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Abstract

This paper proposes a principled extension of the traditi@mngle-layer flat
sparse coding scheme, where a two-layer coding schemeveddased on the-
oretical analysis of nonlinear functional approximatibattextends recent results
for local coordinate coding. The two-layer approach can &l generalized
to deeper structures in a hierarchical multiple-layer nesnrEmpirically, it is
shown that the deep coding approach yields improved pedonoain benchmark
datasets.

1 Introduction

Sparse coding has attracted significant attention in repesmts because it has been shown to be
effective for some classification problems [12, 10, 9, 13,141, 2, 5]. In particular, it has been em-
pirically observed thahbigh-dimensionasparse coding plus linear classifier is successful for image
classification tasks such as PASCAL 2009 [7, 15].

The empirical success of sparse coding can be justified lmydtieal analysis [17], which showed
that a modification of sparse coding with added locality ¢amst, called local coordinate cod-
ing (LCC), represents a new class of effective high dimeradioon-linear function approximation
methods with sound theoretical guarantees. Specificallf; learns a nonlinear function in high
dimension by forming an adaptive set of basis functions enddta manifold, and it has nonlinear
approximation power. A recent extension of LCC with addezhldangent directions [16] demon-
strated the possibility to achieve locally quadratic appration power when the underlying data
manifold is relatively flat. This also indicates that the ho@ar function approximation view of
sparse coding not only yields deeper theoretical undetstgrof its success, but also leads to im-
proved algorithms based on refined analysis. This pap@wslthe same idea, where we propose a
principled extension of single-layer sparse coding basgti@oretical analysis of a two level coding
scheme.

The algorithm derived from this approach has some advasiagr the single-layer approach, and
can also be extended into multi-layer hierarchical syste®gch extension draws connection to
deep belief networks (DBN) [8], and hence we call this apphodeep coding network. Hierarchi-
cal sparse coding has two main advantages over its singde-tmunter-part. First, at the intuitive
level, the first layer (traditional single-layer basis)lgiea crude description of the data at each ba-
sis function, and multi-layer basis functions provide aunatway to zoom into each single basis
for finer local details — this intuition can be reflected maigorously in our nonlinear function
approximation result. Due to the more localized zoom-ie@ffit also alleviates the problem of
overfitting when many basis functions are needed. Secoisd;@mputationally more efficient than
flat coding because we only need to look at locations in thers¢or higher) layer corresponding
to basis functions with nonzero coefficients in the first (@vious) layer. Since sparse coding pro-
duces many zero coefficients, the hierarchical structgmfgtantly eliminates many of the coding
computation. Moreover, instead of fitting a single modehwitany variables as in a flat single layer
approach, our proposal of multi-layer coding requiresniiftmany small models separately, each



with a small number of parameters. In particular, fitting siheall models can be done in parallel,
e.g. using Hadoop, so that learning a fairly big number ofetmbks can still be fast.

2 Sparse Coding and Nonlinear Function Approximation

This section reviews the nonlinear function approximatiesults of single-layer coding scheme in
[17], and then presents our multi-layer extension. Sineadisult of [17] requires a modification of
the traditional sparse coding scheme called local cootelicading (LCC), our analysis will rely on
a similar modification.

Consider the problem of learning a nonlinear functfdnr) in high dimensionz € R¢ with large

d. While there are many algorithms in traditional statisticat can learn such a function in low
dimension, when the dimensionalifyis large compared to, the traditional statistical methods will
suffer the so called “curse of dimensionality”. The recgpibpularized coding approach addresses
this issue. Specifically, it was theoretically shown in [f¥t a specific coding scheme called Local
Coordinate Coding can take advantage of the underlyingmdatafold geometric structure in order
to learn a nonlinear function in high dimension and allextéie curse of dimensionality problem.

The main idea of LCC, described in [17], is to locally embedhfmon the underlying data manifold
into a lower dimensional space, expressed as coordinatiesegpect to a set of anchor points. The
main theoretical observation was relatively simple: it waewn in [17] that on the data manifold, a
nonlinear function can be effectively approximated by aglty linear function with respect to the
local coordinate coding. Therefore the LCC approach turesadifficult high dimensional nonlin-
ear learning problem into a much simpler linear learningofgm, which can be effectively solved
using standard machine learning techniques such as rezpddinear classifiers. This linearization
is effective because the method naturally takes advantahe geometric information.

