
Effects of Synaptic Weight Diffusion on Learning in
Decision Making Networks

Kentaro Katahira 1,2,3, Kazuo Okanoya1,3 and Masato Okada1,2,3

1ERATO Okanoya Emotional Information Project, Japan Science Technology Agency
2Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan

3RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
katahira@mns.k.u-tokyo.ac.jp okanoya@brain.riken.jp

okada@k.u-tokyo.ac.jp

Abstract

When animals repeatedly choose actions from multiple alternatives, they can al-
locate their choices stochastically depending on past actions and outcomes. It
is commonly assumed that this ability is achieved by modifications in synaptic
weights related to decision making. Choice behavior has been empirically found
to follow Herrnstein’s matching law. Loewenstein & Seung (2006) demonstrated
that matching behavior is a steady state of learning in neural networks if the synap-
tic weights change proportionally to the covariance between reward and neural ac-
tivities. However, their proof did not take into account the change in entire synap-
tic distributions. In this study, we show that matching behavior is not necessarily
a steady state of the covariance-based learning rule when the synaptic strength is
sufficiently strong so that the fluctuations in input from individual sensory neu-
rons influence the net input to output neurons. This is caused by the increasing
variance in the input potential due to the diffusion of synaptic weights. This effect
causes an undermatching phenomenon, which has been observed in many behav-
ioral experiments. We suggest that the synaptic diffusion effects provide a robust
neural mechanism for stochastic choice behavior.

1 Introduction

Decision making has often been studied in experiments in which a subject repeatedly chooses actions
and rewards are given depending on the action. The choice behavior of subjects in such experiments
is known to obey Herrnstein’s matching law [1]. This law states that the proportional allocation of
choices matches the relative reinforcement obtained from those choices. The neural correlates of
matching behavior have been investigated [2] and the computational models that explain them have
been developed [3, 4, 5, 6, 7]．

Previous studies have shown that the learning rule in which the weight update is made proportionally
to the covariance between reward and neural activities lead to matching behavior (we simply refer
to this learning rule as the covariance rule) [3, 7]. In this study, by means of a statistical mechanical
approach [8, 9, 10, 11], we analyze the properties of the covariance rule in a limit where the num-
ber of plastic synapses is infinite . We demonstrate that matching behavior is not a steady state of
the covariance rule under three conditions: (1) learning is achieved through the modification of the
synaptic weights from sensory neurons to the value-encoding neurons; (2) individual fluctuations in
sensory input neurons are so large that they can affect the potential of value-coding neurons (possi-
bly via sufficiently strong synapses); (3) the number of plastic synapses that are involved in learning
is large. This result is caused by the diffusion of synaptic weights. The term “diffusion” refers
to a phenomenon where the distributions over the population of synaptic weights broadens. This
diffusion increases the variance in the potential of output units since the broader synaptic weight
distributions are, the more they amplify fluctuations in individual inputs. This makes the choice
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behavior of the network more random and moves the probabilities of choosing alternatives to equal
probabilities, than that predicted by the matching law. This outcome corresponds to the under-
matching phenomenon, which has been observed in behavioral experiments.

Our results suggest that when we discuss the learning processes in a decision making network, it may
be insufficient to only consider a steady state for individual weight updates, and we should therefore
consider the dynamics of the weight distribution and the network architecture. This proceeding is a
short version of our original paper [12], with the model modified and new results included.

