
Lifted Inference Seen from the Other Side : The
Tractable Features

Abhay Jha Vibhav Gogate Alexandra Meliou Dan Suciu
Computer Science & Engineering

University of Washington
Washington, WA 98195

{abhaykj,vgogate,ameli,suciu}@cs.washington.edu

Abstract

Lifted Inference algorithms for representations that combine first-order logic and
graphical models have been the focus of much recent research. All lifted algo-
rithms developed to date are based on the same underlying idea: take a standard
probabilistic inference algorithm (e.g., variable elimination, belief propagation
etc.) and improve its efficiency by exploiting repeated structure in the first-order
model. In this paper, we propose an approach from the other side in that we use
techniques from logic for probabilistic inference. In particular, we define a set of
rules that look only at the logical representation to identify models for which exact
efficient inference is possible. Our rules yield new tractable classes that could not
be solved efficiently by any of the existing techniques.

1 Introduction

Recently, there has been a push towards combining logical and probabilistic approaches in Artificial
Intelligence. It is motivated in large part by the representation and reasoning challenges in real world
applications: many domains such as natural language processing, entity resolution, target tracking
and Bio-informatics contain both rich relational structure, and uncertain and incomplete information.
Logic is good at handling the former but lacks the representation power to model the latter. On the
other hand, probability theory is good at modeling uncertainty but inadequate at handling relational
structure.

Many representations that combine logic and graphical models, a popular probabilistic represen-
tation [1, 2], have been proposed over the last few years. Among them, Markov logic networks
(MLNs) [2, 3] are arguably the most popular one. In its simplest form, an MLN is a set of weighted
first-order logic formulas, and can be viewed as a template for generating a Markov network. Specif-
ically, given a set of constants that model objects in the domain, it represents a ground Markov
network that has one (propositional) feature for each grounding of each (first-order) formula with
constants in the domain.

Until recently, most inference schemes for MLNs were propositional: inference was carried out
by first constructing a ground Markov network and then running a standard probabilistic inference
algorithm over it. Unfortunately, the ground Markov network is typically quite large, containing
millions and sometimes even billions of inter-related variables. This precludes the use of existing
probabilistic inference algorithms, as they are unable to handle networks at this scale. Fortunately,
in some cases, one can perform lifted inference in MLNs without grounding out the domain. Lifted
inference treats sets of indistinguishable objects as one, and can yield exponential speed-ups over
propositional inference.

Many lifted inference algorithms have been proposed over the last few years (c.f. [4, 5, 6, 7]). All
of them are based on the same principle: take an existing probabilistic inference algorithm and try

1

Interpretation in English Feature Weight
Most people don’t smoke ¬Smokes(X) 1.4
Most people don’t have asthma ¬Asthma(X) 2.3
Most people aren’t friends ¬Friends(X,Y) 4.6
People who have asthma don’t smoke Asthma(X)⇒ ¬Smokes(X) 1.5
Asthmatics don’t have smoker friends Asthma(X) ∧ Friends(X,Y)⇒ ¬Smokes(Y) 1.1

Table 1: An example MLN (modified from [10]).

to lift it by carrying out inference over groups of random variables that behave similarly during
the algorithm’s execution. In other words, these algorithms are basically lifted versions of standard
probabilistic inference algorithms. For example, first-order variable elimination [4, 5, 7] lifts the
standard variable elimination algorithm [8, 9], while lifted Belief propagation [10] lifts Pearl’s Belief
propagation [11, 12].

In this paper, we depart from existing approaches, and present a new approach to lifted inference
from the other, logical side. In particular, we propose a set of rewriting rules that exploit the structure
of the logical formulas for inference. Each rule takes an MLN as input and expresses its partition
function as a combination of partition functions of simpler MLNs (if the preconditions of the rule
are satisfied). Inference is tractable if we can evaluate an MLN using these set of rules. We analyze
the time complexity of our algorithm and identify new tractable classes of MLNs, which have not
been previously identified.

Our work derives heavily from database literature in which inference techniques based on manipu-
lating logical formulas (queries) have been investigated rigorously [13, 14]. However, the techniques
that they propose are not lifted. Our algorithm extends their techniques to lifted inference, and thus
can be applied to a strictly larger class of probabilistic models.

