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1 Preliminaries

For ease of reference, we restate the key definitions and assumptions from the main paper.

Definition 1 (Uniform Convergence). Loss functionL hasǫ-uniform convergenceif with probability
1− δ

sup
θ∈Θ

∣

∣

∣

∣

∣

ED[L(θ, x, y)]− Ex̂,ŷ[L(θ, x, y)]

∣

∣

∣

∣

∣

≤ ǫ(δ,m)

where(x̂, ŷ) ∼ Dm andǫ(·, ·) is an expression bounding the rate of convergence.

We writeh to denote alabeling functionthat maps examplesX to labelsY. Also, for any labeling
functionh and unlabeled training setx ∈ Xm, we leth(x) ∈ Ym denote the vector of labels whose
ith component ish(xi).

We assume that the set of all possible examplesX = {x̃1, . . . , x̃N} is finite. Letpx be anN -
length vector that represents unlabeled training setx as a distribution onX , whoseith component is
px(i) ,

|{j : xj=x̃i}|
m

.

Assumption 1(∞-Separability). For all labeled training sets(x,y) andR ∈ R(x,y) there exists
a collection of label sets{Yx̃ : x̃ ∈ X} and real-valued functionF such that

R(q) =

m
∑

i=1

χ{supp(qi) ⊆ Yxi
}+ F (q)

where the characteristic functionχ{·} is 0 when its argument is true and∞ otherwise, andF (q) <
∞ for all q ∈ ∆m.

Assumption 2(γ-Stability). SupposeX is finite. For any labeling functionh∗ and unlabeled train-
ing setsx,x′ such that‖px − px′‖∞ ≤ γ the following holds: For allR ∈ R(x,h∗(x)) there
existsR′ ∈ R(x′,h∗(x′)) such that

R(h(x)) < ∞ if and only ifR′(h(x′)) < ∞

for all labeling functionsh.

Assumption 3 (Reciprocity). For all labeled training sets(x,y) andR ∈ R(x,y), if R(y′) < ∞
thenR ∈ R(x,y′).

LetA be a (possibly randomized) learning algorithm that takes a set of unlabeled training examples
x̂ and a label regularization functionR as input, and outputs an estimated parameterθ̂. Also, if
under distributionD each examplex ∈ X is associated with exactly one labelh∗(x) ∈ Y, then we
writeD = DX · h∗, where thedata distributionDX is the marginal distribution ofD onX .

1



2 Theorems 1, 2 and 3

Theorem 1. Suppose loss functionL hasǫ-uniform convergence. If(x̂, ŷ) ∼ Dm then with proba-
bility at least1− δ for all parametersθ ∈ Θ and label regularization functionR ∈ R(x̂, ŷ)

ED[L(θ, x, y)] ≤ max
q∈∆m

(Ex̂,q[L(θ, x, y)]−R(q)) +R(ŷ) + ǫ(δ,m).

Proof. We have

ED[L(θ, x, y)] =ED[L(θ, x, y)]−R(ŷ) +R(ŷ) ≤ Ex̂,ŷ[L(θ, x, y)]−R(ŷ) +R(ŷ) + ǫ(δ,m)

≤ max
q∈∆m

(Ex̂,q [L(θ, x, y)]−R(q)) +R(ŷ) + ǫ(δ,m)

where the first inequality follows from Definition 1.

The proof of Theorem 2 is fairly complicated, but a similar result can be proved quite easily if we
assume that the labeled training set(x̂, ŷ) is fixed, rather than drawn from a distribution, and that the
learning algorithmA is deterministic. This allows us to argue completely deterministically, making
it easy to select a labeled training set that achieves the desired lower bound. We call this simpler
result Theorem 2′, and intend its proof to serve as a warm-up that conveys the intuition behind the
proof of Theorem 2.
Theorem 2′ (Warm-up). Suppose Assumptions 1 and 3 hold for label regularization function family
R. For all learning algorithmsA and unlabeled training setŝx there exist labelŝy such that

Ex̂,ŷ[L(θ̂, x, y)] ≥ max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q)

for someR ∈ R(x̂, ŷ), whereθ̂ is the parameter output byA.

