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Abstract

Steinwart was the first to prove universal consistency of support vector machine
classification. His proof analyzed the ‘standard’ support vector machine classifier,
which is restricted to binary classification problems. In contrast, recent analysis
has resulted in the common belief that several extensions of SVM classification to
more than two classes are inconsistent.
Countering this belief, we prove the universal consistency of the multi-class sup-
port vector machine by Crammer and Singer. Our proof extends Steinwart’s tech-
niques to the multi-class case.

Erratum, 20.01.2011

Unfortunately this paper contains a subtle flaw in the proof of Lemma 5. Furthermore it turns out the
statement itself is wrong: The multi-class SVM by Crammer&Singer is not universally consistent.

1 Introduction

Support vector machines (SVMs) as proposed in [1, 8] are powerful classifiers, especially in the
binary case of two possible classes. They can be extended to multi-class problems, that is, problems
involving more than two classes, in multiple ways which all reduce to the standard machine in the
binary case.

This is trivially the case for general techniques such as one-versus-one architectures and the one-
versus-all approach, which combine a set of binary machines to a multi-class decision maker. At
least three different ‘true’ multi-class SVM extensions have been proposed in the literature: The
canonical multi-class machine proposed by Vapnik [8] and independently by Weston and Watkins
[9], the variant by Crammer and Singer [2], and a conceptually different extension by Lee, Lin, and
Wahba [4].

Recently, consistency of multi-class support vector machines has been investigated based on proper-
ties of the loss function Ψ measuring empirical risk in machine training [7]. The analysis is based on
the technical property of classification calibration (refer to [7] for details). This work is conceptually
related to Fisher consistency, in contrast to univeral statistical consistency, see [3, 5]. Schematically,
Theorem 2 by Tewari and Bartlett [7] establishes the relation

SA ⇔ (SB ⇒ SC) , (1)

for the terms

SA: The loss function Ψ is classification calibrated.

SB : The Ψ-risk of a sequence (f̂n)n∈N of classifiers converges to the minimal possible Ψ-risk:

limn→∞ RΨ(f̂n) = R∗
Ψ.
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SC : The 0-1-risk of the same sequence (f̂n)n∈N of classifiers converges to the minimal possible

0-1-risk (Bayes risk): limn→∞ R(f̂n) = R∗.

The classifiers f̂n are assumed to result from structural risk minimization [8], that is, the space Fn

for which we obtain f̂n = arg min{RΨ(f) | f ∈ Fn} grows suitably with the size of the training
set such that SB holds.

The confusion around the consistency of multi-class machines arises from mixing the equivalence
and the implication in statement (1). Examples 1 and 2 in [7] show that the loss functions Ψ used
in the machines by Crammer and Singer [2] and by Weston and Watkins [9] are not classification
calibrated, thus SA = false. Then it is deduced that the corresponding machines are not consistent
(SC = false), although it can be deduced only that the implication SB ⇒ SC does not hold. This
tells us nothing about SC , even if SB can be established per construction.

We argue that the consistency of a machine is not necessarily determined by properties of its loss
function. This is because for SVMs it is necessary to provide a sequence of regularization parameters
in order to make the infinite sample limit well-defined. Thus, we generalize Steinwart’s universal
consistency theorem for binary SVMs (Theorem 2 in [6]) to the multi-class support vector machine
[2] proposed by Crammer and Singer:

Theorem 2. Let X ⊂ R
d be compact and k : X × X → R be a universal kernel with1

N ((X, dk), ε) ∈ O(ε−α) for some α > 0. Suppose that we have a positive sequence (Cℓ)ℓ∈N

with ℓ · Cℓ → ∞ and Cℓ ∈ O(ℓβ−1) for some 0 < β < 1
α

. Then for all Borel probability measures
P on X × Y and all ε > 0 it holds

lim
ℓ→∞

Pr∗
(
{T ∈ (X × Y )ℓ | R(fT,k,Cℓ

) ≤ R∗ + ε}
)

= 1 .

The corresponding notation will be introduced in sections 2 and 3. The theorem does not only estab-
lish the universal consistency of the multi-class SVM by Crammer and Singer, it also gives precise
conditions for how exactly the complexity control parameters needs to be coupled to the training set
size in order to obtain universal consistency. Moreover, the rigorous proof of this statement implies
that the common belief on the inconsistency of the popular multi-class SVM by Crammer and Singer
is wrong. This important learning machine is indeed universally consistent.