2 Matching Law

First, let us formulate the matching law. We will consider a case with two alternatives (each denoted
asA andB), which has generally been studied in animal experiments. Here, we consider stochastic
choice behavior, where at each time step, a subject chooses alternativea with probabilitypa. We
denote the reward asr. For the sake of simplicity, we restrictr to a binary variable:r = 0 represents
the absence of a reward, andr = 1 means that a reward is given. The expected return,⟨r|a⟩, refers
to the average reward per choicea, and the income,Ia, refers to the total amount of reward resulting
from the choicea andIa/ (

∑na

a′ Ia′) is a fractional income from choicea. For a large number of
trials, this equals⟨r|a⟩pa. ⟨r⟩ =

∑na

a′ ⟨r|a′⟩pa′ is an average reward per trial over possible choice
behavior. The matching law states thatIa/ (

∑na

a′ Ia′) = pa for all a with pa ̸= 0. For a large

number of trials, the fraction of income from an alternativea is expressed as ⟨r|a⟩pa∑
a′ ⟨r|a′⟩pa′

= ⟨r|a⟩pa

⟨r⟩
Then, the matching law states that this quantity equalspa for all a. To make this hold, it should
satisfy ⟨r|A⟩ = ⟨r|B⟩ = ⟨r⟩, (1)

if pA ̸= 0 andpB ̸= 0. Note that⟨r|a⟩ is the average reward given the current choice, and this is
a function of the past choice. Equation 1 is a condition for the matching law, and we will often use
this identity.

3 Model

Decision Making Network: The decision making network we study consists of sensory-input neu-
rons and output neurons that represent the subjective value of each alternative (we call the output
neurons value-encoding neurons). The network is divided into two groups (A andB), which par-
ticipate in choosing each alternative. Sensory cues from both targets are given simultaneously via
theN -neuron population,xA = (xA

1 , ..., xA
N ) andxB = (xB

1 , ..., xB
N ) 1 Each component of input

vectorsxA andxB independently obeys a gaussian distribution with meanX0 and variance one
(these quantities can be spike counts during stimulus presentation).

The choice is made in such a way that alternativea is chosen if the potential of output unitua,
which will be specified below, is higher than that of the other alternative. Although we do not model
this comparison process explicitly, it can be carried out via a winner-take-all competition mediated
by feedback inhibition, as has been commonly assumed in decision making networks [3, 13]. In
this competition, the “winner” group gains a high firing rate while the “loser” enters a low firing
state [13]. LetyA andyB denote the final output of an output neuron after competition and this is
determined as

yA = 1, yB = 0, if uA ≥ uB ,

yA = 0, yB = 1, if uA < uB .

With the synaptic efficacies (or weights)JA = (JA
1 , ..., JA

N ) andJB = (JB
1 , ..., JB

N ), the net input
to the output units are given by

ha =
N∑

i=1

Ja
i xa

i , a = A,B. (2)

1This assumption might be the case when the sensory input for each alternative is completely different, e.g.,
in position, and in color such as those in Sugrue et al.’s experiment [2]. The case that output neurons share the
inputs from sensory neurons are analyzed in [12].
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We assume thatJa
i is scaled asO(1/

√
N). This means that the mean ofha is O(

√
N), thus diverges

for largeN , while the variance is kept of order unity. This is a key assumption of our models. IfJa
i

is scaled asO(1/N) instead, the individual fluctuations inxa
i are averaged out. It has been shown

that the mean of the potential are kept of order unity while fluctuations in external sources (xa
i ) that

are of order unity affect the potential in output neuron, under the condition that recurrent inputs
from inhibitory interneurons, excitatory recurrent inputs, and input from external sources (xa

i ) are
balanced [14]. We do not explicitly model this recurrent balancing mechanism, but phenomenolog-
ically incorporate it as follows.

Using the order parameters

la = ||Ja||, J̄a =
1√
N

N∑
i=1

Ja
i , (3)

we find ha ∼ N (
√

NX0J̄a, l2a) whereN (µ, σ2) denotes the gaussian distribution with meanµ

and varianceσ2. We assumeua obeys a gaussian distribution of meanCaua/
√

N , and variance
CaVar[ua] + σ2

p due to the reccurent balancing mechanism [14].CA, CB andσ2
p are constants

that are determined according to the specific model architecture of reccurent network, but we set
CA = CB = 1 since they do not affect the qualitative properties of the model. Then,ua is computed
asua = ha − h̄a

rec + σpϵ with h̄a
rec = (1 − 1/

√
N)E[ha] whereE[ha] =

√
NX0J̄a andϵ is a

gaussian random variable with unit mean and unit variance. Then,ua obey the independent Gaussian
distributions whose means and variances are respectively given byJ̄a andl2a + σ2

p. From this, the
probability that the network will choose alternativeA can be described as

pA =
1
2

erfc

− X0(J̄A − J̄B)√
2(l2A + l2B + 2σ2

p)