In order to describe the results more formally, we introdaceimber of notations. First we denote
by || - || the Euclidean norm (2-norm) di¢:
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Definition 2.1 (Smoothness Conditions)A functionf(x) onRR? is («, 3, v) Lipschitz smooth with
respect to a nornf - || if
IVi@)|| < e,

and
f(&") = f(z) = V()" (2" —2)| < Bla" — 2|,

and

|f(2) — f(z) = 05(Vf(2)) + Vf(z)" (' — )|

vz —a'||?,
where we assume, 3, v > 0.

These conditions have been used in [16], and they charzetd®® smoothness gfunder zero-th,
first, and second order approximations. The parameisrthe Lipschitz constant of (), which
is finite if f(z) is Lipschitz; in particular, iff (z) is constant, themw = 0. The parametef is
the Lipschitz derivative constant gf(x), which is finite if the derivativev f(x) is Lipschitz; in
particular, if V f (z) is constant (that isf («) is a linear function oft), theng = 0. The parameter
v is the Lipschitz Hessian constant ¢fx), which is finite if the Hessian of (x) is Lipschitz;
in particular, if the HessiaW? f(x) is constant (that isf(x) is a quadratic function of), then
v = 0. In other words, these parameters measure different lefedmoothness of (x): locally
when||z — 2’| is small,o« measures how welf(x) can be approximated by a constant functign,
measures how welf (x) can be approximated by a linear functioriipandv measures how well
f(z) can be approximated by a quadratic function:irFor local constant approximation, the error
termal|z—2'| is the first order irj|x — 2’ ||; for local linear approximation, the error terfifjz — 2’|
is the second order ifw — 2’ ||; for local quadratic approximation, the error tesi: — 2'||® is the
third order in||z — 2’||. Thatis, if f(x) is smooth with relatively smaly, 3, v, the error term
becomes smaller (locally whe: — «’|| is small) if we use a higher order approximation.




Similar to the single-layer coordinate coding in [17], hem define a two-layer coordinate coding
as the following.

Definition 2.2 (Coordinate Coding) A single-layer coordinate coding is a pajy®, C*), where
C' c R%is a set of anchor points (aka basis functions), arid a map ofr € R% to [y} (z)],ccr €

RIC'I such thaty" .1 74 (=) = 1. Itinduces the following physical approximationsofn R*:
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A two-layer coordinate coding~y,C) consists of coordinate coding systemigy!,C!)} U
{(v*?,C%") : v € C'}. The pair(y*,C?') is the first layer coordinate codingy*v,C??) are
second layer coordinate-coding pairs that refine the firgelacoding for every first-layer anchor
pointv € C*.

The performance of LCC is characterized in [17] using thifaihg nonlinear function approxima-
tion result.

Lemma 2.1 (Single-layer LCC Nonlinear Function Approximation) Let (y!,C') be an arbi-
trary single-layer coordinate coding schemeRt Let f be an(a, 3, v)-Lipschitz smooth function.
We have for alk: € R%:
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wherew, = f(v) forv e C.

This result shows that a high dimensional nonlinear fumctian be globally approximated by a
linear function with respect to the single-layer coding ()], with unknown linear coefficients
[Wylvecr = [f(v)]vect, Where the approximation on the right hand size is secondrortihis
bounds directly suggests the following learning method:efachx, we use its codingdy. (x)] €

RIC' as features. We then learn a linear function of the fONnw, . (x) using a standard linear
learning method such as SVM, whele,| is the unknown coefficient vector to be learned. The
optimal coding can be learned using unlabeled data by optigpithe right hand side of (1) over
unlabeled data.

In the same spirit, we can extend the above result on LCC byding additional layers. This leads
to the following bound.

Lemma 2.2 (Two-layer LCC Nonlinear Function Approximation) Let (v,C) = {(v*,C1)} U
{(v**,C%") : v € C'} be an arbitrary two-layer coordinate coding &f. Let f be an(«, 3, v)-
Lipschitz smooth function. We have for alE R®:

[ f(z Z wy Yy (T Z Yo (@ Z wv-,u'}/z’v(x)
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wherew, = f(v) forv € C* andw, ,, = 0.5V f(v) " (u —v) foru € C%?, and
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wherew, ,, = f(u) foru € C%v.



Similar to the interpretation of Lemma 2.1, bounds in Lemniai@plies that we can approximate
a nonlinear functiory (x) with linear function of the form

STweys@) + Y > wewre(@)e” (@),

veCt veCt ueC?v

where [w,] and [w, ] are the unknown linear coefficients to be learned, ayldz)],cc: and
(V2" (z)]vect uec2» form the feature vector. The coding can be learned from whtabdata by
minimizing the right hand side of (2) or (3).