2 Multi-Class Support Vector Classification

A multi-class classification problem is stated by a training dataset T =
(
(x1, y1), . . . , (xℓ, yℓ)

)
∈

(X × Y )ℓ with label set Y of size |Y | = q < ∞. W.l.o.g., the label space is represented by
Y = {1, . . . , q}. In contrast to the conceptually simpler binary case we have q > 2. The training
examples are supposed to be drawn i.i.d. from a probability distribution P on X × Y .

Let k : X × X → R be a positive definite (Mercer) kernel function, and let φ : X → H be
a corresponding feature map into a feature Hilbert space H such that 〈φ(x), φ(x′)〉 = k(x, x′).
We call a function on X induced by k if there exists w ∈ H such that f(x) = 〈w, φ(x)〉. Let

dk(x, x′) := ‖φ(x) − φ(x′)‖H =
√

k(x, x) − 2k(x, x′) + k(x′, x′) denote the metric induced on
X by the kernel k.

Analog to Steinwart [6] we require that the input space X is a compact subset of R
d, and define the

notion of a universal kernel:

Definition 1. (Definition 2 in [6]) A continuous positive definite kernel function k : X × X → R

on a compact subset X ⊂ R
d is called universal if the set of induced functions is dense in the

space C0(X) of continuous functions, i.e., for all g ∈ C0(X) and all ε > 0 there exists an induced
function f with ‖g − f‖∞ < ε.

Intuitively, this property makes sure that the feature space of a kernel is rich enough to achieve con-
sistency for all possible data generating distributions. For a detailed treatment of universal kernels
we refer to [6].

1For f, g : R
+ → R

+ we define f(x) ∈ O(g(x)) iff ∃c, x0 > 0 such that f(x) ≤ c · g(x) ∀x > x0.
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An SVM classifier for a q-class problem is given in the form of a vector-valued function f : X → R
q

with component functions fu : X → R, u ∈ Y (sometimes restricted by the so-called sum-to-zero
constraint

∑

u∈Y fu = 0). Each of its components takes the form fu(x) = 〈wu, φ(x)〉 + bu with
wu ∈ H and bu ∈ R. Then we turn f into a classifier by feeding its result into the ‘decision’ function

κ : R
q → Y ; (v1, . . . , vq)

T 7→ min
{

arg max{vu |u ∈ Y }
}

∈ Y .

Here, the arbitrary rule for breaking ties favors the smallest class index.2 We denote the SVM
hypothesis by h = κ ◦ f : X → Y .

The multi-class SVM variant proposed by Crammer and Singer uses functions without offset terms
(bu = 0 for all u ∈ Y ). For a given training set T =

(
(x1, y1), . . . , (xℓ, yℓ)

)
∈ (X × Y )ℓ this

machine defines the function f , determined by (w1, . . . , wq) ∈ Hq, as the solution of the quadratic
program

minimize
∑

u∈Y

〈wu, wu〉 +
C

ℓ
·

ℓ∑

i=1

ξi (2)

s.t. 〈wyi
− wu, φ(xi)〉 ≥ 1 − ξi ∀ i ∈ {1, . . . , ℓ}, u ∈ Y \ {yi} .

The slack variables in the optimum can be written as

ξi = max
v∈Y \{yi}

{[
1 − (fyi

(xi) − fv(xi))
]

+

}

≥
[
1 − δh(xi),yi

− fyi
(xi) + fh(xi)(xi)

]

+
, (3)

with the auxiliaury function [t]+ := max{0, t}. We denote the function induced by the solution of
this problem by f = fT,k,C = (〈w1, ·〉, . . . , 〈wq, ·〉)T .

Let s(x) := 1 − max{P (y|x) | y ∈ Y } denote the noise level, that is, the probability of error of a
Bayes optimal classifier. We denote the Bayes risk by R∗ =

∫

X
s(x)dx. For a given (measurable)

hypothesis h we define its error as Eh(x) := 1 − P (h(x)|x), and its suboptimality w.r.t. Bayes-
optimal classification as ηh(x) := Eh(x) − s(x) = max{P (y|x) | y ∈ Y } − P (h(x)|x). We have
Eh(x) ≥ s(x) and thus ηh(x) ≥ 0 up to a zero set.