 . (4)

where erfc(·) is the complementary error function, erfc(x) = 2√
π

∫ ∞
x

e−t2dt. This expression is
in a closed form of the order parameters. Thus, if we can describe the evolution of these order
parameters, we can completely describe how the behavior of the model changes as a consequence of
learning. In the following, we will often use an additional order parameter, the variance of weight,
σ2

a. This parameter is more convenient for gaining insights into the evolution of the weight than
the weight norm,la. The diffusion of weight distributions is reflected by increases inσ2

a, i.e., the
differences between the growth of the second order moment of weight distributionl2a and that of the
square of its mean̄J2

a .

Learning Rules: We consider following two learning rules that belong to the class of the covariance
learning rule:

Reward-modulated (RM) Hebb rule:

Ja
i (t + 1) = Ja

i (t) +
η

N
[r(t) − r̄(t)] ya(t)(xa

i (t) − cx), (5)

Delta rule:

Ja
i (t + 1) = Ja

i (t) +
η

N
[r(t) − r̄(t)] (xa

i (t) − cx), (6)

whereη is the learning rate,̄· denotes the expected value andcx is a constant. The expectation of
these updates is proportional to covariance between the reward,r, and a measure of neural activity
(ya(xa

i − cx) for RM-Hebb rule, andxa
i − cx for the delta rule). Variants of the RM-Hebb rule

have recently been studied intensively [4, 15, 16, 17, 18, 19, 20]. The delta rule has been used as
an example of the covariance rule [3, 7] and has also been used for the learning rule in the model of
perceptual learning [21]. The expected reward,r̄, can be estimated, e.g., with an exponential kernel
such as̄r(t + 1) = (1− γ)r(t) + γr̄(t) with a constantγ. We assume thatcx = (1− 1/

√
N)X0 to

simplify the following analysis2.

2From this assumption, this model can be transformed into a simple mathematical equivalent form that the
distribution of inputxa

i is replaced withN (X0/
√

N, 1) and the potential in output is replaced withua =∑N
i=1 Ja

i xa
i + σpξa, whereξa ∼ N (0, 1).
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4 Macroscopic Description of Learning Processes

Here, following the statistical mechanical analysis of on-line learning [8, 9, 10, 11], we derive
equations that describe the evolution of the order parameters. To do this, we first rewrite the learning
rule in a vector form:

Ja(t + 1) = Ja(t) +
1
N

Fa (xa − cx), (7)

where for the RM-Hebb rule,Fa = η(rt− r̄t)ya，and for the delta rule,Fa = η(rt− r̄t). Taking the
square norm of each side of equation 7, we obtainla(t + 1)2 = la(t)2 + 2

N Fa(t) h̃a + 1
N Fa(t)2 +

O(1/N2), where we have defined̃ha =
∑N

i=1 Ja
i (xa

i − cx). Summing up over all components
on both sides of equation 7, we obtain̄Ja(t + 1) = J̄a(t) + 1

N Fa(t)x̃a, where we have defined

x̃a =
∑N

i=1(x
a
i − cx). In both these equations, the magnitude of each update is of order1/N .