Proof. Choose any labelsy′ and anyR ∈ R(x̂,y′), and letθ̂ be the parameter output by algorithm
A when given̂x andR as input. If we let

ŷ = arg max
y:R(y)<∞

Ex̂,y[L(θ̂, x, y)]

then by Assumption 3 we haveR ∈ R(x̂, ŷ). So if (x̂, ŷ) is the labeled training set we can force
algorithmA to output parameter̂θ. Thus

Ex̂,ŷ[L(θ̂, x, y)] = max
y:R(y)<∞

(

Ex̂,y[L(θ̂, x, y)]
)

− min
q∈∆m

R(q) + min
q∈∆m

R(q)

≥ max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q)

where the inequality follows from Assumption 1.

Theorem 2′ was proved by selecting a worst-case labelingŷ for the fixed training set̂x. Selecting
such a labeling is not so straightforward in the case whenx̂ is drawn from a distribution, because dif-
ferent values for̂x may require different (and inconsistent) labelings. As a consequence, Theorem 2
requires a significantly extended analysis that leverages Assumption 2; this assumption ensures that
a single worst-case labeling exists with high-probabilitywhenever the number of training examples
is sufficiently large. Further, when the learning algorithmA is randomized, it can avoid suffering an
arbitrarily large loss simply by guessing the label of everyexample; the existence of this strategy is
the reason for an extra constant factor in the lower bound in Theorem 2 versus the lower bound in
Theorem 2′.
Theorem 2. Suppose Assumptions 1, 2 and 3 hold for label regularizationfunction familyR, the
loss functionL is 0-1 loss, and the set of all possible examplesX is finite. For all learning algorithms
A and data distributionsDX there exists a labeling functionh∗ such that if(x̂, ŷ) ∼ Dm (where
D = DX · h∗) andm ≥ O( 1

γ2 log
|X |
δ
) then with probability at least14 − 2δ

ED[L(θ̂, x, y)] ≥
1

4
max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q)− ǫ(δ,m)

for someR ∈ R(x̂, ŷ), whereθ̂ is the parameter output byA, andγ is the constant from Assumption
2.
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Proof. Noting thatX = {x̃1, . . . , x̃N}, let p be anN -length vector whoseith component is the
probability assigned by data distributionDX to examplex̃i. A straightforward calculation using
the Chernoff bound shows that if̂x ∼ Dm

X andm ≥ O( 1
γ2 log

|X |
δ
) then‖px̂ − p‖∞ ≤ γ

2 with
probability1− δ.

Since1 − δ > 0, there must existx ∈ Xm such that‖px − p‖∞ ≤ γ
2 . Now choose any labelsy′

andRx ∈ R(x,y′), and let

y = arg max
y:Rx(y)<∞

Ex,y[L(θ, x, y)]

where we letθ = A(x, Rx). By Assumption 1 and linearity,y assigns identical labels to identical
examples inx. Thus we can select a labeling functionh∗ such thath∗(x) = y. This is the labeling
function asked for by the statement of the theorem, with the caveat that we will need to modifyh∗

later in the proof.

We are now ready to define the behavior of the labeler, i.e. thechoice ofR ∈ R(x̂, ŷ) for each
labeled training set(x̂, ŷ) (whereŷ = h∗(x̂)). Say thatx is γ-closeif ‖px − px‖∞ ≤ γ. For every
γ-closex, Assumption 2 permits us to fix anRx ∈ R(x,h∗(x)) such thatRx(h(x)) < ∞ if and
only if Rx(h(x)) < ∞ for all labeling functionsh. So if the training set̂x is γ-close, we demand
that the labeler returnRx̂ to the learning algorithmA. The labeler’s behavior when the training set
x̂ is notγ-close can be arbitrary.

