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Abstract

We propose a class of sparse coding models that utilizes a Laplacian Scale Mixture
(LSM) prior to model dependencies among coefficients. Each coefficient is mod-
eled as a Laplacian distribution with a variable scale parameter, with a Gamma
distribution prior over the scale parameter. We show that, due to the conjugacy
of the Gamma prior, it is possible to derive efficient inference procedures for both
the coefficients and the scale parameter. When the scale parameters of a group of
coefficients are combined into a single variable, it is possible to describe the de-
pendencies that occur due to common amplitude fluctuations among coefficients,
which have been shown to constitute a large fraction of the redundancy in natu-
ral images [1]. We show that, as a consequence of this group sparse coding, the
resulting inference of the coefficients follows a divisive normalization rule, and
that this may be efficiently implemented in a network architecture similar to that
which has been proposed to occur in primary visual cortex. We also demonstrate
improvements in image coding and compressive sensing recovery using the LSM
model.

1 Introduction

The concept of sparsity is widely used in the signal processing, machine learning and statistics
communities for model fitting and solving inverse problems. It is also important in neuroscience as
it is thought to underlie the neural representations used by the brain. The operation to compute the
sparse representation of a signal x ∈ Rn with respect to a dictionary of basis functions Φ ∈ Rn×m
can be implemented via an `1-penalized least-square problem commonly referred to as Basis Pursuit
Denoising (BPDN) [2] or Lasso [3]

min
s

1

2
‖x− Φs‖22 + µ‖s‖1, (1)

where µ is a regularization parameter that controls the tradeoff between the quality of the reconstruc-
tion and the sparsity. This approach has been applied to problems such as image coding, compressive
sensing [4], or classification [5]. The `1 penalty leads to solutions where typically a large number
of coefficients are exactly zero, which is a desirable property to achieve model selection or data
compression, or for obtaining interpretable results. The cost function of BPDN is convex, and many
efficient algorithms have been recently developed to solve this problem [6, 7, 8, 9].

Minimizing the cost function of BPDN corresponds to MAP inference in a probabilistic model
where the coefficients are independent and have Laplacian priors p(si) = λ

2 e
−λ|si|. Hence, the

signal model assumed by BPDN is linear, generative, and the basis function coefficients are inde-
pendent. In the context of analysis-based models of natural images (for a review on analysis-based
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and synthesis-based or generative models see [10]), it has been shown that the linear responses of
natural images to Gabor-like filters have kurtotic histograms, and that there can be strong dependen-
cies among these responses in the form of common amplitude fluctuations [11, 12, 13, 14]. It has
also been observed in the context of generative image models that the inferred sparse coefficients
exhibit pronounced statistical dependencies [15, 16], and therefore the independence assumption is
violated. It has been proposed in block-`1 methods to account for dependencies among the coeffi-
cients by dividing them into subspaces such that dependencies within the subspaces are allowed, but
not across the subspaces [17] . This approach can produce blocking artifacts and has recently been
generalized to overlapping subspaces in [18]. Another approach is to only allow certain configura-
tions of active coefficients [19].

We propose in this paper a new class of prior on the basis function coefficients that makes it possible
to model their statistical dependencies in a probabilistic generative model, whose inferred represen-
tations are more sparse than those obtained with the factorial Laplacian prior, and for which we have
efficient inference algorithms. Our approach consists of introducing for each coefficient a hyperprior
on the inverse scale parameter λi of the Laplacian distribution. The coefficient prior is thus a mixture
of Laplacian distributions which we denote “Laplacian Scale Mixture” (LSM), which is an analogy
to the Gaussian scale mixture (GSM) [12]. Higher-order dependencies of feedforward responses of
wavelet coefficients [12] or basis functions learned using independent component analysis [14] have
been captured using GSMs, and we extend this approach to a generative sparse coding model using
LSMs.

We define the Laplacian scale mixture in Section 2, and we describe the inference algorithms in the
resulting sparse coding models with an LSM prior on the coefficients in Section 3. We present an
example of a factorial LSM model in Section 4, and of a non-factorial LSM model in Section 5 that
is particularly well suited to signals having the “group sparsity” property. We show that the non-
factorial LSM results in a divisive normalization rule for inferring the coefficients. When the groups
are organized topographically and the basis is trained on natural images, the resulting model resem-
bles the neighborhood divisive normalization that has been hypothesized to occur in visual cortex.
We also demonstrate that the proposed LSM inference algorithm provides superior performance in
image coding and compressive sensing recovery.