Hence, to change the order parameters of order one,O(N) updates are needed. Within this short
period that spans theO(N) updates, the weight change inO(1/N) can be neglected, and the self-
averaging property holds. By using this property and introducing continuous “time” scaled byN ,
i.e.,α = t/N , the evolutions of the order parameters obey ordinary differential equations:

dl2a
dα

= 2⟨Fah̃a⟩ + ⟨F 2
a ⟩,

dJ̄a

dα
= ⟨Fax̃a⟩, (8)

where⟨·⟩ denotes the ensemble average over all possible inputs and arrivals of rewards. The specific
form of the ensemble averages are obtained for reward-dependent Hebbian learning as

⟨Fah̃a⟩ = η pa {⟨r|a⟩ − ⟨r⟩} ⟨h̃a|a⟩,
⟨F 2

a ⟩ = η2pa

{
(1 − 2⟨r⟩)⟨r|a⟩ + (⟨r⟩)2

}
,

⟨Fax̃a⟩ = η pa {⟨r|a⟩ − ⟨r⟩} ⟨x̃a|a⟩,
and for the delta rule,

⟨Fah̃a⟩ = η
{

pa(⟨r|a⟩ − ⟨r|a′⟩)⟨h̃a|a⟩ + (⟨r|a′⟩ − ⟨r⟩)J̄a

}
,

⟨F 2
a ⟩ = η2 {⟨r⟩(1 − ⟨r⟩)} ,

⟨Fax̃a⟩ = η { pa (⟨r|a⟩ − ⟨r|a′⟩)⟨x̃a|a⟩ + ⟨r|a′⟩ − ⟨r⟩} .

The conditional averages⟨h̃a|a⟩ and⟨x̃a|a⟩ in these equations are computed as

⟨h̃a|a⟩ = J̄aX0 +
l2a

pa

√
2πL2

exp
(
−

X2
0D2

J̄

2L2

)
, ⟨x̃a|a⟩ = X0 +

J̄a

pa

√
2πL2

exp
(
−

X2
0D2

J̄

2L2

)
,

(9)

where we have definedL =
√

l2A + l2B + 2σ2
p andDJ̄ = J̄B − J̄A. The details on the derivation are

given in the supplementary material and [12].

Next, we consider weight normalization in which the total length of the weight vector is kept con-
stant. We adopted this weight normalization because of analytical convenience rather than taking
biological realism into account. Other weight constraints would produce no clear differences in
the following results. Specifically, we constrained the norm of the weight as||J ||2 = 2, where
J = (JA

1 , ..., JA
N , JB

1 , ..., JB
N ). This is equivalent to keepingl2A + l2B = 2. This is achieved by

modifying the learning rule in the following way [22]:

Ja(t + 1) =

√
2(Ja(t) + 1

N Fa xa)√
||JA(t) + 1

N FA xA||2 + ||JB(t) + 1
N FB xB ||2

=
Ja(t) + Fa xa√

1 + F/N
, (10)

with F ≡ FAuA + FBuB + 1
2 (F 2

A + F 2
B), provided that||J ||2 = 2 holds at trialt. Expanding the

right-hand side to first order in1/N , we can obtain the differential equations similarly to Equation 8:

dl2a
dα

= 2⟨Fah̃a⟩ + ⟨F 2
a ⟩ − ⟨F⟩l2a,

dJ̄a

dα
= ⟨Fax̃a⟩ −

1
2
⟨F⟩J̄a. (11)

With ⟨F⟩ = ⟨FAuA⟩+ ⟨FBuB⟩+ 1
2 (⟨F 2

A⟩+ ⟨F 2
B⟩), we can find thatd(l2A + l2B)/dα becomes zero

whenl2A + l2B = 2; thus, the length of the weight is kept constant.
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Figure 1: Evolution of choice probability and order parameters for RM-Hebb rules (A, B, E, F)
and delta rule (C, D, G, H), without weight normalization (A-D) and with normalization (E-H).
Parameters wereX0 = 2, η = 0.1 andσp = 1, and the reward schedule was a VI schedule (see
main text) withλA = 0.2, λB = 0.1. Lines represent results of theory and symbols plot mean
of ten trials with computer simulation. Simulations were done forN = 1, 000. Error bars indicate
standard deviation (s.d.). Error bars are almost invisible for choice probability since s.d. is very
small.