Let Xγ ⊆ X be the set of all examples̃x ∈ X such that̃x appears in at least oneγ-closex. For
anyRx such thatx is γ-close (where wasRx defined above), consider the collection of label sets
{Yx̃ : x̃ ∈ X} satisfying the guarantee in Assumption 1. Note that, by Assumption 2, asingle
collection of label sets satisfies the guarantee forall γ-closex. Let {Y γ

x̃ : x̃ ∈ Xγ} be one such
collection. Now considerany labeling functionh satisfyingh(x̃) ∈ Y

γ
x̃ for all x̃ ∈ Xγ . If x

is γ-close, then by Assumption 3 we haveRx ∈ R(x,h(x)). We will use this fact below when
modifyingh∗.

We are now ready to modifyh∗ in a way that forces the learning algorithmA to suffer large loss.
Let θ(A,x, R) denote the parameter returned by learning algorithmA on training setx and label
regularization functionR, which is a random variable due to the possible randomization of algorithm
A. Now partitionXγ into two disjoint sets:Xγ,1 = {x̃ ∈ Xγ : |Y γ

x̃ | = 1} andXγ,2+ = {x̃ ∈
Xγ : |Y γ

x̃ | > 1}. For each̃x ∈ Xγ we modifyh∗(x̃) as follows: If x̃ ∈ Xγ,1 then seth∗(x̃) = ỹ,
whereY γ

x̃ = {ỹ}. Otherwise, ifx̃ ∈ Xγ,2+ then seth∗(x̃) = ỹ, whereỹ satisfies

PrA,x∼Dm
X

[

hθ(A,x,Rx)(x̃) 6= ỹ
∣

∣ x is γ-close
]

≥
1

2
(1)

wherePrA,x∼Dm
X
[·] denotes probability with respect to the randomization of learning algorithmA

and the choice ofx ∼ Dm
X . Note that such a label̃y must exist, because|Y γ

x̃ | > 1. Importantly, by
the fact given above, this modification ofh∗ does not affect the previously defined behavior of the
labeler, because we still haveRx ∈ R(x,h∗(x)) for all γ-closex.

Let I ⊆ [m]. Define the random variableZI = 1
|I|

∑

i∈I 1{hθ(A,x,Rx)(xi) 6= h∗(xi)}. We have

EA,x∼Dm
X

[

ZI

∣

∣ x is γ-close andxi ∈ X2+
γ for all i ∈ I

]

=
1

|I|

∑

i∈I

PrA,x∼Dm
X

[

hθ(A,x,Rx)(xi) 6= h∗(xi)
∣

∣ x is γ-close andxi ∈ X2+
γ for all i ∈ I

]

≥
1

2
(2)

which follows from Eq. (1).

For any random variableZ ∈ [0, 1] we know thatE[Z] ≤ Pr[Z ≥ a] + a for all a > 0. Combining
this inequality fora = 1

4 with the bound in Eq. (2) yields the following: Ifx isγ-close andxi ∈ X2+
γ

for all i ∈ I then
1

|I|

∑

i∈I

1{hθ(A,x,Rx)(xi) 6= h∗(xi)} ≥
1

4
(3)

with probability at least14 .
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Recall that the training set̂x is drawn fromDm
X and that̂θ = θ(A, x̂, Rx̂). Assume that̂x is γ-close;

this occurs with probability1 − δ. Let I = {i ∈ [m] : x̂i ∈ X2+
γ } be the indices of examples in̂x

that are inX2+
γ . We have

Ex̂,ŷ[L(θ̂, x, y)] =
1

m

m
∑

i=1

1{h
θ̂
(x̂i) 6= h∗(x̂i)}

=
|I|

m

1

|I|

∑

i∈I

1{h
θ̂
(x̂i) 6= h∗(x̂i)}+

1

m

∑

i∈[m]\I

1{h
θ̂
(x̂i) 6= h∗(x̂i)}

≥
|I|

m

1

4
+

1

m

∑

i∈[m]\I

1{h
θ̂
(x̂i) 6= h∗(x̂i)} (4)