To summarize, our algorithm is truly lifted, namely we never ground the model, and it offers guar-
antees on the running time. This comes at a cost that we do not allow arbitrary MLNs. However, the
set of tractable MLNs is quite large, and includes MLNs that cannot be solved in PTIME by any of
the existing lifted approaches. The small toy MLN given in Table 1 is one such example. This MLN
is also out of reach of state-of-the-art propositional inference approaches such as variable elimina-
tion [8, 9], which are exponential in treewidth. This is because the treewidth of the ground Markov
network is polynomial in the number of constants in the domain.

2 Preliminaries

In this section we will cover some preliminaries and notation used in the rest of the paper. A feature
(fi) is constructed using constants, variables, and predicates. Constants, denoted with small-case
letters (e.g. a), are used to represent a particular object. An upper-case letter (e.g. X) indicates a
variable associated with a particular domain (∆X), ranging over all objects in its domain. Predicate
symbols (e.g. Friends) are used to represent relationships between the objects. For example,
Friends(bob,alice) denotes that Alice (represented by constant alice) and Bob (constant
bob) are friends. An atom is a predicate symbol applied to a tuple of variables or constants. For
example, Friends(bob,X) and Friends(bob,alice) are atoms.

A conjunctive feature is of the form ∀X̄ r1 ∧ r2 ∧ · · · ∧ rk, where each ri is an atom or the negation
of an atom, and X̄ are the variables used in the atoms. Similarly, a disjunctive feature is of the form
∀X̄ r1∨r2∨· · ·∨rk. For example, fc : ∀X ¬Smokes(X)∧Asthma(X) is a conjunctive feature,
while fd : ∀X ¬Smokes(X) ∨ ¬Friends(bob,X) is a disjunctive feature. The former asserts
everyone in the domain ofX has asthma and does not smoke. The latter says that if a person smokes,
he/she cannot be friends with Bob. A grounding of a feature is an assignment of the variables to
constants from their domain. For example, ¬Smokes(alice) ∨ ¬Friends(bob,alice) is
a grounding of the disjunctive feature fd. We assume that no predicate symbol occurs more than
once in a feature i.e. we don’t allow for self-joins. In this work we focus on features containing only
universal quantifiers (∀), and will from now on drop the quantification symbol ∀ from the notation.

Given a set (wi, fi)i=1,k where each fi is a conjunctive or disjunctive feature and wi ∈ R is a
weight assigned to that feature, we define the following probability distribution over a possible

2

world ω in accordance with Markov Logic Networks (MLN) :

Pr(ω) =
1
Z

exp

(∑
i

wiN(fi, ω)

)
(1)

In Equation (1), a possible world ω can be any subset of tuples from the domain of predicates, Z,
the normalizing constant is called the partition function, and N(fi, ω) is the number of groundings
of feature fi that are true in the world ω.

Table 1 gives an example of a MLN that has been modified from [10]. There is an implicit type-
safety assumption in the MLNs, that if a predicate symbol occurs in more than one feature, then the
variables used at the same position must have same domain. In the MLN of Table 1, if ∆X = ∆Y =
{alice, bob}; then predicates Smokes and Asthma each have two tuples, while Friends has four.
Hence, the total number of possible worlds is 22+2+4 = 256. Consider the possible world ω below :

Smokes Asthma Friends
bob bob (bob,bob)

(bob,alice)
alice

(alice,alice)

Then from Equation (1): Pr(ω) = 1
Z exp (1.4 · 1 + 2.3 · 0 + 4.6 · 0 + 1.5 · 1 + 1.1 · 2). In this

paper we focus on MLNs, but our algorithm is applicable to other first order probabilistic models as
well.

3 Problem Statement

In this paper, we are interested in computing the partition function Z(M) of an MLN M . We
formulate the partition function in a parametrized form, using the notion of Generating Functions of
Counting Programs (CP). A Counting Program is a set of features f̄ along with indeterminates ᾱ,
where αi is the indeterminate for fi. Given a counting program P = (fi, αi)i=1...k, we define its
generating function(GF) FP as follows:

FP (ᾱ) =
∑
ω

∏
i

α
N(fi,ω)
i (2)

The generating function as expressed in Eq. 2 is in general of exponential size in the domain of
objects. We want to characterize cases where we can express it more succinctly, and hence compute
the partition function faster. Let n be the size of the object domain, and k be the size of our program.
Then we are interested in the cases where FP can be computed with following number of arithmetic
operations.

