
Large Margin Multi-Task Metric Learning

Shibin Parameswaran
Department of Electrical and Computer Engineering

University of California, San Diego
La Jolla, CA 92093

sparames@ucsd.edu

Kilian Q. Weinberger
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130
kilian@wustl.edu

Abstract

Multi-task learning (MTL) improves the prediction performance on multiple, different but re-
lated, learning problems through shared parameters or representations. One of the most promi-
nent multi-task learning algorithms is an extension to support vector machines (svm) by Evge-
niou et al. [15]. Although very elegant, multi-task svm is inherently restricted by the fact that
support vector machines require each class to be addressed explicitly with its own weight vec-
tor which, in a multi-task setting, requires the different learning tasks to share the same set of
classes. This paper proposes an alternative formulation for multi-task learning by extending the
recently published large margin nearest neighbor (lmnn) algorithm to the MTL paradigm. In-
stead of relying on separating hyperplanes, its decision function is based on the nearest neighbor
rule which inherently extends to many classes and becomes a natural fit for multi-task learning.
We evaluate the resulting multi-task lmnn on real-world insurance data and speech classification
problems and show that it consistently outperforms single-task kNN under several metrics and
state-of-the-art MTL classifiers.

1 Introduction

Multi-task learning (MTL) [6, 8, 19] refers to the joint training of multiple problems, enforcing a common interme-
diate parameterization or representation. If the different problems are sufficiently related, MTL can lead to better
generalization and benefit all of the tasks. This phenomenon has been examined further by recent papers which
have started to build a theoretical foundation that underpins these initial empirical findings [1, 2, 3].

A well-known application of MTL occurs within the realm of speech recognition. The way different people pro-
nounce the same words differs greatly based on their gender, accent, nationality or other individual characteristics.
One can view each possible speaker, or clusters of speakers, as different learning problems that are highly related.
Ideally, a speech recognition system should be trained only on data from the user it is intended for. However,
annotated data is expensive and difficult to obtain. Therefore, it is highly beneficial to leverage the similarities of
data sets from different types of speakers while adapting to the specifics of each particular user [13, 16].

One particularly successful instance of multi-task learning is its adaptation to support vector machines (svm) [14,
15]. Support vector machines are arguably amongst the most successful classification algorithms of all times,
however their multi-class extensions such as one-vs-all [4] or clever refinements of the loss functions [10, 21] all
require at least one weight vector per class label. As a consequence, the MTL adaptation of svm [15] requires
all tasks to share an identical set of labels (or require side-information about task dependencies) for meaningful
tranfer of knowledge. This is a serious limitation in many domains (binary or non-binary) where different tasks
might not share the same classes (e.g. identifying multiple diseases from a particular patient data).

Recently, Weinberger et al. introduced Large Margin Nearest Neighbor (lmnn) [20], an algorithm that translates
the maximum margin learning principle behind svms to k-nearest neighbor classification (kNN) [9]. Similar to
svms, the solution of lmnn is also obtained through a convex optimization problem that maximizes a large margin

1

between input vectors from different classes. However, instead of positioning a separating hyperplane, lmnn learns
a Mahalanobis metric. Weinberger et al. show that the lmnn metric improves the kNN classification accuracy to
be en par with kernelized svms [20] . One advantage that the kNN decision rule has over hyperplane classifiers
is its agnosticism towards the number of class labels of a particular data set. A new test point is classified by the
majority label of its k closest neighbors within a known training data set — additional classes require no special
treatment.

We follow the intuition of Evgeniou et al. [15] and extend lmnn to the multitask setting. Our algorithm learns
one metric that is shared amongst all the tasks and one specific metric unique to each task. We show that the
combination is still a well-defined pseudo-metric that can be learned in a single convex optimization problem. We
demonstrate on several multi-task settings that these shared metrics significantly reduce the overall classification
error. Further, our algorithm tends to outperform multi-task neural networks [6] and svm [15] on tasks with many
class-labels. To our knowledge, this paper introduces the first multi-task metric learning algorithm for the kNN
rule that explicitly models the commonalities and specifics of different tasks.

2 Large Margin Nearest Neighbor

local neighborhood

Euclidean Metric

margin

M

Mahalanobis Metric

Similarly labeled (target neighbor)

Differently labeled (impostor)

Differently labeled (impostor)

xi xi

Figure 1: An illustration of a data set before and after
lmnn. The circles represent points of equal distance to the
vector xi. The Mahalanobis metric rescales directions to
push impostors further away than target neighbors by a
large margin.