3 The Central Construction

In this section we introduce a number of definitions and constructions preparing the proofs in the
later sections. Most of the differences to the binary case are incorporated into these constructions
such that the lemmas and theorems proven later on naturally extend to the multi-class case. Let
∆ := {p ∈ R

q | pu ≥ 0 ∀u ∈ Y and
∑

u∈Y pu = 1} denote the probability simplex over Y . We

introduce the covering number of the metric space (X, dk) as

N ((X, dk), ε) := min
{

n
∣
∣
∣ ∃ {x1, . . . , xn} ⊂ X such that X ⊂

n⋃

i=1

B(xi, ε)
}

,

with B(x, ε) = {x′ ∈ X | dk(x, x′) < ε} being the open ball of radius ε > 0 around x ∈ X .

Next we construct a partition of a large part of the input space X into suitable subsets. In a first step
we partition the probability simplex, then we transfer this partition to the input space, and finally
we discard small subsets of negligible impact. The resulting partition has a number of properties of
importance for the proofs of diverse lemmas in the next section.

We start by defining τ = ε/(q + 5), where ε is the error bound found in Theorems 1 and 2. Thus, τ
is simply a multiple of ε, which we can think of as an arbitrarily small positive number.

We split the simplex ∆ into a partition of ‘classification-aligned’ subsets

∆y := κ−1({y}) =
{

p ∈ ∆
∣
∣
∣ py > pu for u < y and py ≥ pu for u > y

}

for y ∈ Y , on which the decision function κ decides for class y. We define the grid

Γ̃ =
{

[n1τ, (n1 + 1)τ) × · · · × [nqτ, (nq + 1)τ) ⊂ R
q
∣
∣
∣ (n1, . . . , nq)

T ∈ Z
q
}

2Note that any other deterministic rule for breaking ties can be realized by permuting the class indices.
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of half-open cubes. Then we combine both constructions to the partition

Γ :=
⋃

y∈Y

{

γ̃ ∩ ∆y

∣
∣
∣ γ̃ ∈ Γ̃ and γ̃ ∩ ∆y 6= ∅

}

of ∆ into classification-aligned subsets of side length upper bounded by τ . We have the trivial
upper bound |Γ| ≤ D := q · (1/τ + 1)q for the size of the partition. The partition Γ will serve
as an index set in a number of cases. The first one of these is the partition X =

⋃

γ∈Γ Xγ with

Xγ :=
{
x ∈ X

∣
∣P (y|x) ∈ γ

}
.

The compactness of X ensures that the distribution P is regular. Thus, for each γ ∈ Γ there exists a

compact subset K̃γ ⊂ Xγ with P (K̃γ) ≥ (1 − τ/2) · P (Xγ). We choose minimal partitions Ãγ of

each K̃γ =
⋃

A∈Ãγ
A such that the diameter of each A ∈ Ãγ is bounded by σ = τ/(2

√
C). All of

these sets are summarized in the partition Ã =
⋃

γ∈Γ Ãγ . Now we drop all A ∈ Ãγ below a certain

probabiliy mass, resulting in

Aγ :=
{

A ∈ Ãγ

∣
∣
∣ PX(A) ≥ τ

2M

}

, (4)

with M := D · N ((X, dk), σ). We summarize these sets in Kγ =
⋃

A∈Aγ
A and A :=

⋃

γ∈Γ Aγ .

These sets cover nearly all probability mass of PX in the sense

PX




⋃

γ∈Γ

Kγ



 = PX

(
⋃

A∈A

A

)

≥ PX




⋃

A∈Ã

A



− τ/2

= PX




⋃

γ∈Γ

K̃γ



− τ/2 ≥ PX




⋃

γ∈Γ

Xγ



− τ/2 − τ/2 = PX(X) − τ = 1 − τ

The first estimate makes use of |Ã| ≤ M and condition (4), while the second inequality follows

from the definition of K̃γ .

To simplify notation, we associate a number of quantities with the sets γ ∈ Γ and Xγ . We denote
the Bayes-optimal decision by y(Xγ) = y(γ) := κ(p) for any p ∈ γ, and for y ∈ Y we define the
lower and upper bounds

Ly(Xγ) = Ly(γ) := inf
{

py

∣
∣
∣ p ∈ γ

}

and Uy(Xγ) = Uy(γ) := sup
{

py

∣
∣
∣ p ∈ γ

}

on the corresponding components in the probability simplex. We canonically extend these defini-

tions to the above defined sets Kγ , K̃γ , and A ∈ A, which are all subsets of exactly one of the sets
Xγ , by defining y(S) := y(γ) for all non-empty subsets S ⊂ Xγ . The resulting construction has
the following properties:

(P1) The decision function κ is constant on each set γ ∈ Γ, and thus h = κ ◦ f is constant on
each set Xγ as well as on each of their subsets, most importantly on each A ∈ A.

