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Applicability Proofs for Block Bootstrapping in Reinforcement Learning

We prove the consistency and coverage error for the bootstrapped studentized interval around our
the sample mean of the sequence of parameters for global function approximation. Each parameter
vector θt on time step t corresponds to the action-value functionQt on that time step, withQ(s, a) =
f(θ, s, a) for some bounded function f . A common example of f is a linear function f(θ, s, a) =

θTφ(s, a) with features given by the function φ : S ×A→ Rd.

Let {θt} be the sequence of weight vectors, drawn from probability distributions Pa(< Θt, st > | <
θt−1, st−1 >, . . . , < θt−k−1, st−k−1) with means µt. For a given state-action pair (s, a) ∈ S × A,
with g(θ) = f(θ, s, a), we are estimating

ḡn = n−1
n∑
i=1

gi

where gi = E[(g(Θi)].

In order to prove a coverage error of o(n−1/2) for the studentized interval on f(µn, s, a) for any
given (s, a) ∈ S × A, we will need the following assumptions, simplified from Lahiri’s Theorem
4.1 [5] for our scenario. The proof will be for any (s, a), so we fix an (s, a) ∈ S × A and let
g(θ) = f(θ, s, a).

Let Yn =< Sn, An, Rn >, the triplet obtained from acting in the given MDP, G = (S,A, P,R).
The triplets are drawn from the implicit from the probability distribution PR(s, a, r) computed using
P (s, a, s′) and R(s, a, s′), giving the probability of receiving reward r after taking action a in state
s. Let Dj = σ(Yj), the σ-fields of the random variables Yn.

Assumption 1 For any (s, a) ∈ S ×A, the density function, PR(s, a, )̇ : R→ R is continuous and
bounded.

This assumption is required so that we can approximate this (continuous) density function with
infinitely many samples from Yn. This in turn enables us to define the σ-fields in terms of the Yn,
placing the strong mixing assumptions instead on Yn, rather than on our sequence, {θt}. The next
two assumptions are the typical assumptions placed on the sequence of σ-fields for bootstrapping
proofs. Essentially, Assumptions 2 and 3 both place a strong mixing assumptions on Yn. Mixing
assumptions are a common restriction in reinforcement learning, related to ergodicity of an MDP [2,
7]. Any MDP satisfying the above mixing assumptions is ergodic [3]. Any stationary positive
recurrent Markov chain (essentially ergodic) with trivial tail field is strongly mixing [6](Page 553).

Assumption 2 There exists d > 0 such that for all m,n ∈ N, A ∈ Dn
−∞ and B ∈ D∞n+m,

|P (A ∩B)− P (A)P (B)| ≤ d−1e−dm
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Assumption 3 There exists d > 0 such that for all m,n, q ∈ N, A ∈ Dm+q
m−q ,

E|P (A|Dj : j 6= n)− P (A|Dj : 0 < |n− j| ≤ m+ q)| ≤ d−1e−dm

The remaining assumptions are on the sequence of function values, {g(θt)} (implicitly assumptions
on the sequence of weights {θt}). The assumptions include boundedness assumptions on certain
moments of the sequence, a smoothness condition and an m-dependence requirement.

Assumption 4 g is a continuos bounded function and supj≥1E||g(θj)||12 <∞

Assumption 5 (Conditional Cramer condition) There exists d > 0 such that for all m,n ∈ N,
d−1 < m < n and all t ∈ R with t ≥ d,

E|E[eit(g(θn−m)+...+g(θn+m)|Dj : j 6= n]| ≤ e−d

Assumption 6 For |s− t| > m, Cov(g(θs), g(θt)) = 0

We expect our Q-values to change smoothly and to remain reasonably bounded, so Assumptions 4
and 5 are unrestrictive assumptions. The m-dependence assumption is slightly stronger, though m
can be quite large, so we can still have quite long-range dependence.

Finally, we want to say something about the properties of the algorithm, essentially restricting to
non-divergent algorithms.

Assumption 7 Mn = Var(n−1/2(g(θ1)+. . .+g(θn))) is non-singular ∀ n andM = limn→∞Mn

exists and is non-singular.

This assumptions is necessary to ensure that we reach a normal distribution in the limit and can
therefore use an Edgeworth expansion to approximate the true distribution. Notice therefore that for
non-convergent (but not divergent) sequences of θn, we can still apply the bootstrap, as long as the
conditions on Mn are met. For convergent sequences, Mn → 0, because the weights stop changing;
however, in practice, the weights will always oscillate around the true θ0. Therefore, assuming the
above does not practically restrict convergence. We expect that we can drop this condition and in
fact expect many of the conditions to simplify assuming θt → θ0, but we leave this to future work.

With just these assumptions, we can proof the main result.