This section describes the large margin nearest neigh-
bor algorithm as introduced in [20]. For now, we will
focus on a single-task learning framework, with a train-
ing set consisting of n examples of dimensionality d,
{(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {1, 2, ..., c}.
Here, c denotes the number of classes. The Maha-
lanobis distance between two inputs xi and xj is de-
fined as

dM(xi,xj) =
√

(xi − xj)>M(xi − xj), (1)

where M is a symmetric positive definite matrix
(M � 0). The definition in eq. (1) reduces to the Eu-
clidean metric if we set M to the identity matrix, i.e.
M = I. The lmnn algorithm learns the matrix M
for the Mahalanobis metric1 in eq. (1) explicitly to en-
hance k-nearest neighbor classification.

Lmnn mimics the non-continuous and non-
differentiable leave-one-out classification error of
kNN with a convex loss function. The loss function
encourages the local neighborhood around every input
to stay “pure”. Inputs with different labels are pushed away and inputs with a similar label are pulled closer. One
of the advantages of lmnn over related work [12, 17] is that the (global) metric is optimized locally, which allows
it to work with multi-modal data distributions and encourages better generalization. To achieve this, the algorithm
requires k target neighbors to be identified for every input prior to learning, which should become the k nearest
neighbors after the optimization. Usually, these are picked with the help of side-information, or in the absence
thereof, as the k nearest neighbors within the same class based on Euclidean metric. We use the notation j i to
indicate that xj is a target neighbor of xi. Lmnn learns a Mahalanobis metric that keeps each input xi closer to its
target neighbors than other inputs with different class labels (impostors) — by a large margin. For an input xi,
target neighbor xj , and impostor xk, this relation can be expressed as a linear inequality constraint with respect to
the squared distance d2

M(·, ·):
d2
M(xi,xk)− d2

M(xi,xj) ≥ 1. (2)
Eq. (2) is enforced only for the local target neighbors. See Fig. 1 for an illustration. Here, all points on the circles
have equal distance from xi. Under the Mahalanobis metric this circle is deformed to an ellipsoid, which causes
the impostors (marked as squares) to be further away than the target neighbors.

The semidefinite program (SDP) introduced by [20] moves target neighbors close by minimizing∑
j i d

2
M(xi,xj) while penalizing violations of the constraint in eq. (2). The latter is achieved through addi-

1For simplicity we will refer to pseudo-metrics also as metrics as the distinction has no implications for our algorithm.

2

tive slack variables ξijk ≥ 0. If we define a set of triples S = {(i, j, k) : j i, yk 6= yi}, the problem can be
stated as the SDP shown in Table 1.

min
M

∑
j i

d2
M(xi,xj) + µ

∑
(i,j,k)∈S

ξijk

subject to: (i, j, k) ∈ S:
(1) d2

M(xi,xk)− d2
M(xi,xj)≥1− ξijk

(2) ξijk ≥ 0
(3) M � 0.

Table 1: Convex optimization problem of lmnn.

This optimization problem has O(kn2) constraints of
type (1) and (2), along with the positive semidefinite
constraint of a d × d matrix M. Hence, standard off-
the shelf packages are not particularly suited to solve
this SDP. For this paper we use the special purpose sub-
gradient descent solver, developed in [20], which can
handle data sets on the order of tens of thousands of
samples. As the optimization problem is not sensitive
to the exact choice of the tradeoff constant µ [20], we
set µ = 1 throughout this paper.

3 Multi-Task learning

In this section, we briefly review the approach pre-
sented by Evgeniou et al. [15] that extends svm to multi-task learning (mt-svm). We assume that we are given
T different but related tasks. Each input (xi, yi) belongs to exactly one of the tasks 1, . . . , T , and we let It be
the set of indices such that i ∈ It if and only if the input-label pair (xi, yi) belongs to task t. For simplification,
throughout this section we will assume a binary classification scenario, in particular yi∈{+1,−1}.
Following the original description of [15], mt-svm learns T classifiers w1, . . . ,wT , where each classifier wt

is specifically dedicated for task t. In addition, the authors introduce a global classifier w0 that captures the
commonality among all the tasks. An example xi ∈ It is classified by the rule ŷi = sign(x>i (w0 +wt)). The joint
optimization problem is to minimize the following cost:

min
w0,...,wT

T∑
t=0

γt‖wt‖22+
T∑

t=1

∑
i∈It

[1−yi(w0 + wt)>xi]+ (3)

where [a]+ = max(0, a). The constants γt ≥ 0 trade-off the regularization of the various tasks. Note that the
relative value between γ0 and the other γt>0 controls the strength of the connection across tasks. In the extreme
case, if γ0 → +∞, then w0 = ~0 and all tasks are decoupled; on the other hand, when γ0 is small and γt>0 → +∞
we obtain wt>0 = ~0 and all the tasks share the same decision function with weights w0. Although the mt-svm
formulation is very elegant, it requires all tasks to share the same class labels. In the remainder of this paper we
will introduce an MTL algorithm based on the kNN rule, which does not model each class with its own parameter
vector.

4 Multi-Task Large Margin Nearest Neighbor

In this section we combine large margin nearest neighbor classification from section 2 with the multi-task learning
paradigm from section 3. We follow the MTL setting with T learning tasks. Our goal is to learn a metric dt(·, ·) for
each of the T tasks that minimizes the kNN leave-one-out classification error. Inspired by the methodology of the
previous section, we model the commonalities between various tasks through a shared Mahalanobis metric with
M0 � 0 and the task-specific idiosyncrasies with additional matrices M1, . . .MT � 0. We define the distance for
task t as

dt(xi,xj) =
√

(xi − xj)>(M0 + Mt)(xi − xj). (4)

Intuitively, the metric defined by M0 picks up general trends across multiple data sets and Mt>0 specialize the
metric further for each particular task. See Fig. 2 for an illustration. If we constrain the matrices Mt to be positive
semi-definite (i.e. Mt � 0), then eq. (4) will result in a well defined pseudo-metric, as we show in section 4.1.

An important aspect of multi-task learning is the appropriate coupling of the multiple learning tasks. We have to
ensure that the learning algorithm does not put too much emphasis onto the shared parameters M0 or the individual

3

Euclidean Metric Joint Metric

M0
x1

i

x2
i

M0+M1

M0+M2M0

Individual Metrics

Ta
sk

 1
Ta

sk
 2

Similarly labeled (target neighbor)

Differently labeled (impostor)

x1
i

x2
i

x1
i

x2
i

Figure 2: An illustration of mt-lmnn. The matrix M0 captures the communality between the several tasks, whereas
Mt for t > 0 adds the task specific distance transformation.

parameters M1, . . . ,MT . To ensure this balance, we use the regularization term stated below:

min
M0,...,MT

γ0‖M0 − I‖2F +
T∑

t=1

γt‖Mt‖2F . (5)

The trade-off parameter γt controls the regularization of Mt for all t = 0, 1, . . . , T . If γ0→∞, the shared metric
M0 reduces to the plain Euclidean metric and if γt>0→∞, the task-specific metrics Mt>0 become irrelevant zero
matrices. Therefore, if γt>0→∞ and γ0 is small, we learn a single metric M0 across all tasks. In this case we
want the result to be equivalent to applying lmnn on the union of all data sets. In the other extreme case, when
γ0 = 0 and γt>0→∞, we want our formulation to reduce to T independent lmnn algorithms.

Similar to the set of triples S defined in section 2, let St be the set of triples restricted to only vectors for task
t, i.e., St = {(i, j, k) ∈ I3

t : j i, yk 6= yi}. We can combine the regularizer in eq.(5) with the objective
of lmnn applied to each of the T tasks. To ensure well-defined metrics, we add constraints that each matrix is
positive semi-definite, i.e. Mt � 0 (see next paragraph for more details). We refer to the resulting algorithm as
multi-task large margin nearest neighbor (mt-lmnn). The optimization problem is shown in Table 2 and can be
solved efficiently after some modifications to the special-purpose solver presented by Weinberger et al. [20]

4.1 Theoretical Properties

In this section we verify that our resulting distances are guaranteed to be well-defined pseudo-metrics and that the
optimization is convex.

Theorem 1 IfMt � 0 for all t = 0, . . . T then the distance functions dt(·, ·), as defined in eq.(4), are well-defined
pseudo-metrics for all 0 ≤ t ≤ T .