(P2) For each y ∈ Y , the side length Uy(γ) − Ly(γ) of each set γ ∈ Γ is upper bounded by τ .

(P3) It follows from the construction of Γ that for each y ∈ Y and γ ∈ Γ we have either
Ly(γ) = 0 or Ly(γ) ≥ τ .

(P4) The cardinality of the partition Γ is upper bounded by D = q · (1/τ + 1)q, which depends
only on τ and q, but not on T , k, or C.3

(P5) The cardinality of the partition A is upper bounded by M = D · N ((X, dk), τ/(2
√

C)),
which is finite by Lemma 1.

(P6) The set
⋃

A∈A A =
⋃

γ∈Γ Kγ ⊂ X covers a probability mass (w.r.t. PX ) of at least (1−τ).

(P7) Each A ∈ A covers a probability mass (w.r.t. PX ) of at least τ
2M

.

(P8) Each A ∈ A has diameter less than σ = τ/(2
√

C), that is, for x, x′ ∈ A we have
dk(x, x′) < σ.

3A tight bound would be in O(τ1−q).
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With properties (P2) and (P6) it is straight-forward to obtain the inequality

1 −
∑

γ∈Γ

Ly(γ)(γ) · PX(Xγ) − τ ≤ 1 −
∑

γ∈Γ

Uy(γ)(γ) · PX(Xγ)

≤ R∗ ≤1 −
∑

γ∈Γ

Ly(γ)(γ) · PX(Xγ) ≤ 1 −
∑

γ∈Γ

Uy(γ)(γ) · PX(Xγ) + τ (5)

for the risk.

Now we are in the position to define the notion of a ‘typical’ training set. For ℓ ∈ N, u ∈ Y , and
A ∈ A, we define

FA,u
ℓ :=

{(
(x1, y1), . . . , (xℓ, yℓ)

)
∈ (X × Y )ℓ

∣
∣
∣

∣
∣
{
n ∈ {1, . . . , ℓ}

∣
∣xn ∈ A, yn = u

}∣
∣ ≥ ℓ · (1 − τ) · Lu(A) · PX(A)

}

.

Intuitively, we ask that the number of examples of class u in A does not deviate too much from its
expectation, introducing two approximations: The multiplicative factor (1−τ), and the lower bound
Lu(A) on the conditional probability of class u in A. We combine the properties of all these sets in

the set Fℓ :=
⋂

u∈Y

⋂

A∈A FA,u
ℓ of training sets of size ℓ, with the same lower bound on the number

of training examples in all sets A ∈ A, and for all classes u ∈ Y .

4 Preparations

The proof of our main result follows the proofs of Theorems 1 and 2 in [6] as closely as possible. For
the sake of clarity we organize the proof such that all six lemmas in this section directly correspond
to Lemmas 1-6 in [6].

Lemma 1. (Lemma 1 from [6]) Let k : X ×X → R be a universal kernel on a compact subset X
or R

d and Φ : X → H be a feature map of k. The Φ is continuous and

dk(x, x′) := ‖Φ(x) − Φ(x′)‖
defines a metric on X such that id : (X, ‖ · ‖) → (X, dk) is continuous. In particular, N ((X, dk), ε)
is finite for all ε > 0.

Lemma 2. Let X ⊂ R
d be compact and let k : X × X → R be a universal kernel. Then, for all

ε > 0 and all pairwise disjoint and compact (or empty) subsets K̃u ⊂ X , u ∈ Y , there exists an
induced function

f : X →
[

− 1/2 · (1 + ε), 1/2 · (1 + ε)
]q

; x 7→ (〈w∗
1 , x〉, . . . , 〈w∗

q , x〉)T ,

such that

fu(x) ∈ [1/2, 1/2 · (1 + ε)] if x ∈ K̃u

fu(x) ∈ [−1/2 · (1 + ε),−1/2] if x ∈ K̃v for some v ∈ Y \ {u}
for all u ∈ Y .