Compare with the single-layer coding, we note that the seé¢erm on the right hand side of (1)
is replaced by the third term on the right hand side of (2).tThiahe linear approximation power
of the single-layer coding scheme (with a quadratic erranjebecomes quadratic approximation
power of the two-layer coding scheme (with a cubic error derfirhe first term on the right hand
side of (1) is replaced by the first two terms on the right ha(@) If the manifold is relatively flat,
then the error termée — h.1 1 ()| and||z — h.2.0 2.0 ()| Will be relatively small in comparison
to the second term on the right hand side of (1). In such caséwtb-layer coding scheme can
potentially improve the single-layer system significantiffis result is similar to that of [16], where
the second layer uses local PCA instead of another layendimear coding. However, the bound in
Lemma 2.2 is more refined and specifically applicable to mesali coding. The bound in (2) shows
the potential of the two-layer coding scheme in achievirghbi order approximation power than
single layer coding. Higher order approximation gives niregiinl improvement when eadi@??|

is relatively small compared @ |. On the other hand, {C| is small but eachC?| is relatively
large, then achieving higher order approximation doesewsut to meaningful improvement. In such
case, the bound in (3) shows that the performance of thegwal-toding is still comparable to that
of one-level coding scheme in (1). This is the situation whibie 1st layer is mainly used to par-
tition the space (while its approximation accuracy is ngbamant), while the main approximation
power is achieved with the second layer. The main advanthgeoslayer coding in this case is
to save computation. This is because instead of solvingg@eslayer coding system with many
parameters, we can solve many smaller coding systems, dtttla wmall number of parameters.
This is the situation when including nonlinearity in the @ed layer becomes useful, which means
that the deep-coding network approach in this paper has sdwantage over [16] which can only
approximate linear function with local PCA in the seconctlay

3 Deep Coding Network

We shall discuss the computational algorithm motivated esgnima 2.2. While the two bounds (2)

and (3) consider different scenarios depending on thevelsize of the first layer versus the second
layer, in reality it is difficult to differentiate and usuglboth bounds play a role at the same time.
Therefore we have to consider a mixed effect. Instead ofrmiing one bound versus another, we
shall use them to motivate our algorithm, and design a methadaccommodate the underlying

intuition reflected by the two bounds.

3.1 Two Layer Formulation

In the following, we letC' = {vi,...,vr,}, 7, (Xi) = 75 C*% = {vj1,...,v1,}, and

2,71]‘

Yo, (Xi) = 7;'. w» WhereL, is the size of the first-layer codebook, aid is the size of each
individual codébook at the second layer. We take a layelalggr approach for training, where the
second layer is regarded as a refinement of the first layeghaihiconsistent with Lemma 2.2. In
the first layer, we learn a simple sparse coding model witHatkh:

2
n

Ly
1 .
1 17 : R oy,
[r',C'] =argmin _El 5 || X Elw@
1= Jj= 9

subjecttoy! >0, "~i =1, [jv;]| < &, (4)
J

wherex is some constant, e.g., if alt; are normalized to have unit length,can be set to be
1. For convenience, we not only enforce sum-to-one-coinsta the sparse coefficients, but also



impose nonnegative constraints so thay |7;'-| =2, 7; = 1 for all z. This presents a probability
interpretation of the data, and allow us to approximate diewing term on the right hand sides of
(2) and (3):

2\ 1/2
L2 L2

D75 | X = Do i < | D005 X = D v
J k=1 J k=1

Note that neither sum to one or 1-norm regularization of ficiehts is needed in the derivation of
(2), while such constraints are needed in (3). This meangiadal constraints may hurt perfor-
mance in the case of (2) although it may help in the case of§Bjce we don’t know which case
is the dominant effect, as a compromise we remove the suomé¢oconstraint but put in 1-norm
regularization which is tunable. We still keep the posiyidonstraint for interpretability. This leads
to the following formulation for the second layer:

n . 1 Lo ‘ 2 Lo .
P, et =argmin | 3 9 | 5 (X = D vavae | +A2d vk
RARa et k=1 2 k=1
subject toy] , > 0, [lv;x] < 1, ®)

where\; is al;-norm sparsity regularization parameter controlling tharseness of solutions. With
the codings on both layers, the sparse representati&pn isf[s'y;-, Y3510 V25 oo 7;,/:2]}
wheres is a scaling factor balances the coding from the two diffelayers.

j=1,...L1

3.2 Multi-layer Extension

The two-level coding scheme can be easily extended to the &imid higher layers. For example,
at the third layer, for each base;,, the third-layer coding is to solve the following weighteptio
mization:

Ls 2
i i
Xi— E Vi Vit || T As E Vi, k.l
=1 2 l

subject toy; , ; > 0, [[v; k.l < 1. (6)
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3.3 Optimization

The optimization problems in Equations (4) to (6) can be galhesolved by alternating the follow-
ing two steps: 1) given current cookbook estimatigrcompute the optimal sparse coefficients
2) given the new estimates of the sparse coefficients, opgithie cookbooks.