Closed Form Polynomial in log(n), k
Polynomial Expression Polynomial in n, k
Pseudo-Polynomial Expression Polynomial in n for bounded k

Computing FP refers to evaluating it for one instantiation of parameters ᾱ. To illustrate the above
cases, let k = 1. Then the pseudo-polynomial and polynomial expression are equivalent. The
program (R(X,Y), α) has GF (1 + α)|∆X ||∆Y |, which is in closed form. While the program

(R(X) ∧ S(X,Y) ∧ T (Y), α) has GF 2|∆X ||∆Y |
∑|∆X |
i=0

(|∆X |
i

) (
1 +

(
1+α

2

)i)|∆Y |
, which is a

polynomial expression. This polynomial does not have a closed form.

In the following section we demonstrate an algorithm that computes the generating function, and
allows us to identify cases where the generating function falls under one of the above categories.

4 Computing the Generating Function

Asssume a Counting Program P = (fi, αi)i=1,k. In this section, we present some rules that can be
used to compute the GF of a CP from simpler CPs. We can then upper bound the size of FP by the

3

choice of rules used. The cases which cannot be evaluated by these rules are still open and we don’t
know if the GF in those cases can be expressed succinctly.

We will require that all CPs are in normal form to simplify our analysis. Note that the normality
requirement does not change the class of CPs that can be solved in PTIME by our algorithm. This
is because every CP can converted to an equivalent normal CP in PTIME.

4.1 Normal Counting Programs

Definition 4.1 A counting program is called normal if it satisfies the following properties :
1. There are no constants in any feature.
2. If two distinct atoms with the same predicate symbol have variables X and Y in the same

position, then ∆X = ∆Y .
It is easy to show that:

Proposition 4.2 Computing the partition function of an MLN can be reduced in PTIME to comput-
ing the generating function of a normal CP.
The following example demonstrates how to normalize a set of features.

Example 4.3 Consider a CP containing two features Friends(X,Y) and Friends(bob, Y).
Clearly, it is not in normal form because the second feature contains a constant. To normal-
ize it, we can replace the two features by: (i) Friends1(Y) ≡ Friends(bob, Y), and (ii)
Friends2(Z, Y) ≡ Friends(X,Y), X 6= bob, where the domain of Z is ∆Z = ∆X \ bob.
Note that we assume criterion 2 is satisfied in MLNs. During the course of algorithm, it may
get violated when we replace variables with constants as we’ll see, but we can use the above
transformation whenever that happens. So from now on we assume that our CP is normalized.

4.2 Preliminaries and Operators

We proceed to establish notation and operators used by our algorithm. Given a feature f , we denote
by V ars(f) the set of variables used in its atoms. We assume that variables used in different features
must be different. Furthermore, without loss of generality, we assume numeric domains for each
logical variable, namely ∆X = {1, . . . , |∆X |}. We define a substitution f [a/X], where X ∈
V ars(f) and a ∈ ∆X , as the replacement of X with a in every atom of f . P [a/X] applies the
substitution fi[a/X] to every feature fi in P . Note that after a substitution, the CP is no longer
normal and therefore, we may have to normalize it.

Define a relation U among the variables of a CP as follows : U(X,Y) iff there exist two atoms ri, rj
with the same predicate, such that X ∈ V ars(ri), Y ∈ V ars(rj), and X and Y appear at the same
position in ri and rj respectively. Let U be the transitive closure of U . Note that U is an equivalence
relation. For a variable X , denote by Unify(X) its equivalence class under U . For example, given
two features Smokes(X) ∧ ¬Asthma(X) and ¬Smokes(Y) ∨ ¬Friends(Z,Y), we have
Unify(X) = Unify(Y) = {X,Y }. Given a feature, a variable is a root variable iff it appears in
every atom of the feature. For some variable X , the set X = Unify(X) is a separator if ∀Y ∈ X
: Y ∈ V ars(fi) implies Y must be a root variable for fi. In the last example, the set {X,Y } is a
separator. Notice that, since the program is normal, we have ∆X = ∆Y whenever Y ∈ Unify(X),
thus, if X̄ is a separator, then we write ∆X̄ for ∆Y for any Y ∈ Unify(X). Two variables are called
equivalent if there is a bijection from Unify(X) to Unify(Y) such that for any Z1 ∈ Unify(X) and
its image Z2 ∈ Unify(Y), Z1 and Z2 always occur together.

