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Abstract

Automatic speech recognition has gradually improved over the years, but the re-
liable recognition of unconstrained speech is still not within reach. In order to
achieve a breakthrough, many research groups are now investigating new method-
ologies that have potential to outperform the Hidden Markov Model technology
that is at the core of all present commercial systems. In this paper, it is shown
that the recently introduced concept of Reservoir Computing might form the basis
of such a methodology. In a limited amount of time, a reservoir system that can
recognize the elementary sounds of continuous speech has been built. The sys-
tem already achieves a state-of-the-art performance, and there is evidence that the
margin for further improvements is still significant.

1 Introduction

Thanks to a sustained world-wide effort, modern automatic speech recognition technology has now
reached a level of performance that makes it suitable as an enabling technology for novel applica-
tions such as automated dictation, speech based car navigation, multimedia information retrieval,
etc. Basically all state-of-the-art systems utilize Hidden Markov Models (HMMs) to compose an
acoustic model that captures the relations between the acoustic signal and the phonemes, defined
as the basic contrastive units of the sound system of a spoken language. The HMM theory has not
changed that much over the years, and the performance growth is slow and for a large part owed to
the availability of more training data and computing resources.

Many researchers advocate the need for alternative learning methodologies that can supplement or
even totally replace the present HMM methodology. In the nineties for instance, very promising
results were obtained with Recurrent Neural Networks (RNNs) [1] and hybrid systems both com-
prising neural networks and HMMs [2], but these systems were more or less abandoned since then.
More recently, there was a renewed interest in applying new results originating from the Machine
Learning community. Two techniques, namely Deep Belief Networks (DBNs) [3, 4] and Long Short-
Term Memory (LSTM) recurrent neural networks [5], have already been used with great success for
phoneme recognition. In this paper we present the first (to our knowledge) phoneme recognizer that
employs Reservoir Computing (RC) [6, 7, 8] as its core technology.

The basic idea of Reservoir Computing (RC) is that complex classifications can be performed by
means of a set of simple linear units that ’read-out’ the outputs of a pool of fixed (not trained)
nonlinear interacting neurons. The RC concept has already been successfully applied to time se-
ries generation [6], robot navigation [9], signal classification [8], audio prediction [10] and isolated
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spoken digit recognition [11, 12, 13]. In this contribution we envisage a RC system that can recog-
nize the English phonemes in continuous speech. In a short period (a couple of months) we have
been able to design a hierarchical system of large reservoirs that can already compete with many
state-of-the-art HMMs that have only emerged after several decades of research.

The rest of this paper is organized as follows: in Section 2 we describe the speech corpus we are
going to work on, in Section 3 we recall the basic principles of Reservoir Computing, in Section 4 we
discuss the architecture of the reservoir system which we propose for performing Large Vocabulary
Continuous Speech Recognition (LVCSR), and in Section 5 we demonstrate the potential of this
architecture for phoneme recognition.

2 The speech corpus

Since the main aim of this paper is to demonstrate that reservoir computing can yield a good acoustic
model, we will conduct experiments on TIMIT, an internationally renowned corpus [14] that was
specifically designed to support the development and evaluation of such a model.

The TIMIT corpus contains 5040 English sentences spoken by 630 different speakers representing
eight dialect groups. About 70% of the speakers are male, the others are female. The corpus docu-
mentation defines a training set of 462 speakers and a test set of 168 different speakers: a main test
set of 144 speakers and a core test set of 24 speakers. Each speaker has uttered 10 sentences: two
SA sentences which are the same for all speakers, 5 SX-sentences from a list of 450 sentences (each
one thus appearing 7 times in the corpus) and 3 SI-sentences from a set of 1890 sentences (each one
thus appearing only once in the corpus). To avoid a biased result, the SA sentences will be excluded
from training and testing.

For each utterance there is a manual acoustic-phonetic segmentation. It indicates where the phones,
defined as the atomic units of the acoustic realizations of the phonemes, begin and end. There are 61
distinct phones, which, for evaluation purposes, are usually reduced to an inventory of 39 symbols,
as proposed by [15]. Two types of error rates can be reported for the TIMIT corpus. One is the
Classification Error Rate (CER), defined as the percentage of the time the top hypothesis of the tested
acoustic model is correct. The second one is the Recognition Error Rate (RER), defined as the ratio
between the number of edit operations needed to convert the recognized symbol sequence into the
reference sequence, and the number of symbols in that reference sequence. The edit operations are
symbol deletions, insertions and substitutions. Both classification and recognition can be performed
at the phone and the phoneme level.