2 The Laplacian Scale Mixture distribution

A random variable si is a Laplacian scale mixture if it can be written si = λ−1
i ui, where ui has

a Laplacian distribution with scale 1, i.e. p(ui) = 1
2e
−|ui|, and the multiplier variable λi is a

positive random variable with probability p(λi). We also suppose that λi and ui are independent.
Conditioned on the parameter λi, the coefficient si has a Laplacian distribution with inverse scale λi,
i.e. p(si|λi) = λi

2 e
−λi|si|. The distribution over si is therefore a continuous mixture of Laplacian

distributions with different inverse scales, and it can be computed by integrating out λi

p(si) =

∫ ∞
0

p(si| λi)p(λi)dλi =

∫ ∞
0

λi
2
e−λi|si|p(λi)dλi.

Note that for most choices of p(λi) we do not have an analytical expression for p(si). We denote
such a distribution a Laplacian Scale Mixture (LSM). It is a special case of the Gaussian Scale
Mixture (GSM) [12] as the Laplacian distribution can be written as a GSM.

3 Inference in a sparse coding model with LSM prior

We propose the linear generative model

x = Φs+ ν =
m∑
i=1

siϕi + ν, (2)

where x ∈ Rn, Φ = [ϕ1, . . . , ϕm] ∈ Rn×m is an overcomplete transform or basis set, and the
columns ϕi are its basis functions. ν ∼ N (0, σ2In) is small Gaussian noise. The coefficients are
endowed with LSM distributions. They can be used to reconstruct x and are called the synthesis
coefficients.
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Given a signal x, we wish to infer its sparse representation s in the dictionary Φ. We consider in this
section the computation of the maximum a posteriori (MAP) estimate of the coefficients s given the
input signal x. Using Bayes’ rule we have p(s | x) ∝ p(x | s)p(s), and therefore the MAP estimate
ŝ is given by

ŝ = arg min
s

{− log p(s | x)} = arg min
s

{− log p(x | s)− log p(s)}. (3)

In general it is difficult to compute the MAP estimate with an LSM prior on s since we do not
necessarily have an analytical expression for the log-likelihood log p(s). However, we can compute
the complete log-likelihood log p(s, λ) analytically

log p(s, λ) = log p(s | λ) + log p(λ) = −λi|si|+ log
λi
2

+ log p(λ).

Hence, if we also observed the latent variable λ, we would have an objective function that can be
maximized with respect to s. The standard approach in machine learning when confronted with
such a problem is the Expectation-Maximization (EM) algorithm, and we derive in this Section an
EM algorithm for the MAP estimation of the coefficients. We use Jensen’s inequality and obtain the
following upper bound on the posterior likelihood

− log p(s | x) ≤ − log p(x | s)−
∫
λ

q(λ) log
p(s, λ)

q(λ)
dλ := L(q, s), (4)

which is true for any probability distribution q(λ). Performing coordinate descent in the auxiliary
function L(q, s) leads to the following updates that are usually called the E step and the M step.

E Step q(t+1) = arg min
q

L(q, s(t)) (5)

M Step s(t+1) = arg min
s

L(q(t+1), s) (6)

Let < . >q denote the expectation with respect to q(λ). The M Step (6) simplifies to

s(t+1) = arg min
s

1

2σ2
‖x− Φs‖22 +

m∑
i=1

〈λi〉q(t+1) |si|, (7)

which is a least-square problem regularized by a weighted sum of the absolute values of the coeffi-
cients. It is a quadratic program very similar to BPDN, and we can therefore use efficient algorithms
developed for BPDN that take advantage of the sparsity of the solution. This presents a significant
computational advantage over the GSM prior where the inferred coefficients are not exactly sparse.