=
1

m

1

4

∑

i∈I

max
y∈Y

γ

x̂i

[L(θ̂, x̂i, y)] +
1

m

∑

i∈[m]\I

1{h
θ̂
(x̂i) 6= h∗(x̂i)} (5)

=
1

m

1

4

∑

i∈I

max
y∈Y

γ

x̂i

[L(θ̂, x̂i, y)] +
1

m

∑

i∈[m]\I

max
y∈Y

γ

x̂i

[L(θ̂, x̂i, y)] (6)

≥
1

4

1

m

m
∑

i=1

max
y∈Y

γ

x̂i

[L(θ̂, x̂i, y)]

=
1

4
max

y:R
x̂
(y)<∞

(

Ex̂,y[L(θ̂, x, y)]
)

. (7)

By Eq. (3), Eq. (4) holds with probability14 . Eq. (5) holds because, whenL is 0-1 loss,
maxy∈Y [L(θ, x, y)] = 1 whenever|Y | > 1. Eq. (6) holds because, for all̃x ∈ X1

γ , we set
h∗(x̃) = ỹ, whereY γ

x̃ = {ỹ}. Eq. (7) follows from Assumption 1.

Continuing, we have

ED[L(θ̂, x, y)] ≥ Ex̂,ŷ[L(θ̂, x, y)]− ǫ(δ,m) (8)

≥
1

4
max

y:R
x̂
(y)<∞

(

Ex̂,y[L(θ̂, x, y)]
)

− min
q∈∆m

Rx̂(q) + min
q∈∆m

Rx̂(q)− ǫ(δ,m) (9)

≥
1

4
max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−Rx̂(q)
)

+ min
q∈∆m

Rx̂(q)− ǫ(δ,m) (10)

where Eq. (8) holds with probability1− δ by Defintion 1, Eq. (9) follows from Eq. (7) and Eq. (10)
follows from Assumption 1.

Taking the union bound over all events that were conditionedon in the preceding argument, we find
that Eq. (10) holds with probability14 − 2δ, and this proves the theorem.

Theorem 3. Suppose the loss functionL is 0-1 loss. There exists a label regularization function
familyR that satisfies Assumptions 1 and 2, but not Assumption 3, and alearning algorithmA such
that for all distributionsD if (x̂, ŷ) ∼ Dm then with probability at least1− δ

ED[L(θ̂, x, y)] ≤ max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q) + ǫ(δ,m)− 1

for someR ∈ R(x̂, ŷ), whereθ̂ is the parameter output byA.

Proof. Consider a one-to-one correspondencef : Ym → Ym such that ify′ = f(y) theny′(i) 6=
y(i) for all i ∈ [m]. In other words,f maps each labelingy to a labelingy′ that assigns a different
label to every example. Clearly, as long as|Y| > 1 such anf can always be chosen.

Now suppose eachR(x̂, ŷ) contains a single label regularization functionR such thatR(q) = 0 if
q = f(ŷ) andR(q) = ∞ otherwise. Note that this violates Assumption 3.

Now consider a learning algorithmA that does the following: Given(x̂, R), algorithmA finds
the (unique) labelingy′ that minimizesR, then recovers the correct labelinĝy by settingŷ =

4



f−1(y′), and then findŝθ that minimizesEx̂,ŷ[L(θ, x, y)]. Note that since the functionf was
chosen arbitrarily, findingy′ will be computationally infeasible in general. Now we have

ED[L(θ̂, x, y)] ≤Ex̂,ŷ[L(θ̂, x, y)] + ǫ(δ,m) ≤ Ex̂,f(ŷ)[L(θ̂, x, y)] + ǫ(δ,m)− 1

= max
q∈∆m

(

Ex̂,q[L(θ̂, x, y)]−R(q)
)

+ min
q∈∆m

R(q) + ǫ(δ,m)− 1

where the first inequality follows from Definition 1, the second inequality follows from the choice
of f , and the last equality follows from the choice ofR.