Proof. This lemma directly corresponds to Lemma 2 in [6], with slightly different cases. Its proof
is completely analogous.

Lemma 3. The probability of the training sets Fℓ is lower bounded by

P ℓ(Fℓ) ≥ 1 − q · M · exp

(

−1

8
(τ6/M2)ℓ

)

.

Proof. Let us fix A ∈ A and u ∈ Y . In the case Lu(A) = 0 we trivially have P ℓ
(
(X × Y )ℓ \

FA,u
ℓ

)
= 0. Otherwise we consider T =

(
(x1, y1), . . . , (xℓ, yℓ)

)
∈ (X × Y )ℓ and define the binary

variables zi := 1{A×{u}}(xi, yi), where the indicator function 1S(s) is one for s ∈ S and zero
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otherwise. This definition allows us to express the cardinality
∣
∣
{
n ∈ {1, . . . , ℓ}

∣
∣xn ∈ A, yn =

u
}∣
∣ =

∑ℓ
i=1 zi found in the definition of FA,u

ℓ in a form suitable for the application of Hoeffding’s
inequality. The inequality, applied to the variables zi, states

P ℓ

(
ℓ∑

i=1

zi ≤ (1 − τ) · E · ℓ
)

≤ exp
(
−2(τE)2ℓ

)
,

where E := E[zi] =
∫

A×{u}
dP (x, y) =

∫

A
P (u|x)dx ≥ Lu(A) · PX(A) > 0. Due to E > 0 we

can use the relation

ℓ∑

i=1

zi ≤ (1 − τ) · E · ℓ ⇒
ℓ∑

i=1

zi < (1 − τ/2) · E · ℓ

in order to obtain Hoeffding’s formula for the case of strict inequality

P ℓ

(
ℓ∑

i=1

zi < (1 − τ) · E · ℓ
)

≤ exp

(

−1

2
(τE)2ℓ

)

.

Combining E ≥ Lu(A) · PX(A) and
∑ℓ

i=1 zi < (1 − τ) · Lu(A) · PX(A) · ℓ ⇔ T 6∈ FA,u
ℓ we

obtain

P ℓ
(

(X × Y )ℓ \ FA,u
ℓ

)

= P ℓ

(
ℓ∑

i=1

zi < (1 − τ) · Lu(A) · PX(A) · ℓ
)

≤ P ℓ

(
ℓ∑

i=1

zi < (1 − τ) · E · ℓ
)

≤ exp

(

−1

2
(τE)2ℓ

)

≤ exp

(

−1

2
(τLu(A)PX(A))2ℓ

)

.

Properties (P3) and (P7) ensure Lu(A) ≥ τ and PX(A) ≥ τ/(2M). Applying these to the previous
inequality results in

P ℓ
(

(X × Y )ℓ \ FA,u
ℓ

)

≤ exp

(

−1

2
(τ3/(2M))2ℓ

)

= exp

(

−1

8
(τ6/M2)ℓ

)

,

which also holds in the case Lu(A) = 0 treated earlier. Finally, we use the union bound

1 − P ℓ(Fℓ) = 1 − P ℓ

(
⋂

u∈Y

⋂

A∈A

FA,u
ℓ

)

= P ℓ

(
⋃

u∈Y

⋃

A∈A

(

(X × Y )ℓ \ FA,u
ℓ

)
)

≤ |Y | · |A| · exp

(

−1

8
(τ6/M2)ℓ

)

≤ q · M · exp

(

−1

8
(τ6/M2)ℓ

)

and properties (P4) and (P5) to prove the assertion.

Lemma 4. The SVM solution f and the hypothesis h = f ◦ κ fulfill

R(f) ≤ R∗ +

∫

X

ηh(x)dx .

Proof. The lemma follows directly from the definition of ηh, even with equality. We keep it here
because it is the direct counterpart to the (stronger) Lemma 4 in [6].