We have equality in the Jensen inequality if q(λ) = p(λ | s). The inequality (4) is therefore tight for
this particular choice of q, which implies that the E step reduces to q(t+1)(λ) = p(λ | s(t)). Note
that in the M step we only need to compute the expectation of λi with respect to the maximizing
distribution in the E step. Hence we only need to compute the sufficient statistics

〈λi〉p(λ|s(t)) =

∫
λ

λi p(λ | s(t))dλ. (8)

Note that the posterior of the multiplier given the coefficient p(λ | s) might be hard to compute. We
will see in Section 4.1 that it is tractable if the prior on λ is factorial and each λi has a Gamma dis-
tribution, as the Laplacian distribution and the Gamma distribution are conjugate. We can apply the
efficient algorithms developed for BPDN to solve (7). Furthermore, warm-start capable algorithms
are particularly interesting in this context as we can initialize the algorithm with s(t), and we do not
expect the solution to change much after a few iterations of EM.

4 Sparse coding with a factorial LSM prior

We propose in this Section a sparse coding model where the distribution of the multipliers is facto-
rial, and each multiplier has a Gamma distribution, i.e. p(λi) = (βα/Γ(α))λα−1

i e−βλi , where α is
the shape parameter and β is the inverse scale parameter. With this particular choice of a prior on
the multiplier, we can compute the probability distribution of si analytically:

p(si) =
αβα

2(β + |si|)α+1
.

This distribution has heavier tails than the Laplacian distribution. The graphical model correspond-
ing to this generative model is shown in Figure 1.
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4.1 Conjugacy

The Gamma distribution and Laplacian distribution are conjugate, i.e. the posterior probability of
λi given si is also a Gamma distribution when the prior over λi is a Gamma distribution and the
conditional probability of si given λi is a Laplace distribution with inverse scale λi. Hence, the
posterior of λi given si is a Gamma distribution with parameters α+ 1 and β + |si|.
The conjugacy is a key property that we can use in our EM algorithm proposed in Section 3. We saw
that the solution of the E step is given by q(t+1)(λ) = p(λ | s(t)). In the factorial model we have
p(λ | s) =

∏
i p(λi | s

(t)
i ). The solution of the E step is therefore a product of Gamma distributions

with parameters α+ 1 and β + |s(t)
i |, and the sufficient statistics (8) are given by

〈λi〉p(λi|s(t)i )
=

α+ 1

β + |s(t)
i |

. (9)

A coefficient that has a small value after t iterations but is not exactly zero will have in the next
iteration a large reweighting factor λ(t+1)

i , which increases the chance that it will be set to zero
in the next iteration, resulting in a sparser representation. On the other hand, a coefficient having
a large value after t iterations corresponds to a feature that is very salient in the signal x. It is
therefore beneficial to reduce its corresponding inverse scale λ(t+1)

i such that it is not penalized and
can account for as much information as possible.

We saw that with the Gamma prior we can compute the distribution of si analytically, and therefore
we can compute the gradient of log p(s | x) with respect to s. Hence another inference algorithm
is to descend the cost function in (3) directly using a method such as conjugate gradient, or the
method proposed in [20] where the authors also exploit the conjugacy of the Laplacian and Gamma
priors. We argue here that the EM algorithm is in fact more efficient. The solution of (7) indeed has
typically few elements that are non-zero, and the computational complexity scales with the number
of non-zero coefficients [6, 7]. On the other hand, a gradient-based method will have a harder time
identifying the support of the solution, and therefore the required computations will involve all the
coefficients, which is computationally expensive.

The update formula (9) is coincidentally equivalent to the reweighted L1 minimization scheme pro-
posed by Candès et al. [21]. They solve the following sequence of problems

s(t+1) = arg min
s

m∑
i=1

λ
(t)
i |si| subject to ‖x− Φs‖2 ≤ δ (10)

with update λ(t+1)
i = 1/(β + |s(t)

i |) (which is identical to our rule when α = 0). The authors show
that the solutions achieved by their algorithm are more sparse than the solution where λi = 1 for
all i. Whereas they derive this rule from mathematical intuitions regarding the L1 ball, we show
that this update rule follows from from Bayesian inference assuming a Gamma prior over λ. It
was also shown that evidence maximization in a sparse coding model with an automatic relevance
determination prior can also be solved via a sequence of reweighted `1 optimization problems [22].