5 Results
To demonstrate the behavior of the model, we used a time-discrete version of a variable-interval
(VI) reward schedule, which is commonly used for studying the matching law. In a VI schedule, a
reward is assigned to two alternatives stochastically and independently, with a constant probability,
λa for alternativea (a = A,B). The reward remains until it is harvested by choosing the alternative.
Here, we useλA = 0.2, λB = 0.1. For this task setting, the choice probability that yields matching
behavior (denoted aspmatch

A ) is pmatch
A = 0.6923. Figure 1(A-D) plots the evolution of choice

probability and order parameters in two learning rules without a weight normalization constraint.
The lines represent the results for theory and the symbols plot the results for simulations. The results
for theory agree well with those for the computer simulations (N = 1, 000), indicating the validity of
our theory. We can see that the choice probability approaches a value that yields matching behavior
(pmatch

A ), while the order parameters̄Ja andσa continue to change without becoming saturated.
The weight standard deviation,σa, always increases (the synaptic weight diffusion).

Figure 1(E-H) plots the results with weight normalization. Again, the results for theory agree well
with those for computer simulations. For the RM-Hebb rule, the choice probability saturates at a
value belowpmatch

A . For the delta rule, the choice probability first approachespmatch
A , but without

reachingpmatch
A . It then returns to the uniform choice probability (pA = 0.5) due to its larger

diffusion effect than that of the RM-Hebb rule.

5.1 Matching Behavior Is Not Necessarily Steady State of Learning

From Figure 1, the choice probability seems to asymptotically approach matching behavior for the
case without wight normalization. However, matching behavior is not necessarily a steady state
of learning. In Figure 2, the order parameters are initialized so thatpA(0) = pmatch

A and then

Equations 8 and 11 are numerically solved. We see thatpA does not remain atpmatch
A but changes

toward the uniform choice (pA = 0.5) for both learning rules. Then, for the RM-Hebb rule,pA

evolves towardpmatch
A , but not do so for the delta rule. To understand the mechanism for this
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Figure 2: Strict matching behavior is not equilibrium point. We set initial value of order parameters
to derive perfect matching for (A) no normalization condition and (B) normalization condition.
In both cases, choice probability that yields perfect matching is repulsive. For no normalization
condition, initial conditions were first set at̄JB = 1.0, σA = σB = 1.0 and thenJ̄A was determined
so thatpA = pmatch

A . For normalization condition, these values were rescaled so that normalization
condition was met.

repulsive property of matching behavior, let us substitute the condition of the matching law,⟨r|A⟩ =
⟨r|B⟩ = ⟨r⟩ into Equations 11, for the no normalization condition. We then find that⟨Fah̃a⟩
and⟨Fax̃a⟩ are zero but⟨F 2

a ⟩ is non-zero and positive except for the non-interesting case wherer

always takes the same value. Therefore, whenpA = pmatch
A , the variance in the weight increases,

i.e., dσ2
a/dα = d(l2a − J̄2

a)/dα > 0. This moves the choice probabilities toward unbiased choice

behavior,pA = 0.5 (see Equation 4). This is the reason thatpmatch
A is repulsive. This result is in

contrast with theN = 1 case [7] where the average changes stop whenpA converges topmatch
A .

With weight normalization,
√

2(l2A + l2B) in Equation 4 is always two; thus, the only factor that
determines choice probability is the difference betweenJ̄A andJ̄B . Substituting⟨r|a⟩ = ⟨r⟩,∀a into
Equation 11, only term⟨F 2

a ⟩ remains, and we obtaind(J̄B − J̄A)/(dα) = − 1
2 (⟨F 2

A⟩+ ⟨F 2
B⟩) (J̄B −

J̄A) Except for uninteresting cases wherer is always 0 or 1,⟨F 2
A⟩ + ⟨F 2

B⟩ > 0 holds; thus, the

absolute difference,|J̄B − J̄A|, always decreases. Hence, again, the choice probability atpmatch
A

approaches unbiased choice behavior due to the diffusion effect.