Next, we define three operators used by our algorithm: splitting, conditioning and Dirichlet convolu-
tion. We define a process Split(Y, k) that splits every feature in the CP that contains the variable Y
into two features with disjoint domains: one with ∆Y = {k} and the other with ∆Y c = ∆Y − {k}.
Both features retain the same indeterminate. Also, Cond(i, r, k) defines a process that removes an
atom r from feature fi. Denote f ′i = fi \ {r}; then Cond(i, r, k) replaces fi with (i) two features
(TRUE,αki) and (f ′i , 1) if r ⇒ fi, (ii) one feature (f ′i , 1) if r ⇒ ¬fi, and (iii) (f ′i , αi) otherwise.

Given two polynomials P =
∑n
i aiα

i and Q =
∑m
i biα

i, their Dirichlet convolution, P∗Q, is
defined as:

P∗Q =
∑
i,j

aibjα
ij

4

We define a new variant of this operator P∗cQ as: P∗cQ = αmnP ′
(

1
α

)
∗Q′

(
1
α

)
, where P ′

(
1
α

)
=

P (α)
αn and Q′

(
1
α

)
= Q(α)

αm

4.3 The Algorithm
Our algorithm is basically a recursive application of a series of rewriting rules (see rules R1-R6
given below). Each (non-trivial) rule takes a CP as input and if the preconditions for applying it are
satisfied, then it expresses the generating function of the input CP as a combination of generating
functions of a few simpler CPs. The generating function of the resulting CPs can then be computed
(independently) by recursively calling the algorithm on each. The recursion terminates when the
generating function of the CP is trivial to compute (SUCCESS) or when none of the rules can be
applied (FAILURE). In the case, when algorithm succeeds, we analyze whether the GF is in closed
form or is a polynomial expression.

Next, we present our algorithm which is essentially a sequence of rules. Given a CP, we go through
the rules in order and apply the first applicable rule, which may require us to recursively compute
the GF of simpler CPs, for which we continue in the same way.

Our first rule uses feature and variable equivalence to reduce the size of the CP. Formally,

Rule R1 (Variable and Feature Equivalence Rule) If variables X and Y are equivalent, replace
the pair with a single new variable Z in every atom where they occur. Do the same for every pair of
variables in Unify(X),Unify(Y).

If two features fi, fj are identical, then we replace them with a single feature fi with indeterminate
αiαj that is the product of their individual indeterminates.

The correctness of Rule R1 is immediate from the fact that the CP after the transformation is equal
to the CP before the transformation.

Our second rule specifies some trivial manipulations.

Rule R2 (Trivial manipulations)

1. Eliminate FALSE features.
2. If a feature fi is TRUE, then FP = αiFP−fi .
3. If a program P is just a tuple then FP = 1 + α, where α is the indeterminate.
4. If some feature fi has indeterminate αi = 1 (due to R6), then remove all the atoms in fi

of a predicate symbol that is present in some other feature. Let N be the product of the
domain of the rest of the atoms, then FP = 2NFP−fi

.

Our third rule utilizes the independence property. Intuitively, given two CPs which are independent,
namely they have no atoms in common, the generating function of the joint CP is simply the product
of the generating function of the two CPs. Formally,

Rule R3 (Independence Rule) If a CP P can be split into two programs P1 and P2 such that the
two programs don’t have any predicate symbols in common, then FP = FP1 · FP2 .

The correctness of Rule R3 follows from the fact that every world ω of P can be written as a
concatenation of two disjoint worlds, namely ω = (ω1 ∪ ω2) where ω1 and ω2 are the worlds from
P1 and P2 respectively. Hence the GF can be written as:

FP =
∑

ω1∪ω2

∏
fi∈P1

α
N(fi,ω1)
i

∏
fi∈P2

α
N(fi,ω2)
i =

∑
ω1

∏
fi∈P1

α
N(fi,ω1)
i

∑
ω2

∏
fi∈P2

α
N(fi,ω2)
i = FP1 · FP2 (3)

The next rule allows us to split a feature if it has a component that is independent of the rest of the
program. Note that while the previous rule splits the program into two independent sets of features,
this feature enables us to split a single feature.