4.2 Application to image coding

It has been shown that the convex relaxation consisting of replacing the `0 norm with the `1 norm is
able to identify the sparsest solution under some conditions on the dictionary of basis functions [23].
However, these conditions are typically not verified for the dictionaries learned from the statistics
of natural images [24]. For instance, it was observed in [16] that it is possible to infer sparser
representations with a prior over the coefficients that is a mixture of a delta function at zero and a
Gaussian distribution than with the Laplacian prior. We show that our proposed inference algorithm
also leads to representations that are more sparse, as the LSM prior with Gamma hyperprior has
heavier tails than the Laplacian distribution. We selected 1000 16 × 16 image patches at random,
and computed their sparse representations in a dictionary with 256 basis functions using both the
conventional Laplacian prior and our LSM prior. The dictionary is learned from the statistics of
natural images [24] using a Laplacian prior over the coefficients. To ensure that the reconstruction
error is the same in both cases, we solve the constrained version of the problem as in [21], where we
require that the signal to noise ratio of the reconstruction is equal to 10. We choose β = 0.01 and 5
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EM iterations. We can see in Figure 2 that the representations using the LSM prior are indeed more
sparse by approximately a factor of 2. Note that the computational complexity to compute these
sparse representations is much lower than that of [16].

s1 s2 smsj

x1 xnxi

λ1 λ2 λmλj

φij

Figure 1: Graphical model representation of our
proposed generative model where the multipli-
ers distribution is factorial.
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Figure 2: Sparsity comparison. On the x-axis
(resp. y-axis) is the `0 norm of the represen-
tation inferred with the Laplacian prior (resp.
LSM prior).

5 Sparse coding with a non-factorial model

It has been shown that many natural signals such as sound or images have a particular type of
higher-order, sparse structure in which active coefficients occur in groups corresponding to basis
functions having similar properties (position, orientation, or frequency tuning) [25, 1]. We focus in
this Section on a class of signals that has a particular type of higher-order structure where the active
coefficients occur in groups. We show here that the LSM prior can be used to capture this group
structure in natural images, and we propose an efficient inference algorithm for this case.

5.1 Group sparsity

We consider a dictionary Φ such that the basis functions can be divided in a set of disjoint groups
or neighborhoods indexed by Nk, i.e. {1, . . . ,m} =

⋃
k∈ΛNk, and Ni ∩ Nj = ∅ if i 6= j. A

signal having the group sparsity property is such that the sparse coefficients occur in groups, i.e. the
indices of the nonzero coefficients are given by

⋃
k∈ΓNk, where Γ is a subset of Λ.

The group sparsity structure can be captured with the LSM prior by having all the coefficients in a
group share the same inverse scale parameter, i.e. for all i ∈ Nk, λi = λ(k). The corresponding
graphical model is shown in Figure 3. This addresses the case where dependencies are allowed
within groups, but not across groups as in the block-`1 method [17]. Note that for some types of
dictionaries it is more natural to consider overlapping groups to avoid blocking artifacts. We propose
in Section 5.2 inference algorithms for both overlapping and non-overlapping cases.

si-1

λ(k)

si-2 si si+1 si+2

λ(l)

si+3

Figure 3: The two groups N(k) = {i − 2, i −
1, i} and N(l) = {i + 1, i + 2, i + 3} are non-
overlapping.

si-1

λi-1

si-2 si

λi

si+1 si+2

λi+2

si+3

λi+1

Figure 4: The basis function coefficients in the
neighborhood defined byN (i) = {i−1, i, i+1}
share the same multiplier λi.

5.2 Inference

In the EM algorithm we proposed in Section 3, the sufficient statistics that are computed in the E
step are 〈λi〉p(λi|s(t)) for all i. We suppose as in Section 4.1 that the prior on λ(k) is Gamma with
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parameters α and β. Using the structure of the dependencies in the probabilistic model shown in
Figure 3, we have

〈λi〉p(λi|s(t)) =
〈
λ(k)

〉
p(λ(k)|s

(t)
Nk

)
(11)

where the index i is in the groupNk, and sNk
= (sj)j∈Nk

is the vector containing all the coefficients
in the group. Using the conjugacy of the Laplacian and Gamma distributions, the distribution of λ(k)

given all the coefficients in the neighborhood is a Gamma distribution with parameters α+ |Nk| and
β +

∑
j∈Nk

|sj |, where |Nk| denotes the size of the neighborhood. Hence (11) can be rewritten as
follows

λ
(t+1)
(k) =

α+ |Nk|
β +

∑
j∈Nk

|s(t)
j |

. (12)

