0
otherwise. The noisy values xi are created by setting xi = yi(1− t1.25

i) + (1− yi)t
1.25
i , for ti

uniform on [0, 1].

Table 1 shows results for all three datasets. All the results below use batch L-BFGS for
learning, and uniform edge appearance probabilities of ρ = .5. The surrogate likelihood
performs well, in fact beating the best reported results on the bimodal and Gaussian data.
However, the univariate and clique loss functions provide better univariate accuracy. Fig.
1 shows example results. The surrogate likelihood (which is convex), was used to initialize
the univariate and clique likelihood, while the univariate likelihood was used to initialize
the smooth classification error.

1There are two redundancies, as adding a constant to a(yi, yj) or c(yi) has no effect on p.
2Specifically, dL

da(y,y′)
=

P

(i,j)
dL

dθ(yi=y,yj=y′)
,

dL
db(y)

=
P

i
dL

dθ(yi=y)
xi, and dL

dc(y)
=

P

i
dL

dθ(yi=y)
.

8

References

[1] Percy Liang and Michael Jordan. An asymptotic analysis of generative, discriminative, and
pseudolikelihood estimators. In ICML, 2008.

[2] Samuel Gross, Olga Russakovsky, Chuong Do, and Serafim Batzoglou. Training conditional
random fields for maximum labelwise accuracy. In NIPS. 2006.

[3] Sham Kakade, Yee Whye Teh, and Sam Roweis. An alternate objective function for Markovian
fields. In ICML, 2002.

[4] Martin Wainwright. Estimating the "wrong" graphical model: Benefits in the computation-
limited setting. Journal of Machine Learning Research, 7:1829–1859, 2006.

[5] Justin Domke. Learning convex inference of marginals. In UAI, 2008.

[6] Frederik Eaton and Zoubin Ghahramani. Choosing a variable to clamp. In AISTATS, 2009.

[7] Max Welling and Yee Whye Teh. Belief optimization for binary networks: A stable alternative
to loopy belief propagation. In UAI, 2001.

[8] Tom Heskes, Kees Albers, and Bert Kappen. Approximate inference and constrained opti-
mization. In UAI, 2003.

[9] Alan Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent
alternatives to belief propagation. Neural Computation, 14:2002, 2002.

[10] Martin Wainwright and Michael Jordan. Graphical models, exponential families, and varia-
tional inference. Found. Trends Mach. Learn., 1(1-2):1–305, 2008.

[11] Jonathan Yedidia, William Freeman, and Yair Weiss. Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51:2282–2312, 2005.

[12] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. A new class of upper bounds on the
log partition function. IEEE Transactions on Information Theory, 51(7):2313–2335, 2005.

[13] Ofer Meshi, Ariel Jaimovich, Amir Globerson, and Nir Friedman. Convexifying the bethe free
energy. In UAI, 2009.

[14] Tom Heskes. Convexity arguments for efficient minimization of the bethe and kikuchi free
energies. J. Artif. Intell. Res. (JAIR), 26:153–190, 2006.

[15] Varun Ganapathi, David Vickrey, John Duchi, and Daphne Koller. Constrained approximate
maximum entropy learning of markov random fields. In UAI, 2008.

[16] Tamir Hazan and Amnon Shashua. Convergent message-passing algorithms for inference over
general graphs with convex free energies. In UAI, pages 264–273, 2008.

[17] Neculai Andrei. Accelerated conjugate gradient algorithm with finite difference hessian/vector
product approximation for unconstrained optimization. J. Comput. Appl. Math., 230(2):570–
582, 2009.

[18] Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent message passing algorithms - a
unifying view, 2009.

[19] Joris M. Mooij et al. libDAI 0.2.4: A free/open source C++ library for Discrete Approximate
Inference. http://www.libdai.org/, 2010.

[20] Sanjiv Kumar, Jonas August, and Martial Hebert. Exploiting inference for approximate pa-
rameter learning in discriminative fields: An empirical study. In EMMCVPR, 2005.

[21] Sanjiv Kumar and Martial Hebert. Discriminative random fields. International Journal of
Computer Vision, 68(2):179–201, 2006.

[22] S. V. N. Vishwanathan, Nicol Schraudolph, Mark Schmidt, and Kevin Murphy. Accelerated
training of conditional random fields with stochastic gradient methods. In ICML, 2006.

[23] Patrick Pletscher, Cheng Soon Ong, and Joachim Buhmann. Spanning tree approximations
for conditional random fields. In AISTATS, 2009.

9