The proof of Theorem 1 is completed in two steps: First, as the cone of positive semi-definite matrices is convex,
any linear combination of positive semidefinite matrices is also positive semidefinite. This implies that dt(·, ·) is
non-negative, and it is also trivially symmetric. The second part of the proof utilizes the fact that any positive
semidefinite matrix M, can be decomposed as M = L>L, for some matrix L ∈ Rd×d. It therefore follows that
there exists some matrix Lt such that L>t Lt = M0 + Mt. Hence we can rephrase eq.(4) as

dt(xi,xj)=
√

(xi − xj)>L>t Lt(xi − xj), (6)

which is equivalent to the Euclidean distance after the transformation xi → Ltxi. It follows that eq.(6) preserves
the triangular inequality. This completes the requirements for a pseudo-metric. If Lt is full rank, i.e. M0 + Mt

is strictly positive definite, then it also fulfills identity of indiscernibles, i.e., d(xi,xj) = 0 if and only if xi = xj

and d(·, ·) is a metric.

4

min
M0,...,MT

γ0‖M0 − I‖2F +
T∑

t=1

γt‖Mt‖2F +
∑

(i,j)∈It,j i

d2
t (xi,xj) +

∑
(i,j,k)∈St

ξijk


subject to: ∀t, ∀(i, j, k) ∈ St:

(1) d2
t (xi,xk)− d2

t (xi,xj) ≥ 1− ξijk

(2) ξijk ≥ 0
(3) M0,M1, . . . ,MT � 0.

Table 2: Convex optimization problem of mt-lmnn.

One of the advantages of lmnn over alternative distance metric learning algorithms, for example NCA [17], is that
it can be stated as a convex optimization problem. This allows the global solution to be found efficiently with
special purpose solvers [20] or for very large data sets in an online relaxation [7]. It is therefore important to show
that our new formulation preserves convexity.

Theorem 2 The mt-lmnn optimization problem in Table 2 is convex.

Constraints of type (2) and (3) are standard linear and positive-semidefinite constraints, which are known to be
convex [5]. Convexity remains to be shown for constraints of type (1) and the objective. Both access the matrices
Mt exclusively in terms of the squared distance d2(·, ·). This can be expressed as

d2(xi,xj) = trace(M0vijv>ij) + trace(Mtvijv>ij), (7)

where vij = (xi − xj). Eq.(7) is linear in terms of the matrices Mt and it follows that the constraints of
type (1) are also linear and therefore trivially convex. Similarly, it follows that all terms in the objective are
also linear with the exception of the Frobenius norms in the regularization term. The latter term is quadratic
(‖Mt‖2F = trace(M>t Mt)) and therefore convex with respect to Mt. The regularization of M0 can be expanded
as trace(M>0 M0 − 2M0 + I) which has one quadratic and one linear term. The sum of convex functions is
convex [5], hence this concludes the proof.

5 Results

We evaluate mt-lmnn on the Isolet spoken alphabet recognition2 and CoIL 2000 dataset3. We first provide a brief
overview of the two datasets and then present results in various multi-task and domain adaptation settings.

The Isolet dataset was collected from 150 speakers uttering all characters in the English alphabet twice, i.e., each
speaker contributed 52 training examples (in total 7797 examples4). The task is to classify which letter has been
uttered based on several acoustic features – spectral coefficients, contour-, sonorant- and post-sonorant features.
The exact feature description can be found in [16]. The speakers are grouped into smaller sets of 30 similar
speakers, giving rise to 5 disjoint subsets called isolet1-5. This representation of Isolet lends itself naturally to the
multi-task learning regime. We treat each of the subsets as its own classification task (T = 5) with c = 26 labels.
The five tasks differ because the groups of speakers vary greatly in the way they utter the characters of the English
alphabets. They are also highly related to each other because all the data is collected from the same utterances (the
English alphabets). To remove low variance noise and to speed up computation time we preprocess the Isolet data
with PCA [18] and project it onto its leading principal components that capture 95% of the data variance reducing
the dimensionality from 617 to 169.

The CoIL dataset contains information of customers of an insurance company. The customer information consists
of 86 variables including product usage and socio-demographic data. The training set contains 5822 and the test set
4000 examples. Out of the 86 variables, we used 6 categorical features to create different classification problems,
leaving the remaining 80 features as the joint data set. Our target variables consist of attributes 1, 4, 5, 6, 44 and 86,

2Available for download from the UCI Machine Learning Repository.
3Available for download at http://kdd.ics.uci.edu/databases/tic/tic.html
4Three examples are historically missing.