Rule R4 (Dirichlet Convolution Rule) If the program contains feature f = f1∧f2, s.t. f1 doesn’t
share any variables or symbols with any atom in the program, then FP = Ff1∗FP−f+f2 . Similarly
if f = f1 ∨ f2, then FP = Ff1∗cFP−f+f2 .

5

We show the proof for a single feature f , the extension is straightforward. For this, we write GF in
a different form as

FP (α) =
∑
i

C(f, i)αi

where the coefficient C(f, i) is exactly the number of worlds where the feature f is satisfied i times.
Now assume f = f1 ∧ f2, then in any given world ω, if f1 is satisfied n1 times and f2 is satisfied
n2 times, then f is satisfied n1n2 times. Hence

Ff (α) =
∑
i

C(f, i)αi =
∑

i1,i2|i1i2=i

C(f1, i1)C(f2, i2)αi = Ff1∗Ff2

Our next rule utilizes the similarity property in addition to the independence property. Given a set
P of independent but equivalent CPs, the generating function of the joint CP equals the generating
function of any CP, Pi ∈ P raised to the power |P|. By definition, every instantiation ā of a separator
X̄ defines a CP that has no tuple in common with other programs for X̄ = b̄, ā 6= b̄. Moreover, all
such CPs are equivalent (subject to a renaming of the variables and constants). Thus, we have the
following rule:

Rule R5 (Power Rule) Let X̄ be a separator. Then FP =
(
FP [ā/X̄]

)|∆X̄ |

Rule R5 generalizes the inversion and partial inversion operators given in [4, 5]. Its correctness
follows in a straight-forward manner from the correctness of the independence rule.

Our final rule generalizes the counting arguments presented in [5, 7]. Consider a singleton atom
R(X). Conditioning over all possible truth assignments to all groundings of R(X) will yield 2|∆X |

independent CPs. Thus, the GF can be written as a sum over the generating functions of 2|∆X |

independent CPs. However, the resulting GF has exponential complexity. In some cases, however,
the sum can be written efficiently by grouping together GFs that are equivalent.

Rule R6 (Generalized Binomial Rule) Let Pred(X) be a singleton atom in some feature. For
every Y ∈ Unify(X) apply Split(Y, k). Then for every feature fi in the new program containing an
atom r = Pred(Y) apply (fi, αi)← Cond(i, r, k) and similarly (fi, αi)← Cond(i,¬r,∆Y c−k)
for those containing r = Pred(Y c). Let the resulting program be Pk. Then FP =

∑∆X

k=0

(
∆X

k

)
FPk

.
Note that Pk is just one CP whose GF has a parameter k.

The proof is a little involved and omitted here for lack of space.

Having specified the rules and established their correctness, we now present the main result of this
paper:

Theorem 4.4 Let P be a Counting Program (CP).
• If P can be evaluated using only rules R1, R2, R3 and R5, then it has a closed form.
• If P can be evaluated using only rules R1, R2, R3, R4, and R5, then it has a polynomial

expression.
• If P can be evaluated using rules Rules 1 to 6 then it admits a pseudo-polynomial expression.

Computing the dirichlet convolution (Rule R4) requires going through all the coefficients, hence it
takes linear time. Thus, we do not have a closed form solution when we apply (Rule R4). Rule R6
implies that we have to recurse over more than one program, hence their repeated application can
mean we have to solve number of programs that is exponential in the size of program. Therefore,
we can only guarantee a pseudo-polynomial expression if we use this rule.

We can now see the effectiveness of generating functions. When we want to recurse over a set of
features, simply keeping the partition function for smaller features is not enough; we need more
information than that. In particular we need all the coefficients of the generating function. For e.g.
we can’t compute the partition function for R(X) ∧ S(Y) with just the partition functions of R(X)
and S(Y). However, if we have their GF, the GF of f = R(X)∧S(Y) is just a dirichlet convolution
of the GF of R(X) and S(Y). One could also compute the GF of f using a dynamic programming
algorithm, which keeps all the coefficients of the generating function. Generating functions let us
store this information in a very succinct way. For e.g. if the GF is (1 + α)n, then it is much simpler
to use this representation, than keeping all n+ 1 binomial coefficients :

(
n
k

)
, k = 0, n.

