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Abstract

We consider the question of computing Maximum A Posteriori (MAP) assignment
in an arbitrary pair-wise Markov Random Field (MRF). We present a randomized
iterative algorithm based on simple local updates. The algorithm, starting with an
arbitrary initial assignment, updates it in each iteration by first, picking a random
node, then selecting an (appropriately chosen) random local neighborhood and
optimizing over this local neighborhood. Somewhat surprisingly, we show that
this algorithm finds a near optimal assignment within n log2 n iterations with high
probability for any n node pair-wise MRF with geometry (i.e. MRF graph with
polynomial growth) with the approximation error depending on (in a reasonable
manner) the geometric growth rate of the graph and the average radius of the local
neighborhood – this allows for a graceful tradeoff between the complexity of the
algorithm and the approximation error. Through extensive simulations, we show
that our algorithm finds extremely good approximate solutions for various kinds
of MRFs with geometry.

1 Introduction

The abstraction of Markov random field (MRF) allows one to utilize graphical representation to
capture inter-dependency between large number of random variables in a succinct manner. The MRF
based models have been utilized successfully in the context of coding (e.g. the low density parity
check code [15]), statistical physics (e.g. the Ising model [5]), natural language processing [13]
and image processing in computer vision [11, 12, 19]. In most applications, the primary inference
question of interest is that of finding maximum a posteriori (MAP) solution – e.g. finding a most
likely transmitted message based on the received signal.

Related Work. Computing the exact MAP solution in general probabilistic models is an NP-hard
problem. This had led researchers to resort of fast approximate algorithms. Various such algorith-
mic approaches have been developed over more than the past three decades. In essence, all such
approaches try to find a locally optimal solution of the problem through iterative procedure. These
”local update” algorithms start from an initial solution and proceed by making a series of changes
which lead to solutions having lower energy (or better likelihood), and hence are also called ”move
making algorithms”. At each step, the algorithms search the space of all possible local changes that
can be made to the current solution (also called move space), and choose the one which leads to the
solution having the highest probability or lowest energy.

One such algorithm (which has been rediscovered multiple times) is called Iterated Conditional
Modes or ICM for short. Its local update involves selecting (randomly or deterministically) a vari-
able of the problem. Keeping the values of all other variables fixed, the value of the selected variable
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is chosen which results in a solution with the maximum probability. This process is repeated by se-
lecting other variables until the probability cannot be increased further.

The size of the move space is the defining characteristic of any such move making algorithm. A large
move space means that more extensive changes to the current solution can be made. This makes the
algorithm less prone to getting stuck in local minima and also results in a faster rate of convergence.
Expansion and Swap are move making algorithms which search for the optimal move in a move
space of size 2n where n is the number of random variables. For energy functions composed of
metric pairwise potentials, the optimal move can be found in polynomial time by minimizing a
submodular quadratic pseudo-boolean function [3] (or solving an equivalent minimum cost st-cut
problem).

The last few years have seen a lot of interest in st-mincut based move algorithms for energy mini-
mization. Komodakis et al. [9] recently gave an alternative interpretation of the expansion algorithm.
They showed that expansion can be seen as solving the dual of a linear programming relaxation of
the energy minimization problem. Researchers have also proposed a number of novel move en-
coding strategies for solving particular forms of energy functions. Veksler [18] proposed a move
algorithm in which variables can choose any label from a range of labels. They showed that this
move space allowed them to obtain better minima of energy functions with truncated convex pair-
wise terms. Kumar and Torr [10] have since shown that the range move algorithm achieves the same
guarantees as the ones obtained by methods based on the standard linear programming relaxation.

A related popular algorithmic approach is based on max-product belief propagation (cf. [14] and
[22]). In a sense, it can be viewed as an iterative algorithm that makes local updates based optimizing
based on the immediate graphical structure. There is a long list of literature on understanding the
conditions under which max-product belief propagation algorithm find correct solution. Specifically,
in recent years a sequence of results suggest that there is an intimate relation between the max-
product algorithm and a natural linear programming relaxation – for example, see [1, 2, 8, 16, 21].