Theorem 1 Given that Assumption 1-7 are satisfied and there exists constants C1, C2 > 0, 0 <
α ≤ β < 1/4 such that C1n

α < l < C2n
β (i.e. l increases with n), then the moving block bootstrap

produces a one-sided confidence interval that is consistent and has a coverage error of o(n−1/2) for
the studentization of the mean of the process {Q1(s, a) = f(θ1, s, a), Q2(s, a) = f(θ2, s, a), . . .}.

Proof: For the proof, we need to satisfy the seven assumptions in Lahiri’s Theorem 4.1 [5]. We
will call these assumptions requirements to distinguish them from our assumptions. The proof will
be organized based on these requirements (which will be stated below). The statements of the
requirements will be italicized with justification of how that requirement is satisfied following the
italicized statement.

Requirement 1 (C.1’): supj≥1E||g(θj)||4 < ∞ and M = limn−>∞Mn exists and is non-
singular Satisfied by Assumptions 4 and 7

Requirement 2 (C.2): There exists a d > 0 such that for n,m ∈ N with m > d−1, there exists a
Dn+m
n−m measurable p-variate random vector Ȳn,m for which

E||g(θn)− Ȳn,m|| ≤ d−1e−dm

C.2 is satisfied by Assumption 1 and by the construction of Yn, which we justify in the following.
Essentially, this requirement says that for infinitely many Yn, we can accurately approximate g(θn).
In Theorem 1 [4], an exponential decrease rate is proved for a kernel density estimator. Choose a
kernel K satisfying:

1. The kernel functionK is a probability density of bounded variation such that
∫
K2(u)du <

∞; further, the derivative K ′ exists and is integrable.
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2. For the parameters hn, pn defined in [4], nhn/pn →∞.

Now, by the theorem, because PR is bounded and continuous and Yn is strongly mixing, the error in
the approximation of PR using samples from Yn decreases exponentially with n for some constants
c1, c2 (based on norms on K, some constants, etc.), at a rate of

err ≤ c1e−c2n (1)

With an accurate PR distribution for a given (s, a), we can exactly compute the mean for the dis-
tribution Pa(< Θt, st > | < θt−1, st−1 >, . . . , < θt−k, st−k >). Let Ȳn,m be the function g
applied to the approximated mean of this distribution using the current approximation of PR with
the 2m samples, Yn−m, . . . , Yn+m. The construction of Ȳn,m is possible because we have a mea-
surable function (Borel function) between the σ-fields and g(Θ) drawn from Pa(< g(Θt), st >
| < θt−1, st−1 >, . . . , < θt−k, st−k >): the kernel estimator is continuous and g is continuous,
between Borel sets. Therefore, the error between this approximated mean and the L2 norm of the
random variable will decrease with the some C times the above rate (Equation 1), for some large
enough C (which exists because PR and g are bounded).

Setting d = min{(C × c1)−1, c2}, we obtain the desired result.

Requirement 2 (C.2 (ii)): supj≥1E||g(θj)||12 <∞
The twelfth moment is bounded by Assumption 4.

Requirements 3 and 5 (C.3 and C.5) correspond exactly to our Assumptions 2 and 3.

Requirement 4 (C.4) corresponds exactly to our smoothness Cramer condition, Assumption 5.

Finally, there are two more requirements that restrict the heterogeneity of the means µt asymptoti-
cally. Let

mt = EUt = l−1
l∑

j=1

gt+j−1

Mnt = Var(
√
lUt)

Ut = l−1
l∑

j=1

g(Θt+j−1)

where l is the block length and 1 ≤ t ≤ b. Recall Mn = Var(n−1/2(g(Θ1) + . . . + g(Θn))) and
ḡ(µn) = n−1(g1, . . . , gn), where gi = E[g(Θi].

Since the sequence of µt eventually reaches it’s limiting distribution (stationary) with mean µ and
variance σ, for n0 ∈ N, µ = µt = µt+1 = . . . for all t > n0. Note that this Markov chain becomes
stationary because the θt are drawn from a time-homogenous Markov chain, and time-homogenous
Markov chains always reach a limiting distribution [1]. This fact enables us to satisfy the asymptotic
heterogeneity conditions.

Requirement 6 (C.6):

lim
n→∞

max{l2||mt − µ̄n|| : 1 ≤ t ≤ b} = 0

Requirement 7 (C.7):1

lim
n→∞

max{l2||Mnt −Mn|| : 1 ≤ t ≤ b} = 0

Note that as n→∞, then by the assumption that C1n
α < l < C2n

β , l also goes to∞. As l →∞,
the finite initial number of samples with means different from µ (the stationary distribution) will
be dominated by the infinite tail of samples in the stationary distribution with mean µ. Therefore,
clearly both mt → g(µ) and µ̄n → g(µ)as n → ∞. Similarly, the tail has the same variances;
therefore, the difference between Mn,t and Mn goes to zero.

1Note that C.7 is slightly different in the theorem, but Lahiri mentions that it can be simplified to what we
have here because of requirement C.1
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Therefore, because our data meets the assumptions in [5], we know that the bootstrap is consistent
and the coverage error for the studentized confidence interval on {Qn} is o(n−1/2).
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