Lemma 5. For all training sets T ∈ Fℓ the SVM solution given by (w1, . . . , wq) and (ξ1, . . . , ξℓ)
fulfills

∑

u∈Y

〈wu, wu〉 +
C

ℓ

ℓ∑

i=1

ξi ≤
∑

u∈Y

〈w∗
u, w∗

u〉 + C(R∗ + 2τ) ,

with (w∗
1 , . . . , w∗

q ) as defined in Lemma 2.
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Proof. The optimality of the SVM solution for the primal problem (2) implies

∑

u∈Y

〈wu, wu〉 +
C

ℓ

ℓ∑

i=1

ξi ≤
∑

u∈Y

〈w∗
u, w∗

u〉 +
C

ℓ

ℓ∑

i=1

ξ∗i

for any feasible choice of the slack variables ξ∗i . We choose the values of these variables as ξ∗i =
1 + τ for P (y |xi) 6∈ ∆yi

and zero otherwise which corresponds to a feasible solution according

to the construction of w∗
u in Lemma 2. Then it remains to show that

∑ℓ
i=1 ξ∗i ≤ ℓ · (R∗ + 2τ).

Let n+ =
∣
∣
{
i ∈ {1, . . . , ℓ}

∣
∣P (y |xi) ∈ ∆yi

}∣
∣ denote the number of training examples correctly

classified by the Bayes rule expressed by ∆yi
(or κ). Then we have

∑ℓ
i=1 ξ∗i = (1 + τ)(ℓ − n+).

The definition of Fℓ yields

n+ ≥
∑

u∈Y

∑

A∈A
y(A)=u

ℓ · (1 − τ) · Lu(γ) · PX(A) = ℓ · (1 − τ) ·
∑

u∈Y

∑

γ∈Γ

y(γ)=u



Lu(γ) ·
∑

A∈Aγ

PX(A)





= ℓ · (1 − τ) ·
∑

u∈Y

∑

γ∈Γ

y(γ)=u

[

Lu(γ) · PX(Kγ)
]

= ℓ · (1 − τ) ·
∑

γ∈Γ

[

Ly(γ)(γ) · PX(Kγ)
]

≥ ℓ · (1 − τ) ·




∑

γ∈Γ

[

Ly(γ)(γ) · PX(Xγ)
]

− τ



 ≥ ℓ · (1 − τ) · (1 −R∗) ,

where the last line is due to inequality (5). We obtain

ℓ∑

i=1

ξ∗i ≤ ℓ · (1 + τ) · (1 − (1 − τ) · (1 −R∗))

= ℓ · [R∗ + τ + τ2(1 −R∗)] ≤ ℓ · [R∗ + τ + τ2] ≤ ℓ · (R∗ + 2τ) ,

which proves the claim.

Lemma 6. For all training sets T ∈ Fℓ the sum of the slack variables (ξ1, . . . , ξℓ) corresponding
to the SVM solution fulfills

ℓ∑

i=1

ξi ≥ ℓ · (1 − τ)2 ·
(

R∗ +

∫

X

ηh(x) dPX(x) − q · τ
)

.

Proof. Problem (2) takes the value C in the feasible solution w1 = . . . , wq = 0 and ξ1 = · · · =

ξℓ = 1. Thus, we have
∑

u∈Y ‖wu‖2 ≤ C in the optimum, and we deduce ‖wu‖ ≤
√

C for each

u ∈ Y . Thus, property (P8) makes sure that |fu(x) − fu(x′)| ≤ τ/2 for all x, x′ ∈ A and u ∈ Y .
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The proof works through the following series of inequalities. The details are discussed below.

ℓ∑

i=1

ξi =
∑

A∈A

∑

u∈Y

∑

xi∈A
yi=u

ξi

≥
∑

A∈A

∑

u∈Y

∑

xi∈A
yi=u

[
1 − δh(xi),u + fh(xi)(xi) − fu(xi)

]

+

≥
∑

A∈A

∑

u∈Y

∑

xi∈A
yi=u

1

PX(A)
·
∫

A

[

1 − δh(x),u + fh(x)(x) − fu(x) − 2 · τ

2

]

+
dPX(x)

≥ ℓ · (1 − τ) ·
∑

A∈A

∑

u∈Y

Lu(A) ·
∫

A




1 − τ − δh(x),u + fh(x)(x) − fu(x)

︸ ︷︷ ︸

≥0






+

dPX(x)

≥ ℓ · (1 − τ) ·
∑

A∈A

∫

A

(1 − τ) ·
∑

u∈Y \{h(x)}

Lu(A) dPX(x)

≥ ℓ · (1 − τ)2 ·
∑

A∈A

∫

A

(

1 − q · τ − Lh(x)(A)
)

dPX(x)