We also note that Swendsen-Wang algorithm (SW) [17], a local flipping algorithm, has a philosophy
similar to ours in that it repeats a process of randomly partitioning the graph, and computing an
assignment. However, the graph partitioning of SW is fundamentally different from ours and there
is no known guarantee for the error bound of SW.

In summary, all the approaches thus far with provable guarantees for local update based algorithm
are primarily for linear or more generally convex optimization setup.

Our Contribution. As the main result of this paper, we propose a randomized iterative local al-
gorithm that is based on simple local updates. The algorithm, starting with an arbitrary initial as-
signment, updates it in each iteration by first picking a random node, then its (appropriate) random
local neighborhood and optimizing over this local neighborhood. Somewhat surprisingly, we show
that this algorithm finds near optimal assignment within n log2 n iterations with high probability for
graphs with geometry – i.e. graphs in which the neighborhood of each node within distance r grows
no faster than a polynomial in r. Such graphs can have arbitrarily structure subject to this poly-
nomial growth structure. We show that the approximation error depends gracefully on the average
random radius of the local neighborhood and degree of polynomial growth of the graph. Overall, our
algorithm can provide an ε−approximation MAP with C(ε)n log 2 n total computation with C(ε)
depending only on ε and the degree of polynomial growth. The crucial novel feature of our algo-
rithm is the appropriate selection of random local neighborhood rather than deterministic in order to
achieve provable performance guarantee.

We note that near optimality of our algorithm does not depend on convexity property, or tree-like
structure as many of the previous works; but only relies on geometry of the graphical structure which
is present in many graphical models of interest such as those arising in image processing, wireless
networks, etc.

We use our algorithm to verify its performance in simulation scenario. Specifically, we apply our
algorithm to two popular setting: (a) a grid graph based pairwise MRF with varying node and edge
interaction strengths, and (b) a grid graph based MRF on the weighted independent set (or hardcore)
model. We find that with very small radius (within 3), we find assignment which within 1% (0.99
factor) of the MAP for a large range of parameters and upto graph of 1000 nodes.
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Organization. We start by formally stating our problem statement and main theorem (Theorem 1)
in Section 2. This is followed by a detailed description of the algorithm in Section 3. We present
the sketch proof of the main result in Section 4. Finally, we provide a detailed simulation results in
Section 5.

2 Main Results

We start with the formal problem description and useful definitions/notations followed by the state-
ment of the main result about performance of the algorithm. The algorithm will be stated in the next
section.

Definitions & Problem Statement. Our interest is in a pair-wise MRF defined next. We note that,
formally all (non pair-wise) MRFs are equivalent to pair-wise MRFs – e.g. see [20].

Definition 1 (Pair-wise MRF). A pair-wise MRF based on graphG = (V,E) with n = |V | vertices
and edge set E is defined by associated a random variable X v with each vertex v ∈ V taking value
in finite alphabet set Σ; the joint distribution of X = (Xv)v∈V defined as

Pr[X = x] ∝
∏
v∈V

Ψv(xv) ·
∏

(u,v)∈E

Ψuv(xu, xv) (1)

where Ψv : Σ→ R+ and Ψuv : Σ2 → R+ are called node and edge potential functions. 1

In this paper, the question of interest is to find the maximum a posteriori (MAP) assignment x ∗ ∈
Σn, i.e.

x∗ ∈ arg max
x∈Σn

Pr[X = x].

Equivalently, from the optimization point of view, we wish to find an optimal assignment of the
problem

maximize H(x) over x ∈ Σn,

where
H(x) =

∑
v∈V

ln Ψv(xv) +
∑

(u,v)∈E

ln Ψuv(xu, xv).