3 The basics of Reservoir Computing

In this paper, a Reservoir Computing network (see Figure 1) is an Echo State Network [6, 7, 8]
consisting of a fixed dynamical system (the reservoir) composed of nonlinear recurrently connected
neurons which are left untrained, and a set of linear output nodes (read-out nodes). Each output node
is trained to recognize one class (one-vs-all classification). The number of connections between and
within layers can be varied from sparsely connected to fully connected. The reservoir neurons have
an activation function f(x) = logistic(x).

output nodesreservoirinput nodes

trained output connections

random recurrent connections

random input connections

Figure 1: A reservoir computing network consists of a reservoir of fixed recurrently connected
nonlinear neurons which are stimulated by the inputs, and an output layer of trainable linear units.
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The RC approach avoids the back-propagation through time learning which can be very time con-
suming and which suffers from the problem of vanishing gradients [6]. Instead, it employs a simple
and efficient linear regression learning of the output weights. The latter tries to minimize the mean
squared error between the computed and the desired outputs at all time steps.

Based on its recurrent connections, the reservoir can capture the long-term dynamics of the human
articulatory system to perform speech sound classification. This property should give it an advantage
over HMMs that rely on the assumption that subsequent acoustical input vectors are conditionally
independent.

Besides the ’memory’ introduced through the recurrent connections, the neurons themselves can
also integrate information over time. Typical neurons that can accomplish this are Leaky Integrator
Neurons (LINs) [16]. With such neurons the reservoir state at time k+1 can be computed as follows:

x[k + 1] = (1− λ)x[k] + λf(Wresx[k] + Winu[k]) (1)

with u[k] and x[k] representing the inputs and the reservoir state at time k. The W matrices contain
the input and recurrent connection weights. It is common to include a constant bias in u[k]. As
long as the leak rate λ < 1, the integration function provides an additional fading memory of the
reservoir state.

To perform a classification task, the RC network computes the outputs at time k by means of the
following linear equation:

y[k] = Wout x[k] (2)
The reservoir state in this equation is augmented with a constant bias. If the reservoir states at the
different time instants form the columns of a large state matrix X and if the corresponding desired
outputs form the columns of a matrix D, the optimal Wout emerges from the following equations:

Wout = arg min
W

(
1

N

(
||XW −D||2 + ε ||W||2

))
(3)

Wout = (XTX + ε I)−1(XTD) (4)
with N being the number of frames. The regularization constant ε aims to limit the norm of the output
weights (this is the so-called Tikhonov or ridge regression). For large training sets, as common in
speech processing, the matrices XTX and XTD are updated on-line in order to suppress the need
for huge storage capacity. In this paper, the regularization parameter ε was fixed to 10−8. This
regularization is equivalent to adding Gaussian noise with a variance of 10−8 to the reservoir state
variables.

4 System architecture

The main objective of our research is to build an RC-based LVCSR system that can retrieve the
words from a spoken utterance. The general architecture we propose for such a system is depicted
in Figure 2. The preprocessing stage converts the speech waveform into a sequence of acoustic

Figure 2: Hierarchical reservoir architecture with multiple layers.

feature vectors representing the acoustic properties in subsequent speech frames. This sequence is
supplied to a hierarchical system of RC networks. Each reservoir is composed of LINs which are
fully connected to the inputs and to the 41 outputs. The latter represent the distinct phonemes of
the language. The outputs of the last RC network are supplied to a decoder which retrieves the
most likely linguistic interpretation of the speech input, given the information computed by the RC
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networks and given some prior knowledge of the spoken language. In this paper, the decoder is
a phoneme recognizer just accommodating a bigram phoneme language model. In a later stage it
will be extended with other components: (1) a phonetic dictionary comprising all the words of the
system’s vocabulary and their common pronunciations, expressed as phoneme sequences, and (2) a
n-gram language model describing the probabilities of each word, given the preceding (n-1) words.

We conjecture that the integration time of the LINs in the first reservoir should ideally be long
enough to capture the co-articulations between successive phonemes emerging from the dynamical
constraints of the articulatory system. On the other hand, it has to remain short enough to avoid that
information pointing to the presence of a short phoneme is too much blurred by the left phonetic
context. Furthermore, we argue that additional reservoirs can correct some of the errors made by
the first reservoir. Indeed, such an error correcting reservoir can guess the correct labels from its
inputs, and take the past phonetic context into account in an implicit way to refine the decision. This
is in contrast to an HMM system which adopts an explicit approach, involving separate models for
several thousands of context-dependent phonemes.