The resulting update rule is a form of divisive normalization. We saw in Section 2 that we can write
sk = λ−1

(k)uk, where uk is a Laplacian random variable with scale 1, and thus after convergence we

have u(∞)
k = (α + |Nk|)s(∞)

k /(β +
∑
j∈Nk

|s(∞)
j |). Such rescaling operations are also thought to

play an important role in the visual system. [25]

Now let us consider the case where coefficient neighborhoods are allowed to overlap. Let N (i)
denote the indices of the neighborhood that is centered around si (see Figure 4 for an example). We
propose to estimate the scale parameter λi by only considering the coefficients inN (i), and suppose
that they all share the same multiplier λi. In this case the EM update is given by

λ
(t+1)
i =

α+ |N (i)|
β +

∑
j∈N (i) |s

(t)
j |

. (13)

Note that we have not derived this rule from a proper probabilistic model. A coefficient is indeed a
member of many neighborhoods as shown in Figure 4, and the structure of the dependencies implies
p(λi | s) 6= p(λi | sN(i)). However, we show experimentally that estimating the multiplier using
(13) gives good performance. A similar approximation is used in the GSM analysis-based model
[26]. Note that the noise shaping algorithm, which bears similarities with the iterative thresholding
algorithm developed for BPDN [7], is modified in [27] using an update that is essentially inversely
proportional to ours. The authors show improved coding efficiency in the context of natural images.

5.3 Compressive sensing recovery

In compressed sensing, we observe a number n of random projections of a signal s0 ∈ Rm, and
it is in principle impossible to recover s0 if n < m. However, if s0 has p non-zero coefficients, it
has been shown in [28] that it is sufficient to use n ∝ p logm such measurements. We denote by
W ∈ Rn×m the measurement matrix and let y = Ws0 be the observations. A standard method to
obtain the reconstruction is to use the solution of the Basis Pursuit (BP) problem

ŝ = arg min
s
‖s‖1 subject to Ws = y. (14)

Note that the solution of BP is the solution of BPDN as µ converges to zero in (1), or δ = 0 in (10).
If the signal has structure beyond sparsity, one can in principle recover the signal with even fewer
measurements using an algorithm that exploits this structure [19, 29]. We therefore compare the
performance of BP with the performance of our proposed LSM inference algorithms

s(t+1) = arg min
s

m∑
i=1

λ
(t)
i |si| subject to Ws = y. (15)

We denote by RWBP the algorithm with the factorial update (9), and RW3BP (resp. RW5BP) the
algorithm with our proposed divisive normalization update (13) with group size 3 (resp. 5). We
consider 50-dimensional signals that are sparse in the canonical basis and where the neighborhood
size is 3. To sample such a signal s ∈ R50, we draw a number d of “centroids” i, and we sample three
values for si−1, si and si+1 using a normal distribution of variance 1. The groups are thus allowed
to overlap. A compressive sensing recovery problem is parameterized by (m,n, d). To explore the
problem space we display the results using phase plots as in [30], which plots performance as a
function of different parameter settings. We fix m = 50 and parameterize the phase plots using
the indeterminacy of the system indexed by δ = n/m, and the approximate sparsity of the system
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indexed by ρ = 3d/m. We vary δ and ρ in the range [.1, .9] using a 30 by 30 grid. For a given
value (δ, ρ) on the grid, we sample 10 sparse signals using the corresponding (m,n, d) parameters.
The underlying sparse signal is recovered using the three algorithms and we average the recovery
error ‖ŝ − s0‖2/‖s0‖2 for each of them. We show in Figure 5 that RW3BP clearly outperforms
RWBP. There is a slight improvement by going from BP to RWBP (see supplementary material),
but this improvement is rather small as compared with going from RWBP to RW3BP and RW5BP.
This illustrates the importance of using the higher-order structure of the signals in the inference
algorithm. The performance of RW3BP and RW5BP is comparable (see supplementary material),
which shows that our algorithm is not very sensitive to the choice of the neighborhood size.
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Figure 5: Compressive sensing recovery results using synthetic data. Shown are the phase plots for
a sequence of BP problems with the factorial update (RWBP), and a sequence of BP problems with
the divisive normalization update with neighborhood size 3 (RW3BP). On the x-axis is the sparsity
of the system indexed by ρ = 3d/m, and on the y-axis is the indeterminacy of the system indexed
by δ = n/m. At each point (ρ, δ) in the phase plot we display the average recovery error.