For completeness and simplicity of exposition, we assume that the function H is finite valued over
Σn. However, results of this paper extend for hard constrained problems such as the hardcore or
independent set model.

In this paper, we will design algorithms for finding approximate MAP problem. Specifically, we call
an assignment x̂ as an ε-approximate MAP if

(1 − ε)H(x∗) ≤ H(x̂) ≤ H(x∗).

Graphs with Geometry. We define notion of graphs with geometry here. To this end, a graph
G = (V,E) induces a natural ‘graph metric’ on vertices V , denoted by dG : V × V → R+ with
dG(v, u) as the length of the shortest path between u and v; with it defined as∞ if there is no path
between them.

Definition 2 (Graph with Polynomial Growth). We call a graphG with polynomial growth of degree
(or growth rate) ρ, if for any v ∈ V and r ∈ N,

|BG(v, r)| ≤ C · rρ,

where C > 0 is a universal constant and BG(v, r) = {w ∈ V |dG(w, v) < r}.

A large class of graph model naturally fall into the graphs with polynomial growth. To begin with,
the standard d-dimensional regular grid graphs have polynomial growth rate d – e.g. d = 1 is the
line graph. More generally, in recent years in the context of computational geometry and metric
embedding, the graphs with finite doubling dimensions have become popular object of study [6, 7].

1We assume the positivity of Ψv’s and Ψuv’s for simplicity of analysis.
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It can be checked that a graph with doubling dimension ρ is also a graph with polynomial growth
rate ρ. Finally, the popular geometric graph model where nodes are placed arbitrarily on a two
dimensional surface with minimum distance separation and two nodes have an edge between them
if they are within certain finite distance, then it is indeed a graph with finite polynomial growth rate.

Statement of Main Result. The main result of this paper is a randomized iterative algorithm based
on simple local updates. In essence the algorithm works as follows. It starts with an arbitrary initial
assignment. In each iteration, it picks a node, say v from all n nodes of V , uniformly at random and
picks a random radius Q (as per specific distribution). The algorithm re-assigns values to all nodes
within distance Q of node v with respect to graph distance dG by finding the optimal assignment
for this local neighborhood subject to keeping the assignment to all other nodes the same. The
algorithm LOC-ALGO described in Section 3 repeats this process for n log 2 nmany times. We show
that LOC-ALGO finds near optimal solution with high probability as long as the graph has finite
polynomial growth rate.
Theorem 1. Given MRF based on graphG = (V,E) of n = |V | nodes with polynomial growth rate
ρ and approximation parameter ε ∈ (0, 1), our algorithm LOC-ALGO with O (log(1/δ)n logn)
iterations produces a solution x̂ such that

Pr[H(x∗)−H(x̂) ≤ 2εH(x∗)] ≥ 1− δ − 1
poly(n)

.

And each iteration takes at most ζ(ε, ρ) computation, with

ζ(ε, ρ) ≤ |Σ|CK(ε,ρ)ρ

,

where K(ε, ρ) is defined as

K = K(ε, ρ) =
8ρ
ϕ

log
(

8ρ
ϕ

)
+

4
ϕ

logC +
4
ϕ

log
1
ϕ

+ 2 with ϕ =
ε

5C2ρ
.

In a nutshell, Theorem 1 say that the complexity of the algorithm for obtaining an ε-approximation
scales almost linearly in n, double exponentially in 1/ε and ρ. On one hand, this result establishes
that it is indeed possible to have polynomial (or almost linear) time approximation algorithm for
arbitrary pair-wise MRF with polynomial growth. On the other hand, though theoretical bound on
the pre-constant ζ(ε, ρ) as function of 1/ε and ρ is not very exciting, our simulations suggest (see
Section 5) that even for hard problem setup, the performance is much more optimistic than predicted
by these theoretical bounds. Therefore, as a recommendation for a system designer, we suggest use
of smaller ‘radius’ distribution in algorithm described in Section 3 for obtaining good algorithm.