In the next subsections we provide more details about the different parts of our recognizer, and we
also discuss the tuning of some of its control parameters.

4.1 Preprocessing

The preprocessor utilizes the standard Mel Frequency Cepstral Coefficient (MFCC) analysis [17] en-
countered in most state-of-the-art LVCSR systems. The analysis is performed on 25 ms Hamming-
windowed speech frames, and subsequent speech frames are shifted over 10 ms with respect to each
other. Every 10 ms a 39-dimensional feature vector is generated. It consists of 13 static parameters,
namely the log-energy and the first 12 MFCC coefficients, their first order derivatives (the velocity
or ∆ parameters), and their second order derivatives (the acceleration or ∆∆ parameters).

In HMM systems, the training is insensitive to a linear rescaling of the individual features. In
RC systems however, the input and recurrent weights are not trained and drawn from predefined
statistical distributions. Consequently, by rescaling the features, the impact of the inputs on the
activations of the reservoir neurons is changed as well, which makes it compulsory to employ an
appropriate input scaling [8].

To establish a proper input scaling the acoustic feature vector is split into six sub-vectors according
to the dimensions (energy, cepstrum) and (static, velocity, acceleration). Then, each feature ai, (i =
1, .., 39) is normalized to zi = αs (ui − ui) with ui being the mean of ui and s (s = 1, .., 6)
referring to the sub-vector (group) the feature belongs to. The aim of αs is to ensure that the norm
of each sub-vector is one. If the zi were supplied to the reservoir, each sub-vector would on average
have the same impact on the reservoir neuron activations. Therefore, in a second stage, the zi are
rescaled to ui = βszi with βs representing the relative importance of sub-vector s in the reservoir
neuron activations. The normalization constants αs straightly follow from a statistical analysis of the

Table 1: Different types of acoustic information in the input features and their optimal scale factors.

Energy features Cepstral features
group name log(E) ∆ log(E) ∆∆ log(E) c1...12 ∆c1...12 ∆∆c1...12

norm factor α 0.27 1.77 4.97 0.10 0.61 1.75
scale factor β 1.75 1.25 1.00 1.25 0.50 0.25

acoustic feature vectors. The factors βs are free parameters that were selected such that the phoneme
classification error of a single reservoir system of 1000 neurons is minimized on the validation
set. The obtained factors (see Table 1) confirm that the static features are more important than the
velocity and the acceleration features.

The proposed rescaling has the following advantages: it preserves the relative importance of the
individual features within a sub-vector, it is fully defined by six scaling parameters αsβs, it takes
only a minimal computational effort, and it is actually supposed to work well for any speech corpus.
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4.2 Sequence decoding

The decoder in our present system performs a Viterbi search for the most likely phonemic sequence
given the acoustic inputs and a bigram phoneme language model. The search is driven by a simple
model for the conditional likelihood p(y|m) that the reservoir output vector y is observed during the
acoustical realization of phoneme m. The model is based on the cosine similarity between y + 1
and a template vector tm = [0, .., 0, 1, 0, .., 0], with its nonzero element appearing at position m.
Since the template vector is a unity vector, we compute p(y|m) as

p(y|m) =

(
max[0,

< y + 1, tm >)√
< y + 1,y + 1 >

]

)κ
, (5)

with < x,y > denoting the dot product of vectors x and y. Due to the offset, we can ensure that
the components of y + 1 are between 0 and 1 most of the time. The maximum operator prevents
the likelihoods from becoming negative occasionally. The exponent κ is a free parameters that will
be tuned experimentally. It controls the relative importance of the acoustic model and the bigram
phoneme language model.

4.3 Reservoir optimization

The training of the reservoir output nodes is based on Equations (3) and (4) and the desired phoneme
labels emerge from a time synchronized phonemic transcription. The latter was derived from the
available acoustic-phonetic segmentation of TIMIT. For all experiments reported in this paper, we
have used the modular RC toolkit OGER1 developed at Ghent University.

The recurrent weights of the reservoir are not trained but randomly drawn from statistical distribu-
tions. The input weights emerge from a uniform distribution between −U and +U , the recurrent
weights from a zero-mean Gaussian distribution with a variance V . The value of U controls the rel-
ative importance of the inputs in the activation of the reservoir neurons and is often called the input
scale factor (ISF). The variance V directly determines the spectral radius (SR), defined as the largest
absolute eigenvalue of the recurrent weight matrix. The SR describes the dynamical excitability of
the reservoir [6, 8]. The SR and the ISF must be jointly optimized. To do so, we used 1000 neuron
reservoirs, supplied with inputs that were normalized according to the procedure reviewed in the
previous section. We found that SR = 0.4 and ISF = 0.4 yield the best performance, but for SR
∈ (0.3...0.8) and for ISF ∈ (0.2...1.0), the performance is quite stable.