Step 1 requires solving an independent optimization prolflar each data sample, and it can be
computationally very expensive when there are many trgiexamples. In such case, computa-
tional efficiency becomes an important issue. We developatesefficient algorithms for solving
the optimizations problem in Step 1 by exploiting the faattthe solutions of the optimization
problems are sparse. The optimization problem in Step 1 ot#&4 be posed as a nonnegative
guadratic programming problem with a single sum-to-oneaityuconstraint. We employ an ac-
tive set method for this problem that easily handles the tcaimés [4]. Most importantly, since the
optimal solutions are very sparse, the active set methah afives the exact solution after a few
dozen of iterations. The optimization problem in (5) consadnly honnegative constraints (but not
the sum-to-one constraint), for which we employ a pathwisgegted Newton (PPN) method [3]
that optimizes a block of coordinates per iteration instefadne coordinate at a time in the active
set method. As a result, in typical sparse coding settingsefample, in the experiments that we
will present shortly in Section 4), the PPN method is ableite the exact solution of a median size
(e.g. 2048 dimension) nonnegative quadratic programnriollpm in milliseconds.

Step 2 can be solved in its dual form, which is convex optitidrawith nonnegative constraints [9].
Since the dual problem contains only nonnegative conss;aire can still employ projected Newton
method. It is known that the projected Newton method hasrfinpar convergence rate under



fairly mild conditions [3]. The computational cost in Steps2often negligible compared to the
computational cost in Step 1 when the cookbook size is no tharea few thousand.

A significant advantage of the second layer optimizationinpyoposal is parallelization. As shown
in (5), the second-layer sparse coding is decomposed.inimdependent coding problems, and thus
can be naturally parallelized. In our implementation, thidone through Hadoop.

4 Experiments

4.1 MNIST dataset

We first demonstrate the effectiveness of the proposed dedipgzscheme on the popular MNIST
benchmark data [1]. MNIST dataset consists of 60,000 tngidigits and 10,000 testing digits. In
our experiments of deep coding network, the entire traisgtgs used to learn the first-layer coding,
with codebook of size 64. For each of the 64 bases in the fiyst|a second-layer codebook was
learned — the deep coding scheme presented in the papeesiat the codebook learning can
be done independently. We implemented a Hadoop parallgrano that solved the 64 codebook
learning tasks in about an hour — which would have taken 64shoni single machine. This shows
that easy parallelization is a very attractive aspect ofptteposed deep coding scheme, especially
for large scale problems.

Table 1 shows the performance of deep coding network on MNI@Tpared to some previous
coding schemes. There are a number of interesting obsemgaith these results. First, adding
an extra layer yields significant improvement on classificgte.g. forL; = 512, the classification
error rate for single layer LCC 60% [17] while extended LCC achievés98% [16] (the extended
LCC method in [16] may also be regarded as a two layer methothbisecond layer is linear); the
two-layer coding scheme here significantly improves thégoerance with classification error rate
of 1.51% . Second, the two-layer coding is less prone to overfittimg s single-layer counterpart.
In fact, for the single-layer coding, our experiment shokat further increasing the codebook size
will cause overfitting (e.g., with,; = 8192, the classification error deteriorates 148%). In
contrast, the performance of two-layer coding still impewhen the second-layer codebook is as
large as 512 (and the total codebook sizé4sx 512 = 32768, which is very high-dimensional
considering the total number of training data is only 60)00is property is desirable especially
when high-dimensional representation is preferred in #ee ©f using sparse coding plus linear
classifier for classifications.

Figure 1 shows some first-layer bases and their associateddéayer bases. We can see that the
second-layer bases provide deeper details that helpsttefugxplain their first layer parent basis;
on the other hand, the parent first-layer basis providesfannrative context for its child second-
layer bases. For example, in the seventh row in Fig. 1 wherérgt-layer basis is like DigiT, this
basis can come from Digft, Digit 9 or even Digit4. Then, its second-layer bases help to further
explain the meaning of the first-layer basis: in its assedigecond-layer bases, the first two bases
in that row are parts of Digid while the last basis in that row is a part of Digit '4’. Meanuehithe
first-layer7-like basis provides important context for its second-tgyart-like bases — without the
first-layer basis, the fragmented parts (like the first twoosel-layer bases in that row) may not be
very informative. The zoomed-in details contained in dedpeses significantly help a classifier to
resolve difficult examples, and interestingly, coarseaiieprovide useful context for finer details.