5

Isolet Euc U-lmnn st-lmnn mt-lmnn st-net mt-net st-svm mt-svm
1 13.30% 6.05% 5.32% 3.89% 4.74 % 4.52 % 8.75% 5.99%
2 18.62% 6.53% 5.03% 3.17% 4.62 % 3.81 % 9.62% 5.99%
3 21.44% 8.59% 10.09% 6.99% 6.73 % 6.92 % 13.81% 7.30%
4 24.42% 8.37% 9.39% 6.31% 7.95 % 6.51 % 13.62% 8.39%
5 18.91% 7.30% 7.69% 5.58% 5.74 % 5.61 % 13.71% 7.82%

Avg 19.34% 7.37% 7.51% 5.19% 5.96 % 5.48 % 11.90% 7.10%

Table 3: Error rates on label-compatible Isolet tasks when tested with task-specific train sets.

which indicate customer subtypes, customer age bracket, customer occupation, a discretized percentage of Roman
Catholics in that area, contribution from a third party insurance and the last feature is a binary value that signifies
if the customer has a caravan insurance policy. The tasks have a different number of output labels but they share
the same input data.

Each Isolet subset (task) was divided into randomly selected 60/20/20 splits of train/validation/test sets. We
randomly picked 20% of the CoIL training examples and set them aside for validation purposes. The results were
averaged over 10 runs in both cases. The validation subset was used for model selection for mt-lmnn, i.e. choosing
the regularization constants γt and the number of iterations for early stopping. Although our model allows different
weights γt for each task, throughout this paper we only differentiated between γ0 and γ = γt>0. The neighborhood
size k was fixed to k = 3, which is the setting recommended in the original lmnn publication [20]. For competing
algorithms, we performed a thorough parameter sweep and reported the best test set results (thereby favoring them
over our method).

These two datasets capture the essence of an ideal mt-lmnn application area. Our algorithm is very effective when
the feature space is dense and when dealing with multi-label tasks with or without the same set of output labels.
This is demonstrated in the first subsection of results. The second subsection provides a brief demonstration of the
use of mt-lmnn in the domain adaptation (or cold start) scenario.

5.1 Multi-task Learning

We categorized the multi-task learning setting into two different scenarios: label-compatible MTL and label-
incompatible MTL. In the label-compatible MTL scenario, all the tasks share the same label set. The label-
incompatible scenario arises when applying MTL to a group of multi-class classification tasks that do not share the
same set of labels. We demonstrate the applicability and effectiveness of mt-lmnn in both these scenarios in the
following sub-sections.

Label-Compatible Multi-task Learning The experiments in this setting were conducted on the Isolet data, where
isolet1-5 are the 5 tasks and all of them share the same 26 labels.

Isolet Euc U-lmnn st-lmnn mt-lmnn
1 9.65% 4.71% 5.51% 4.13%
2 14.01% 5.19% 5.29% 3.94%
3 11.06% 5.32% 7.14% 3.85%
4 12.28% 5.03% 7.89% 4.49%
5 10.67% 4.17% 7.11% 3.65%

Avg 11.53% 4.88% 6.59% 4.01%

Table 4: Error rates when tested with the union of train sets from all
the tasks.

We compared the performance of our mt-
lmnn algorithm with different baselines in
table 3. The first 3 algorithms are kNN
classifiers using different metrics. “Euc”
represents the Euclidean metric, “U-lmnn”
is the metric obtained from lmnn trained
on the union of the training data of all
tasks (essentially “pooling” all the data
and ignoring the multi-task aspect), “st-
lmnn” is single-task lmnn trained indepen-
dent of other tasks. As additional compari-
son we have also included results from lin-
ear single-task and multi-task support vec-
tor machine [15], denoted as “st-svm” and “mt-svm” and non-linear single-task and multi-task neural networks (48
hidden layers) [6] denoted as “st-net” and “mt-net” respectively.

A special case arises in terms of the kNN based classifiers in the label-compatible scenario: during the actual
classification step, regardless what metric is used, the kNN training data set can either consist of only task specific

6

Task Euc U-lmnn st-lmnn mt-lmnn st-net mt-net st-svm
1 11.25% 4.27% 4.48% 3.44% 3.92% 3.43% 7.08%
2 10.52% 3.02% 3.96% 2.71% 2.50% 2.78% 6.83%
3 14.79% 6.25% 6.04% 5.83% 6.67% 6.39% 9.58%
4 14.79% 6.25% 6.46% 5.52% 5.83% 5.93% 9.83%
5 9.38% 2.71% 2.71% 1.77 % 1.58% 1.67% 6.17%

Avg 12.15% 4.50% 4.73% 3.85% 4.10% 4.04% 7.90%

Table 5: Error rates on Isolet label-incompatible tasks with task-specific train sets.