5.4 Application to natural images

It has been shown that adapting a dictionary of basis functions to the statistics of natural images so
as to maximize sparsity in the coefficients results in a set of dictionary elements whose spatial prop-
erties match those of V1 (primary visual cortex) receptive fields [24]. However, the basis functions
are learned under a probabilistic model where the probability density over the basis functions coef-
ficients is factorial, whereas the sparse coefficients exhibit statistical dependencies [15, 16]. Hence,
a generative model with factorial LSM is not rich enough to capture the complex statistics of natural
images. We propose here to model these dependencies using a non-factorial LSM model. We fix
a topography where the basis functions coefficients are arranged on a 2D grid, and with overlap-
ping neighborhoods of fixed size 3 × 3. The corresponding inference algorithm uses the divisive
normalization update (13).

We learn the optimal dictionary of basis functions Φ using the learning rule ∆Φ = η
〈
(x− Φŝ)ŝT

〉
as in [24], where η is the learning rate, ŝ are the basis functions coefficients inferred under the model
(13), and the average is taken over a batch of size 100. We fix n = m = 256, and sample 16 × 16
image patches from a set of whitened images, using a total of 100000 batches. The learned basis
functions are shown in Figure 6. We see here that the neighborhoods of size 3 × 3 group basis
functions at a similar position, scale and orientation. The topography is similar to how neurons are
arranged in the visual cortex, and is reminiscent of the results obtained in topographic ICA [13] and
topographic mixture of experts models [31]. An important difference is that our model is based on a
generative sparse coding model in which both inference and learning can be implemented via local
network interactions [7]. Because of the topographic organization, we also obtain a neighborhood-
based divisive normalization rule.

Does the proposed non-factorial model represent image structure more efficiently than those with
factorial priors? To answer this question we measured the models’ ability to recover sparse struc-
ture in the compressed sensing setting. We note that the basis functions are learned such that they
represent the sparse structure in images, as opposed to representing the images exactly (there is a
noise term in the generative model (2)). Hence, we design our experiment such that we measure
the recovery of this sparse structure. Using the basis functions shown in Figure 6, we first infer the
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sparse coefficients s0 of an image patch x such that ‖x− Φs0‖2 < δ using the inference algorithm
corresponding to the model. We fix δ such that the SNR is 10, and thus the three sparse approxi-
mations for the three models contain the same amount of signal power. We then compute random
projections y = W̃Φs0 where W̃ is the random measurements matrix. We attempt to recover the
sparse coefficients as in Section 5.3 by substituting W := ΦW̃ , and y := Φs0. We compare the
recovery performance ‖Φŝ−Φs0‖2/‖Φs0‖0 for 100 16×16 image patches selected at random, and
we use 110 random projections. We can see in Figure 7 that the model with non-factorial LSM prior
outperforms the other models as it is able to capture the group sparsity structure in natural images.

Figure 6: Basis functions learned in a non-
factorial LSM model with overlapping groups of
size 3× 3

Figure 7: Compressive sensing recovery. On the
x-axis is the recovery performance for the fac-
torial LSM model (RWBP), and on the y-axis
the recovery performance for the non-factorial
LSM model with 3 × 3 overlapping groups
(RW3×3BP). RW3×3BP outperforms RWBP.
See supplementary material for the comparison
between RW3×3BP and BP as well as between
RWBP and BP.

6 Conclusion

We introduced a new class of probability densities that can be used as a prior for the coefficients in a
generative sparse coding model of images. By exploiting the conjugacy of the Gamma and Laplacian
prior, we were able to derive an efficient inference algorithm that consists of solving a sequence of
reweighted `1 least-square problems, thus leveraging the multitude of algorithms already developed
for BPDN. Our framework also makes it possible to capture higher-order dependencies through
group sparsity. When applied to natural images, the learned basis functions of the model may be
topographically organized according to the specified group structure. We also showed that exploiting
the group sparsity results in performance gains for compressive sensing recovery on natural images.
An open question is the learning of group structure, which is a topic of ongoing work.

We wish to acknowledge support from NSF grant IIS-0705939.
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