Single layer sparse coding
Number of basesi(;) 512 | 1024 | 2048 | 4096
Local coordinate coding 2.60| 2.17 | 1.79 | 1.75
Extended LCC 195| 1.82| 1.78 | 1.64
Two-layer sparse coding
Number of basesl(;) | 64 | 128 | 256 | 512
L =064 185 1.69| 1.53| 151

Table 1: The classification error rate (i) on MNIST dataset with different sparse coding schemes.
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Figure 1: Example of bases from a two-layer coding networlViMiST data. For each row, the
first image is a first-layer basis, and the remaining imagesitarassociated second-layer bases.
The colorbar is the same for all images, but the range it sgmits differs from image to image —
generally, the color of the background of a image represernt value, and the colors above and
below that color respectively represent positive and riegaalues.

4.2 PASCAL 2007

The PASCAL 2007 dataset [6] consists of 20 categories of @aagich as airplanes, persons, cats,
tables, and so on. It consists of 2501 training images an@ 2&lidation images, and the task is to
classify an image into one or more of the 20 categories. Therghis task can be casted as training
20 binary classifiers. The critical issue is how to extrafgative visual features from the images.
Among different methods, one particularly effective agmto is to use sparse coding to derive a
codebook of low-level features (such as SIFT) and represemage as a bag of visual words [15].
Here, we intend to learn two-layer hierarchical codebookseiad of single flat codebook for the
bag-of-word image representation.

In our experiments, we first sampled dense SIFT descriptad(is represented byl 88 x 1 vector)

on each image using four scal&sx 7, 16 x 16, 25 x 25 and31 x 31 with stepsize of 4. Then,
the SIFT descriptors from all images (both training anddation images) were utilized to learn
first-layer codebooks with different dimensions, = 512,1024 and2048. Then, given a first-
layer codebook, for each basis in the codebook, we learsezbitond-layer codebook of size 64
by solving the weighted optimization in (5). Again, the seddayer codebook learning was done
in parallel using Hadoop. With the first-layer and secongktacodebooks, each SIFT feature was
coded into a very high dimensional space: using= 1024 as an example, the coding dimension



Dimension of the first layerl(;) | 512 | 1024 | 2048
Single-layer sparse coding 42.7| 453 | 48.4
Two-layer sparse codind=64) | 51.1| 52.8 | 53.3

Table 2: Average precision (it1) of classification on PASCALOQ7 dataset using different spar
coding schemes.

in total is 1024 4+ 1024 x 64 = 66,560. For each image, we employédx 1, 2 x 2 and1l x 3
spatial pyramid matching with max-pooling. Therefore ie #nd, each image is represented by a
532, 480(= 66, 560 x 8) x 1 high-dimensional vector fak; = 1024. Table 2 shows the classification
results. It is clear that the two-layer sparse coding parfosignificantly better than its single-layer
counterpart.

We would like to point out that, although we simply employedxapooling in the experiments, it
may not be the best pooling strategy for the hierarchicalrmpscheme presented in this paper. We
believe a better pooling scheme needs to take the hieratatiacture into account, but this remains
as an open problem and is one of our future work.

5 Conclusion

This paper proposes a principled extension of the traditisimgle-layer flat sparse coding scheme,
where a two-layer coding scheme is derived based on theakatnalysis of nonlinear functional
approximation that extends recent results for local cowid coding. The two-layer approach can be
easily generalized to deeper structures in a hierarchio#lpte-layer manner. There are two main
advantages of multi-layer coding: it can potentially agkibetter performance because the deeper
layers provide more details and structures; it is computatly more efficient because coding are
decomposed into smaller problems. Experiment showed hlegperformance of two-layer coding
can significantly improve that of single-layer coding.

For the future directions, it will be interesting to expldhe deep coding network with more than
two layers. The formulation proposed in this paper grantgaghtforward extension from two
layers to multiple layers. For small datasets like MNISE to-layer scheme seems to be already
very powerful. However, for more complicated data, deepelirgy with multiple layers may be an
effective way for gaining finer and finer features. For examfiie first layer coding picks up some
large categories such as human, bikes, cups, and so on;ah#refhuman category, the second-
layer coding may find difference among adult, teenager, antbsperson; and then the third layer
may find even finer features such as race feature at diffegest a
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