Nevetheless, the choice probability of the RM-Hebb rule without weight normalization asymptoti-
cally converges topmatch

A . The reason for this can be explained as follows. First, we rewrite the
choice probability as

pA =
1
2

erfc

− X0(J̄A − J̄B)√
2(J̄2

A + J̄2
B + σ2

A + σ2
B + 2σ2

p)

 . (12)

From this expression, we find that the larger the magnitude ofJ̄a is, the weaker the effect of increases
in σa. The “diffusion term”,⟨F 2

a ⟩, which movespA away frompmatch
A depends onpA but not on

the magnitude of̄Ja’s. Thus, within the order parameter set satisfyingpA = pmatch
A , the larger the

magnitudes ofJa’s are, the weaker is the repulsive effect. If|J̄B−J̄A| → ∞ whileσA, σB are finite,

pA stays atpmatch
A . Because|J̄B − J̄A| can increase faster thanσA andσB in the RM-Hebb rule

without any weight constraints, the network approaches such situations. This is the reason that in
Figure 2A thepA returned topmatch

A after it was repulsed frompmatch
A . When weight normalization

is imposed, the magnitude of̄Ja’s are limited as|J̄B − J̄A| < 2. Thus, the diffusion effect prevents

pA from approachingpmatch
A . In the delta rule, the magnitude of̄Ja’s cannot increase independently

of σa’s. Thus,pA saturates before it reachespmatch
A , where the increase in|J̄B − J̄A| and those in

σa’s are balanced.

5.2 Learning Rate Dependence of Learning Behavior

Next, we investigate how the learning rate,η, affects the choice behavior. In the “diffusion term”,
⟨F 2

a ⟩, is a quadratic term in the learning rateη. In contrast, only the first order terms ofη appear
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Figure 3: Evolution of choice probability for various learning rates,η. Top rows are for non-weight
normalization condition and bottom rows are for normalization condition. Columns at left are for
RM-Hebb rule and those at right are for delta rule. Parameters for model and task schedules are
same as those in Figure 1. Initial conditions were set atσa = 0.0, (a = A,B), J̄a = 5.0 for
non-normalization condition and̄Ja = 1.0 for normalization condition.

in the other terms. Therefore, ifη is small, the repulsive effect from matching behavior due to the
diffusion effect is expected to weaken. Figure 3 plots the dependence of the evolution ofpA onη. As
a whole, asη is decreased, the asymptotic value,pA, approaches matching behavior, but relaxation
slows down due to the diffusion of synaptic weights. As we previously discussed, the diffusion
effect is more evident for the delta rule than for the RM-Hebb rule, and for the weight-normalization
condition than the non- normalization condition. This tendency becomes evident asη increases.

For the RM-Hebb rule without normalization, networks approach matching behavior even for a very
large learning rate (η = 1000). At the beginning of learning when̄Ja is of small magnitude, the dif-
fusion term,⟨F 2

a ⟩, has a large impact so that it greatly impedes learning for a largeη case. However,
as the magnitude of the differencesJ̄A − J̄B increases, this effect weakens and the dependence of
pA onη becomes quite small. Although there is still a deviation from perfect matching (see inset of
Figure 3A), the asymptotic value is almost unaffected in the RM-Hebb rule. For the delta rule with-
out normalization, the asymptotic values gradually depend onη. With normalization constraints, the
RM-Hebb rule also demonstrate graded dependence of asymptotic probability onη. These results
reflect the fact that the greater learning rateη is, the larger the diffusion effect.