≥ ℓ · (1 − τ)2 ·
∑

A∈A

∫

A

(

1 − q · τ − 1 + s(x) + ηh(x)
)

dPX(x)

= ℓ · (1 − τ)2 ·
(

R∗ +

∫

X

ηh(x) dPX(x) − q · τ
)

The first inequality follows from equation (3). The second inequality is clear from the definition of

FA,u
ℓ together with |fu(x) − fu(x′)| ≤ τ/2 within each A ∈ A. For the third inequality we use

that the case u = h(x) does not contribute, and the non-negativity of fh(x)(x) − fu(x). In the next

steps we make use of
∑

u∈Y Lu(A) ≥ 1 − q · τ and the lower bound Lh(x)(x) ≤ P (h(x)|x) =
1 − Eh(x) = 1 − s(x) − ηh(x), which can be deduced from properties (P1) and (P2).

5 Proof of the Main Result

Just like the lemmas, we organize our theorems analogous to the ones found in [6]. We start with a
detailed but technical auxiliaury result.

Theorem 1. Let X ⊂ R
d be compact, Y = {1, . . . , q}, and k : X × X → R a universal kernel.

Then, for all Borel probability measures P on X × Y and all ε > 0 there exists a constant C∗ > 0
such that for all C ≥ C∗ and all ℓ ≥ 1 we have

Pr∗
({

T ∈ (X × Y )ℓ
∣
∣ R(fT,k,C) ≤ R∗ + ε

})

≥ 1 − qM exp

(

−1

8
(τ6/M2)ℓ

)

,

where Pr∗ is the outer probability of P ℓ, fT,k,C is the solution of problem (2), M = q · (1/τ + 1)q ·
N ((X, dk), τ/(2

√
C)), and τ = ε/(q + 5).

Proof. According to Lemma 3 it is sufficient to show R(fT,k,C) ≤ R∗ + ε for all T ∈ Fℓ.
Lemma 4 provides the estimate R(f) ≤ R∗ +

∫

X
ηh(x) dPX(x), such that it remains to show

that
∫

X
ηh(x) dPX(x) ≤ ε for T ∈ Fℓ. Consider w∗

u as defined in Lemma 2, then we combine
Lemmas 5 and 6 to

(1 − τ)2 ·







R∗ +

∫

X

ηh(x) dPX(x) − q · τ
︸ ︷︷ ︸

≤1








≤ 1

C









∑

u∈Y

‖w∗
u‖2 −

∑

u∈Y

‖wu‖2

︸ ︷︷ ︸

≥0









+ (R∗ + 2τ) .
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Using a−τ ≤ (1−τ)·a for any a ∈ [0, 1], we derive
∫

X
ηh(x) dPX(x) ≤ 1

C

∑

u∈Y ‖w∗
u‖2+(q+4)·

τ . With the choice C∗ = 1
τ
·∑u∈Y ‖w∗

u‖2 and the condition C ≥ C∗ we obtain
∫

X
ηh(x) dPX(x) ≤

(q + 5) · τ = ε.

Proof of Theorem 2. Up to constants, this short proof coincides with the proof of Theorem 2 in [6].
Because of the importance of the statement and the brevity of the proof we repeat it here:

Since ℓ · Cℓ → ∞ there exists an integer ℓ0 such that ℓ · Cℓ ≥ C∗ for all ℓ ≥ ℓ0. Thus for ℓ ≥ ℓ0
Theorem 1 yields

Pr∗
({

T ∈ (X × Y )ℓ
∣
∣ R(fT,k,Cℓ

) ≤ R∗ + ε
})

≥ 1 − qMℓ exp

(

−1

8
(τ6/M2

ℓ )ℓ

)

,

where Mℓ = D · N ((X, dk), τ/(2
√

Cℓ)). Moreover, by the assumption on the covering numbers of

(X, dk) we obtain M2
ℓ ∈ O((ℓ · Cℓ)

2) and thus ℓ · M−2
ℓ → ∞.

6 Conclusion

We have proven the universal consistency of the popular multi-class SVM by Crammer and Singer.
This result disproves the common belief that this machine is in general inconsistent. The proof itself
can be understood as an extension of Steinwart’s universal consistency result for binary SVMs. Just
like there are different extensions of the binary SVM to multi-class classification in the literature,
we strongly believe that our proof can be further generalized to cover other multi-class machines,
such as the one proposed by Weston and Watkins, which is a possible direction for future research.
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