Task # classes Euc st-lmnn mt-lmnn st-net mt-net st-svm
1 40 24.65% 13.67% 12.75% 47.45% 47.05% 55.68%
2 6 6.78% 5.72% 5.12% 17.25% 19.35% 36.30%
3 10 18.48% 13.28% 11.06% 23.12% 27.80% 40.98%
4 10 7.83 % 6.05% 6.00 % 19.95% 17.40% 32.98%
5 4 33.18 % 8.23 % 7.54 % 3.63% 3.63% 3.63%
6 2 9.25% 9.12% 9.10% 5.95% 6.00% 5.95%

Avg 16.70% 9.35% 8.60% 19.56% 20.20% 29.25%

Table 6: Error rates on CoIL label-incompatible tasks. See text for details.

training data or the pooled data from all tasks. The kNN results obtained from using pooled training sets at the
classification phase is shown in table 4.

Both sets of results, in table 3 and 4, show that mt-lmnn obtains considerable improvement over its single-task
counterparts on all 5 tasks and generally outperforms the other multi-task algorithms based on neural networks and
support vector machines.

Label-Incompatible Multi-task Learning To demonstrate mt-lmnn’s ability to learn multiple tasks having dif-
ferent sets of class labels, we ran experiments on the CoIL dataset and on artificially incompatible versions of
Isolet tasks. Note that in this setting, mt-svm cannot be used because there is no intuitive way to extend it to
label-incompatible multi-class multi-label MTL setting. Also, U-lmnn cannot be used with CoIL data tasks since
all of them share the same input.

For each original subset of Isolet we picked 10 labels at random and reduced the dataset to only examples with
these labels (resulting in 600 data points per set and different sets of output labels). Table 5 shows the results of
the kNN algorithm under the various metrics along with single-task and multi-task versions of svm and neural
networks on these tasks. Mt-lmnn yields the lowest average performance across all tasks.

The classification error rates on CoIL data tasks are shown in Table 6. The multi-task neural network and svm
have a hard time with most of the tasks and, at times perform worse than their single-task versions. Once again,
mt-lmnn improves upon its single task counterparts demonstrating the sharing of knowledge between tasks. Both
svm and neural networks perform very well on the tasks with the least number of classes, whereas mt-lmnn does
very well in tasks with many classes (in particular 40-way classification of task 1).

5.2 Domain Adaptation

Domain adaptation attempts to learn a severely undersampled target domain, with the help of source domains with
plenty of data, that may not have the same sample distribution as that of the target.

For instance, in the context of speech recognition, one might have a lot of annotated speech recordings from a
set of lab volunteers but not much from the client who will use the system. In such cases, we would like the
learned classifier to gracefully adapt its recognition / classification rule to the target domain as more data becomes
available.

Unlike the previous setting, we now have one specific target task which can be heavily under-sampled. We evaluate
the domain adaptation capability of mt-lmnn with isolet1-4 as the source and isolet5 as the target domain across
varying amounts of available labeled target data. The classification errors of kNN under the mt-lmnn and U-lmnn
metrics are shown in Figure 3.

7

3

4

5

6

7

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
es

t
er

ro
r

ra
te

 i
n
 %

Fraction of isolet5 used for training

EUC

U-LMNN

MT-LMNN

Figure 3: mt-lmnn, U-lmnn and Euclidean test error rates (%) in an
unseen task with different sizes of train set.

In the absence of any training data from
isolet5 (also referred to as the cold-start
scenario), we used the global metric M0

learned by mt-lmnn on tasks isolet1-4. U-
lmnn and mt-lmnn global metric perform
much better than the Euclidean metric, with
U-lmnn giving slightly better classification.
With the availability of more data charac-
teristic of the new task, the performance
of mt-lmnn improves much faster than U-
lmnn. Note that the Euclidean error actu-
ally increases with more target data, pre-
sumably because utterances from the same
speaker might be close together in Eu-
clidean space even if they are from different
classes – leading to additional misclassifications.