Another parameter that must be optimized is the leak rate, denoted as λ. It determines the integra-
tion time of the neurons. If the nonlinear function is ignored and the time between frames is Tf ,
the reservoir neurons represent a first-order leaky integrator with a time constant τ that is related
to λ by λ = 1 − e−Tf/τ . As stated before, the integration time should be long enough to cap-
ture the relevant co-articulation effects and short enough to constrain the information blurring over
subsequent phonemes. This is confirmed by Figure 3 showing how the phoneme CER of a single
reservoir system changes as a function of the integrator time constant. The optimal value is 40 ms,
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Figure 3: The phoneme Classification Error Rate (CER) as a function of the integration time (in ms)

and completely in line with psychophysical data concerning the post and pre-masking properties of
the human auditory system. In [18] for instance, it is shown that these properties can be explained
by means of a second order low-pass filter with real poles corresponding to time constants of 8 and
40 ms respectively (it is the largest constant that determines the integration time here).

1http://reservoir-computing.org/organic/engine
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It has been reported [19] that one can easily reduce the number of recurrent connections in a RC
network without much affecting its performance. We have found that limiting the number of con-
nection to 50 per neuron does not harm the performance while it dramatically reduces the required
computational resources (memory and computation time).

5 Experiments

Since our ultimate goal is to perform LVCSR, and since LVCSR systems work with a dictionary of
phonemic transcriptions, we have worked with phonemes rather than with phones. As in [20] we
consider the 41 phoneme symbols one encounters in a typical phonetic dictionary like COMLEX
[21]. The 41 symbols are very similar to the 39 symbols of the reduced phone set proposed by [15],
but with one major difference, namely, that a phoneme string does not contain any silences referring
to closures of plosive sounds (e.g. the closure /kcl/ of phoneme /k/ ). By ignoring confusions between
/sh/ and /zh/ and between /ao/ and /aa/ we finally measure phoneme error rates for 39 classes, in
order to make them more compliant with the phone error rates for 39 classes reported in other
papers. Nevertheless, we will see later that phoneme recognition is harder to accomplish than phone
recognition. This is because the closures are easy to recognize and contribute to a low phone error
rate. In phoneme recognition there are no closure anymore.

In what follows, all parameter tuning is performed on the TIMIT training set (divided into inde-
pendent training and development sets), and all error rates are measured on the main test set. The
bigram phoneme language model used for the sequence decoding step is created from the phonemic
transcriptions of the training utterances.

5.1 Single reservoir systems

In a first experiment we assess the performance of a single reservoir system as a function of the reser-
voir size, defined as the number of neurons in the reservoir. The phoneme targets during training are
derived from the manual acoustic-phonetic segmentation, as explained in Section 4.3. We increase
the number of neurons from 500 to 20000. The corresponding number of trainable parameters then
changes from 20K to 800K. The latter figure corresponds to the number of trainable parameters in
an HMM system comprising 1200 independent Gaussian mixture distributions of 8 mixtures each.

Figure 4 shows that the phoneme CER on the training set drops by about 4% every time the reservoir
size is doubled. The phoneme CER on the test set shows a similar trend, but the slope is decreasing
from 4% at low reservoir sizes to 2% at 20000 neurons (nodes). At that point the CER on the test

Figure 4: The Classification Error Rate (CER) at the phoneme level for the training and test set as a
function of the reservoir size.

set is 30.6% and the corresponding RER (not shown) is 31.4%. The difference between the test and
the training error is about 8%.

Although the figures show that an even larger reservoir will perform better, we stopped at 20000
nodes because the storage and the inversion of the large matrix XTX are getting problematic. Before
starting to investigate even larger reservoirs, we first want to verify our hypothesis that adding a
second (equally large) layer can lead to a better performance.
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5.2 Multilayer reservoir systems

Usually, a single reservoir system produces a number of competing outputs at all time steps, and
this hampers the identification of the correct phoneme sequence. The left panel of Figure 5 shows
the outputs of a reservoir of 8000 nodes in a time interval of 350 ms. Our hypothesis was that the
observed confusions are not arbitrary, and that a second reservoir operating on the outputs of the first
reservoir system may be able to discover regularities in the error patterns. And indeed, the outputs
of this second reservoir happen to exhibit a larger margin between the winner and the competition,
as illustrated in the right panel of Figure 5.