6

101 102 10310−6

10−4

10−2

100

102

104

106

Domain Size

Ti
m

e
(s

ec
)

Counting Program (evidence 30%)
FOVE (evidence 30%)
FOVE extrapolation

Figure 1: Our approach vs FOVE for increasing
domain sizes. X,Y-axes drawn on a log-scale.

0 20 40 60 80 100

10−4

10−2

100

102

Percentage of Evidence

Ti
m

e
(s

ec
)

Counting Program (domain size 13)
Counting Program (domain size 100)
FOVE (domain size 13)

Figure 2: Our approach vs FOVE as the evidence
increases. Y-axis is drawn on a log scale.

4.4 Examples

We illustrate our approach through examples. We will use simple predicate symbols likeR,S, T and
assume the domain of all variables as [n]. Note that for a single tuple, say R(a) with indeterminate
α, GF = 1 + α from rule R2. Now suppose we have a simple program like P = {(R(X), α)} (a
single feature R(X) with indeterminate α). Then from rule R5: FP =

(
FP [a/X]

)n = (1 + α)n.
These are both examples of programs with closed form GF. We can evaluate FP with O(log(n))
arithmetic operations, while if we were to write the same GF as

∑
k

(
n
k

)
αk it would require

O(n log(n)) operations. The key insight of our approach is representing GFs succinctly. Now
assume the following program P with multiple features :

R(X1) ∧ S(X1, Y1) α

S(X2, Y2) ∧ T (X2) β

Note that (X1, X2) form a separator. Hence using R5, FP =
(
FP [(a,a)/(X1,X2)]

)n
. Now consider

program P ′ = P [(a, a)/(X1, X2)]:
R(a) ∧ S(a, Y1) α

S(a, Y2) ∧ T (a) β

Using R4 twice, for R(a) and T (a) along with R2 (to get the GF for R(a), T (a)); we get FP ′ =
(1 + α)∗(1 + β)∗FP ′′ , where P ′′ is

S(a, Y1) α

S(a, Y2) β

which is same as (S(a, Y), αβ) using R1. The GF for this program, as shown earlier is (1 + αβ)n.
Now putting values back together, we get:

FP ′ = (1 + α)∗(1 + β)∗(1 + αβ)n =
(
2n+1 + (1 + αβ)n

)
Finally, for the original program: FP = (FP ′)n =

(
2n+1 + (1 + αβ)n

)n
. Note that this is also in

closed form.

5 Experiments

The algorithm that we described is based on computing the generating functions of counting pro-
grams to perform lifted inference, which approaches the problem from a completely different angle
than existing techniques. Due to this novelty, we can solve MLNs that are intractable for other ex-
isting lifted algorithms such as first-order variable elimination (FOVE) [5, 6, 7]. Specifically, we
demonstrate with our experiments that on some MLNs we indeed outperform FOVE by orders of
magnitude.

We ran our algorithm on the MLN given in Table 1. The set of features used in this MLN fall into
the class of counting programs having a pseudo-polynomial generating function. This is the most
general class of features our approach covers, and here our algorithm does not give any guarantees
as evidence increases. The evidence in our experiments is randomly generated for the two tables
Asthma and Smokes. In our experiments we study the influence of two factors on the runtime:

7

Size of Domain: Identifying tractable features is particularly important for inference in first order
models, because (i) grounding can produce very big graphical models and (ii) the treewidth of these
models could be very high. As the size of domain increases, our approach should scale better than
the existing techniques which can’t do lifted inference on this MLN. All the predicates in this MLN
are only defined on one domain, that of persons.

Evidence: Since this MLN falls into the class of features for which we give no guarantees as
evidence increases, we want to study the behavior of our algorithm in the presence of increasingly
more evidence.

Fig. 5 displays the execution time of our CP algorithm vs the FOVE approach for domain sizes
varying from 5 to 100, at the presence of 30% evidence. All results display average runtimes over
15 repetitions with the same parameter settings. FOVE cannot do lifted inference on this MLN
and resorts to grounding. Thus, it could only execute up to the domain size of 18; after that it
consistently ran out of memory. The figure also displays the extrapolated data points for FOVE’s
behavior in larger domain sizes, and shows its runtime growing exponentially. Our approach on the
other hand dominates FOVE by orders of magnitude for those small domains, and finishes within
seconds even for domains of size 100. Note that the complexity of our algorithm for this MLN is
quadratic. Hence it looks linear on the log-scale.