3 Analysis of Algorithm 1

Algorithm 1 GAME: Game for Adversarially Missing Evidence
1: Given: Constantsǫ1, ǫ2 > 0.
2: Find q̃ such thatminθ F (θ, q̃) ≥ maxq∈∆m minθ F (θ,q)− ǫ1

3: Find θ̃ such thatF (θ̃, q̃) ≤ minθ F (θ, q̃) + ǫ2
4: Return: Parameter estimatẽθ.

Recall that the goal of Algorithm 1 is to find a parameterθ
∗ that realizes the minimum

min
θ

max
q∈∆m

(Ex̂,q[L(θ, x, y)]−R(q)) + α ‖θ‖
2
. (11)

Before we can analyze Algorithm 1, we need a definition.

Definition 2. A functionf : S → R is κ-strongly convexif for all x, y ∈ S andλ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)−
1

2
κλ(1− λ) ‖x− y‖

2
.

So aκ-strongly convex function is one that is “curved” everywhere, where the amount of curvature
is given byκ. It is easy to show thatF (θ,q) is anα-strongly convex function ofθ, for any fixed
q. This is because the loss functionL is convex inθ, and the addition of the termα ‖θ‖

2 makes
it α-strongly convex. The next lemma proves that all approximate minimizers of a strongly convex
function must be near each other.

Lemma 1. If f is κ-strongly convex andx∗ = argminx f(x) andf(x̃) ≤ f(x∗) + ǫ then

‖x∗ − x̃‖ ≤

√

2

κ
ǫ.

Proof. Choose anyλ ∈ [0, 1). We have

f(x∗) ≤f(λx∗ + (1− λ)x̃)

≤λf(x∗) + (1− λ)f(x̃)−
1

2
κλ(1− λ) ‖x∗ − x̃‖

2

≤f(x∗) + (1− λ)ǫ−
1

2
κλ(1− λ) ‖x∗ − x̃‖

2

where we used the definitions ofx∗, κ-strongly convex functions, and̃x, in that order.

Some algebra yields‖x∗ − x̃‖ ≤
√

2
κλ

ǫ where we were able to cancel a(1 − λ) factor from both

sides becauseλ < 1. Now taking the limit of this upper bound asλ → 1 proves the lemma.

We now prove that Algorithm 1 produces a good estimate ofθ
∗, the minimum of the objective (11).

Theorem 4. The parameter̃θ output by Algorithm 1 satisfies

‖θ̃ − θ
∗‖ ≤

√

8

α
(ǫ1 + ǫ2).
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Proof. F (θ,q) is convex inθ and concave inq, and∆m is convex and compact. Therefore, by
Sion’s minimax theorem [1] we have

min
θ

max
q∈∆m

F (θ,q) = max
q∈∆m

min
θ

F (θ,q) , v∗ (12)

where we definedv∗ to be the common value of both sides of the equation. Also notethatθ∗ =
argminθ maxq∈∆m F (θ,q), by definition.

We will show that both̃θ andθ∗ are approximate minimizers of the functionF (θ, q̃). We have

F (θ̃, q̃) ≥ min
θ

F (θ, q̃) ≥ v∗ − ǫ1 (13)

where we used, in order: minimization overθ; the definition of Algorithm 1 and Eq. (12). We also
have

F (θ̃, q̃) ≤ min
θ

F (θ, q̃) + ǫ2 ≤ v∗ + ǫ2 (14)

where we used, in order: Algorithm 1; maximization overq and Eq. (12). Putting these together,
we obtain

v∗ − ǫ1 − ǫ2 ≤ F (θ̃, q̃)− ǫ2 ≤ min
θ

F (θ, q̃) ≤ F (θ∗, q̃) ≤ v∗

where we used, in order: Eq. (13); Eq. (14); minimization over θ; maximization overq and the
definition ofθ∗ and Eq. (12).

The last line implies that both̃θ andθ∗ are (ǫ1 + ǫ2)-approximate minimizers ofF (θ, q̃). And
sinceF (θ, q̃) is α-strongly convex inθ, Lemma 1 and the triangle inequality together imply the
theorem.
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