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1 Proof of Lemmal

We first describe an auxiliary parametrization. The tangeate at: is spanned by all the tangent
vectors at 0 to the curves: R — M}’ such thaty(0) = =. For any such curve, because of the
rank k assumption, we may assume that forta#t R, there exist matriced (t) € R"**, B(t) €
R™** such thaty(t) = A(t)B(t)”. By the chain rule we havei(0) = A(0)B(0)” 4+ A(0)B(0)7.
Sincexr = v(0) = A(0)B(0)T we have:

T M = {A(O)XT +YBO0)T|X eR™* Y € R"Xk} @)

The space above is clearly a linear space. Being a tangecé $paa manifold, it has the same
dimension(n + m)k — k2.
To prove Lemma 1, It is easy to verify that the dimension of $pace defined in the Lemma is

((n +m)k — k%, By takingX = M BT + N;BT andY = A, Ns, it can be seen that the space
above is included iff,, M;"™ as defined in Eq. (1

2 Proof of theorem 1

To prove that eq. (3) of the main text is a retraction, we firgive thatw, 27w, is indeed a rank
k matrix. Note thatw; = Z; BT and likewise,w, = AZI, for some matricesZ; € R™**,
Zy € RTX’“. A sufficient condition for these matrices to be of full rarskthat the matrixi/
is of limited norm. In practice this is never a problem, as ské of matrices not of full rank is
of zero measure; in applying the algorithm we have never mgdssues concerning this. Thus,
R.(&) = wiztwy = ZyBTB(BTB) Y (ATA) AT AZT = Z,ZT, which is exactly a ranks,
n x m matrix. Next we must show that, (£) is a retraction, and of second order. It is obvious that
R, (0) = z, since the projection of the zero vector is zero, and iy and¢? are all zero. If
we expandu; zfw, up to second order terms many terms cancel and we end up with:

Ro(§) = o+ & + &+ &7+ 2 + O(€l’) =z + € + 672" + O(lg)) ()
Local first order rigidity is immediately apparent. If we exyl the only second order tergf,z ¢/,
we see that it equald | No N{ BT We claim this term is orthogonal to the tangent sgBcé ;"""

((ALNN{BT) , (AMB™ + ANI'BT + Ay N,BT)) = (3)
(BLNyNJATAM BT + B Ny\NJ AT AN,B, + By NN AT A, N,BT) =
tr (BLN\NJ AT AL N,BT) =
tr (BTBLNNJATA I N,) =0
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Thus, the second order term cancels out if we project thenskederivative of the curve defined by
the retraction, as required by the second-order condition

—5

We see that the second order term is contained in the norraeésf his concludes the proof that
the retraction is a second order retraction.

3 Rank one pseudo-inverse updaterule

For completeness we develop below the procedure for upgttenpseudo-inverse of a rank-1 per-
turbed matrix [1], following the derivation of [2]. We wislo find a matrixG' such that for a given
matrix A along with its pseudo-invers&’, and vectors of appropriate dimensieandd, we have:

(A+cd") =4t 1@ (5)

Algorithm 1 : Rank one pseudo-inverse update

Input: MatricesA, AT € R"** such thatA is the pseudo-inverse of, vectorsc € R™**, d € RF*!
Output: Matrix VARS R'fx”, such thaz' is the pseudo-inverse of + ed”.

Compute: matrix dimension
v=Afc kx1
B=1+d%v 1x1
n=ATq nx1
n=An Ex1
w=c— Av nx1
if 3 0AND |jw| # 0

G:% kx1
G = GuwT kxn
_ B
57 T2l +5 1x1
t=1l0 4o kx 1
R T
st«t(%w+n) kxn
G=G-G kxn
elseif B =0 AND |jw|| # 0
G = ATW Ex1
G=aGn" Ex1
GA:v”i"Uﬁ2 kxn
G=G-G kxn
elseif 3 # 0 AND |jw| =0
G=—LonT kxn
elseif 8= 0 AND |[jw| = 0
0= o (VT AT) kxn
P | T
n= ”n”TQ (TATn)n kxn
G = o’ =0 —n kxn
endif
Zt=A"+ @

We use the fact that has a full column rank to simplify slightly the algorithm &f][
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