Figure 5: The outputs of the first (left) and the second (right) layer of a two-layer system composed
of two 8000 node reservoirs. The shown interval is 350 ms long.

In Figure 6, we have plotted the phoneme CER and RER as a function of the number of reservoirs
(layers) and the size of these reservoirs. We have thus far only tested systems with equally large
reservoirs at every layer. For the exponent κ, we have just tried κ = 0.5, 0.7 and 1, and we have
selected the value yielding the best balance between insertions and deletions.

Figure 6: The phoneme CERs and RERs for different combinations of number of nodes and layers

For all reservoir sizes, the second layer induces a significant improvement of the CER by 3-4%
absolute. The corresponding improvements of the recognition error rates are a little bit less but
still significant. The best RER obtained with a two-layer system comprising reservoirs of 20000
nodes is 29.1%. Both plots demonstrate that a third layer does not cause any additional gain when
the reservoir size is large enough. However, this might also be caused by the fact that we did not
systematically optimize the parameters (SR, leak rate, regularization parameter, etc.) for each large
system configuration we investigated. We just chose sensible values which were retrieved from tests
with smaller systems.

5.3 Comparison with the state-of-the-art

In Table 2 we have listed some published results obtained on TIMIT with state-of-the-art HMM
systems and other recently proposed research systems. We have also included the results of own ex-
periments we conducted with SPRAAK2 [22], a recently launched HMM-based speech recognition
toolkit. In order to provide an easier comparison, we also build a phone recognition system based
on the same design parameters that were optimized for phoneme recognition. All phone RERs are

2http://www.spraak.org
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calculated on the core test set, while the phoneme RERs were measured on the main test set. We
do this because most figures in speech community papers apply to these experimental settings. Our
final results were obtained with systems that were trained on the full training data (including the
development set). Before discussing our figures in detail we emphasize that the two figures for
SPRAAK confirm our earlier statement that phoneme recognition is harder than phone recognition.

Table 2: Phoneme and Phone Recognition Error Rates (in %) obtained with state-of-the-art systems.

System description Phone RER Phoneme RER
used test set core test main test

Reservoir Computing (this paper) 26.8 29.1
CD-HMM (SPRAAK Toolkit) 25.6 28.1
CD-HMM [20] 28.7
Recurrent Neural Networks [1] 26.1
LSTM+CTC [5] (24.6)
Bayesian Triphone HMM [23] 24.4
Deep Belief Networks [4] 23.0
Hierarchical HMM + MLPs [20] (23.4)

Given the fact that SPRAAK seems to achieve state-of-the-art performance, it is fair to conclude
from the figures in Table 2 that our present system is already competitive with other modern HMM
systems. It is also fair to say that better systems do exist, like the Deep Belief Network system
[4] and the hierarchical HMM system with multiple Multi-Layer Perceptrons (MLPs) on top of an
HMM system [20]. Note however that the latter system also employs complex temporal patterns
(TRAPs) as input features. These patterns are much more powerful than the simple MFCC vectors
used in all other systems we cite. Furthermore, the LSTM+CTC [5] results too must be considered
with some care since they were obtained with a bidirectional system. Such a system is impractical
in many application since it has to wait until the end of a speech utterance to start the recognition.
We therefore put the results of the latter two systems between brackets in Table 2.

To conclude this discussion, we also want to mention some training and execution times. The
training of our two-layer 20K reservoir systems takes about 100 hours on a single core 3.0 GHz PC,
while recognition takes about two seconds of decoding per second of speech.

6 Conclusion and future work

In this paper we showed for the first time that good phoneme recognition on TIMIT can be achieved
with a system based on Reservoir Computing. We demonstrated that in order to achieve this, we
need large reservoirs (at least 20000 nodes) which are configured in a hierarchical way. By stacking
two reservoir layers, we were able to achieve error rates that are competitive with what is attainable
using state-of-the-art HMM technology. Our results support the idea that reservoirs can exploit
long-term dynamic properties of the articulatory system in continuous speech recognition.

It is acknowledged though that other techniques such as Deep Belief Networks are still outperform-
ing our present system, but the plots and the discussions presented in the course of this paper clearly
show a significant margin for further improvement of our system in the near future.

To achieve this improvement we will investigate even larger reservoirs with 50000 and more nodes
and we will more thoroughly optimize the parameters of the different reservoirs. Furthermore, we
will explore the use of sparsely connected outputs and multi-frame inputs in combination with PCA-
based dimensionality reduction. Finally, we will develop an embedded training scheme that permits
the training of reservoirs on much larger speech corpora for which only orthographic representations
are distributed together with the speech data.
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