Fig. 5 demonstrates the behavior of the algorithms as the amount of evidence is increased from 0 to
100%. We chose a domain size of 13 to run FOVE, since it couldn’t terminate for higher domain
sizes. The figure displays the runtime of our algorithm for domain sizes of 13 and 100. Although for
this class of features we do not give guarantees on the running time for large evidence, our algorithm
still performs well as the evidence increases. In fact after a point the algorithm gets faster. This is
because the main time-consuming rule used in this MLN is R4. R4 chooses a singleton atom in
the last feature, say Asthma, and eliminates it. This involves time complexity proportional to the
domain of the atom and the running time of the smaller MLN obtained after removing that atom. As
evidence increases, the atom corresponding to Asthma may be split into many smaller predicates;
but the domain size of each predicate also keeps getting smaller. In particular with 100% evidence,
the domain is just 1 and therefore R6 takes constant time!

6 Conclusion and Future Work

We have presented a novel approach to lifted inference that uses the theory of generating functions
to do efficient inference. We also give guarantees on the theoretical complexity of our approach.
This is the first work that tries to address the complexity of lifted inference in terms of only the
features (formulas). This is beneficial because using a set of tractable features ensures that inference
is always efficient and hence it will scale to large domains.

Several avenues remain for future work. For instance, a feature such as transitive closure (e.g.,
Friends(X,Y) ∧ Friends(Y,Z) ⇒ Friends(X,Z)), which occurs quite often in many
real world applications, is intractable for our algorithm. In future, we would like to address the
complexity of such features by characterizing the completeness of our approach. Another avenue for
future work is extending other lifted inference approaches [5, 7] with rules that we have developed
in this paper. Unlike our algorithm, the aforementioned algorithms are complete. Namely, when
lifted inference is not possible, they ground the domain and resort to propositional inference. But
even in those cases, just running a propositional algorithm that does not exploit symmetry is not very
efficient. In particular, ground networks generated by logical formulas have some repetition in their
structure that is difficult to capture after grounding. Take for example R(X,Y) ∧ S(Z,Y). This
feature is in PTIME by our algorithm, but if we create a ground markov network by grounding this
feature then it can have unbounded treewidth (as big as the domain itself). We think our approach
can provide an insight about how to best construct a graphical model from the groundings of a
logical formula. This is also another interesting piece of future work that our algorithm motivates.

References

[1] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. The MIT Press,
2007.

8

[2] Pedro Domingos and Daniel Lowd. Markov Logic: An Interface Layer for Artificial Intelli-
gence. Morgan and Claypool, 2009.

[3] Matthew Richardson and Pedro Domingos. Markov logic networks. In Machine Learning,
page 2006, 2006.

[4] David Poole. First-order probabilistic inference. In IJCAI’03: Proceedings of the 18th inter-
national joint conference on Artificial intelligence, pages 985–991, San Francisco, CA, USA,
2003. Morgan Kaufmann Publishers Inc.

[5] Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order probabilistic inference.
In IJCAI’05: Proceedings of the 19th international joint conference on Artificial intelligence,
pages 1319–1325, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[6] Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kael-
bling. Lifted probabilistic inference with counting formulas. In AAAI’08: Proceedings of the
23rd national conference on Artificial intelligence, pages 1062–1068. AAAI Press, 2008.

[7] K. S. Ng, J. W. Lloyd, and W. T. Uther. Probabilistic modelling, inference and learning using
logical theories. Annals of Mathematics and Artificial Intelligence, 54(1-3):159–205, 2008.

[8] Nevin Zhang and David Poole. A simple approach to bayesian network computations. In
Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pages 171–178, 1994.

[9] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113:41–85, 1999.

[10] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In AAAI’08: Pro-
ceedings of the 23rd national conference on Artificial intelligence, pages 1094–1099. AAAI
Press, 2008.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[12] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate

inference: An empirical study. In In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI), pages 467–475, 1999.

[13] Nilesh Dalvi and Dan Suciu. Management of probabilistic data: foundations and challenges.
In PODS, pages 1–12, New York, NY, USA, 2007. ACM Press.

[14] Karl Schnaitter Nilesh Dalvi and Dan Suciu. Computing query probability with incidence
algebras. In PODS, 2007.

9