5.3 Deviation from Matching Law

Choices by animals in many experiments deviate slightly from matching behavior toward unbi-
ased random choice, a phenomenon called undermatching [2, 23]. The synaptic diffusion effects
reproduces this phenomenon. Figure 4A,B plots choice probability for optionA as a function of
the fraction income from the option. If this function lies at the diagonal line, it corresponds to
matching behavior. For the RM-rule with weight normalization, as the learning rateη increases, the
choice probabilities deviate from matching behavior towards unbiased random choice,pA = 0.5
(Figure 4A). Similar results are obtained for another weight constraint, the hard bound condition
(Figure 4B). In this condition, if the updates makesJa

i > Jmax/
√

N (or Ja
i < 0), Ja

i is set to
Jmax/

√
N (or 0). We see that the larger theη is, the broader the weight distributions due the the

synaptic diffusion effects (Figure 4A). This result suggests that the weight diffusion effect causes un-
dermathing regardless of the way of weight constraint, as long as the synaptic weights are confined
to a finite range, as predicted by our theory.
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Figure 4: Constraints on synaptic weights leads to the undermatching behavior through synaptic
diffusion effects. (A) Choice probability forA as a function of the fraction income forA for the
RM-rule with weight normalization. We used VI schedules withλA = 0.3a andλB = 0.3(1 − a),
varying the constanta (0 ≤ a ≤ 1). The results were obtained using stationaly points of the
macroscopic equations. The diagonal line indicates the perfect matching behavior. As the learning
rateη increases, the choice probabilities deviate from matching behavior towards unbiased random
choice,pA = 0.5. (B) The same plot with (A) for the RM-rule with the hard bound condition
(the synaptic weights are restricted to the interval[0, Jmax/

√
N ] whereJmax = 5.0) obtained by

numerical simulations. Simulations were done forN = 500. (C) The weight distribution after
convergence for the simulations in (B) indicated by the gray arrows.

6 Discussion

In this study, we analyzed the reward-based learning procedure in simple, large-scale decision mak-
ing networks. To achieve this, we employed techniques from statistical mechanics. Although sta-
tistical mechanical analysis has been successively applied to analyze the dynamics of learning the
in neural networks, we applied it to reward-modulated learning in decision making networks for
the first time, to the best of our knowledge. We have assumed the activities of sensory neurons
are independent. In realistic cases, there may be correlations among sensory neurons. The exis-
tence of correlation weakens the diffusion effects. However, if there are independent fluctuations, as
observed in many physiological studies, the diffusion effects are at play here as well.

If only a single plastic synapse is taken into consideration, covariance learning rules seem to make
matching behavior a steady state of learning. However, under certain situations where a large number
of synapses simultaneously modify their efficacy, matching behavior cannot be a steady state. This
is because the randomness in weight modifications affects the choice probability of the network, and
the effect returns to the learning process. These results may offer suggestions for discussing learning
behavior in large-scale neural circuits.

Choice behavior in many experiments deviates slightly from matching behavior toward unbiased
choice behavior, a phenomenon called undermatching [23, 2]. There are several possible explana-
tions for this phenomenon. The learning rule employed by Soltani & Wang [4] is equivalent to the
state-less Q-learning in the literature on reinforcement learning [15]. Sakai & Fukai [5, 6] proved
that Q-learning does not lead to matching behavior. Thus, Soltani-Wang’s model is intrinsically
incapable of reproducing matching behavior. The authors interpreted that the departure from match-
ing behavior due to limitations in the learning rule was a possible mechanism for undermatching.
Loewenstein [7] suggested that the mistuning of parameters in the covariance learning rule could
cause undermatching. However, we found that in some task settings, the mistuning can cause over-
matching, rather than undermatching [12]. Our findings in this study add one possible mechanism
for undermatching, i.e., undermatching can be caused by the diffusion of synaptic efficacies. The
diffusion effects provide a robust mechanism for undermatching: It reproduces undermatching be-
havior, regardless of specific task settings.

To achieve random choice behavior, it is thought to require fine-tuning of network parameters [16],
whereas random choice behavior is often observed in behavioral experiments. Our results suggest
that the broad distributions of synaptic weights observed in experiments [24] can make it easier to
realize stochastic random choice behavior perhaps than previously thought.
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