6 Related Work

Caruana was the first to demonstrate results on multi-task learning for k-nearest neighbor regression and locally
weighted averaging [6]. The multi-task aspect of their work focused on finding common feature weights across
multiple, related tasks. In contrast, our work focuses on classification and learns different metrics with shared
components.

Previous work on multi-task learning largely focused on neural networks [6, 8], where a hidden layer is shared
between various tasks. This approach is related to our work as it also learns a joint representation across tasks.
It differs in the way classification and the optimization are performed. Mt-lmnn uses the kNN rule and can be
expressed as a convex optimization problem with the accompanying convergence guarantees.

Most recent work in multi-task learning focuses on linear classifiers [11, 15] or kernel machines [14]. Our work
was influenced by these publications especially in the way the decoupling of joint and task-specific parameters is
performed. However, our method uses a different optimization and learns metrics rather than separating hyper-
planes.

7 Conclusion

In this paper we introduced a novel multi-task learning algorithm, mt-lmnn. To our knowledge, it is the first
metric learning algorithm that embraces the multi-task learning paradigm that goes beyond feature re-weighting
for pooled training data. We demonstrated the abilities of mt-lmnn on real-world datasets. Mt-lmnn consistently
outperformed single-task metrics for kNN in almost all of the learning settings and obtains better classification
results than multi-task neural networks and support-vector machines. Addressing a major limitation of mt-svm,
mt-lmnn is applicable (and effective) on multiple multi-class tasks with different sets of classes.

This MTL framework can also be easily adapted for other metric learning algorithms including the online version
of lmnn [7]. A further research extension is to incorporate known structure by introducing additional sub-global
metrics that are shared only by a strict subset of the tasks.

The nearest neighbor classification rule is a natural fit for multi-task learning, if accompanied with a suitable
metric. By extending one of the state-of-the-art metric learning algorithms to the multi-task learning paradigm,
mt-lmnn provides a more integrative methodology for metric learning across multiple learning problems.

Acknowledgments

The authors would like to thank Lawrence Saul for helpful discussions. This research was supported in part by the
UCSD FWGrid Project, NSF Research Infrastructure Grant Number EIA-0303622.

8

References
[1] B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine

Learning Research, 4:83–99, 2003.
[2] S. Ben-David, J. Gehrke, and R. Schuller. A theoretical framework for learning from a pool of disparate data

sources. In KDD, pages 443–449, 2002.
[3] S. Ben-David and R. Schuller. Exploiting task relatedness for mulitple task learning. In COLT, pages 567–

580, 2003.
[4] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the

fifth annual workshop on Computational learning theory, pages 144–152. ACM New York, NY, USA, 1992.
[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[6] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
[7] G. Chechik, U. Shalit, V. Sharma, and S. Bengio. An online algorithm for large scale image similarity

learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, pages 306–314. 2009.

[8] R. Collobert and J. Weston. A unified architecture for NLP: Deep neural networks with multitask learning.
In Proceedings of the 25th international conference on Machine learning, pages 160–167. ACM New York,
NY, USA, 2008.

[9] T. Cover and P. Hart. Nearest neighbor pattern classification. In IEEE Transactions in Information Theory,
IT-13, pages 21–27, 1967.

[10] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines.
The Journal of Machine Learning Research, 2:265–292, 2002.

[11] H. Daumé. Frustratingly easy domain adaptation. In Annual Meeting-Association for Computational Lin-
guistics, volume 45, page 256, 2007.

[12] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. Proceedings of the
24th international conference on Machine learning, 2007.

[13] V. Digalakis, D. Rtischev, and L. Neumeyer. Fast speaker adaptation using constrained estimation of Gaussian
mixtures. IEEE Trans. on Speech and Audio Processing, pages 357–366, 1995.

[14] T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of Machine
Learning Research, 6(1):615, 2006.

[15] T. Evgeniou and M. Pontil. Regularized multi–task learning. In KDD, pages 109–117, 2004.
[16] M. A. Fanty and R. Cole. Spoken letter recognition. In Advances in Neural Information Processing Systems

4, page 220. MIT Press, 1990.
[17] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components analysis. In L. K.

Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 513–
520, Cambridge, MA, 2005. MIT Press.

[18] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
[19] A. Quattoni, C. X., C. M., and D. T. A projected subgradient method for scalable multi-task learning.

Massachusetts Institute of Technology, Technical Report, 2008.
[20] K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification.

The Journal of Machine Learning Research, 10:207–244, 2009.
[21] J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In ESANN, page 219,

1999.

9