3 Algorithm Description

In this section, we provide details of the algorithm intuitively described in the previous section. As
noted earlier, the algorithm iteratively updates its estimation of MAP, denoted by x̂. Initially, the x̂ is
chosen arbitrarily. Iteratively, at each step a vertex v ∈ V is chosen uniformly at random along with
a random radiusQ that is chosen independently as per distribution Q. Then, selectR ⊂ V , the local
neighborhood (or ball) of radiusQ around v as per graph distance d G, i.e. {w ∈ V |dG(u,w) < Q}.
Then while keeping the assignment of all nodes in V \R fixed as per x̂ = (x̂v)v∈V , find MAP
assignment x∗,R restricted to nodes of R. And, update the assignment of nodes in v ∈ R as per
x∗,R. A caricature of an iteration is described in Figure 1. The precise description of the algorithm
is given in Figure 2.

In order to have good performance, it is essential to choose appropriate distribution Q for selection
of random radius Q each time. Next, we define this distribution which is essentially a truncated
Geometric distribution. Specifically, given parameters ε ∈ (0, 1) and the polynomial growth rate ρ
(with constant C) of the graph, define ϕ = ε

5C2ρ , and

K = K(ε, ρ) =
8ρ
ϕ

log
(

8ρ
ϕ

)
+

4
ϕ

logC +
4
ϕ

log
1
ϕ

+ 2.

Then, the distribution (or random variable) Q is defined over integers from 1 to K(ε, ρ) as

Pr[Q = i] =
{
ϕ(1 − ϕ)i−1 if 1 ≤ i < K(ε, ρ)
(1− ϕ)K−1 if i = K(ε, ρ)

.
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Figure 1: Pictorial description of an iteration of LOC-ALGO.

LOC-ALGO(ε,K)

(0) Input: MRF G = (V,E) with φi(·), i ∈ V , ψij(·, ·), (i, j) ∈ E.

(1) Initially, select x̂ ∈ Σn arbitrarily.

(2) Do the following for n log2 n many times :

(a) Choose an element u ∈ V uniformly at random.
(b) Draw a random number Q according to the distribution Q.
(c) LetR ← {w ∈ V |dG(u,w) < Q}.
(d) Through dynamic programming (or exhaustive computation) find

an exact MAP x∗,R forR while fixing all the other assignment
of x̂ value outsideR.

(e) Change values of x̂ forR by x∗,R.

(3) Output x̂.

Figure 2: Algorithm for approximate MAP computation.

4 Proof of Theorem 1

In this section, we present proof of Theorem 1. To that end, we will prove the following Lemma.

Lemma 1. If we run the LOC-ALGO with (2n lnn) iterations, with probability at least 1− 1/n, we
have

(1 − ε)H(x∗) ≤ E[H(x̂)] ≤ H(x∗).

From Lemma 1, we obtain Theorem 1 as follows. Define T = 2 log(1/δ), and consider LOC-
ALGO with (2Tn lnn) iterations. From the fact that H(x∗) − H(x̂) ≥ 0, and by the Markov
inequality applied to H(x∗)−H(x̂) with Lemma 1, we have that after (2n lnn) iterations,

Pr[H(x∗)−H(x̂) ≤ 2εH(x∗)] ≥ 1
2
. (2)

Note that (2) is true for any initial assignment of LOC-ALGO. Hence for each 1 ≤ t ≤ T , after
(2tn lnn) iterations, (2) holds independently with probability 1 − 1/n. Also, note that H( x̂) is
increasing monotonically. Hence,H(x∗)−H(x̂) > 2εH(x∗) holds after (2Tn lnn) iterations only
if the same holds after (2tn lnn) iterations for all 1 ≤ t ≤ T . Hence, after (2Tn lnn) iterations, we
have Pr[H(x∗)−H(x̂) ≤ 2εH(x∗)] ≥ 1− δ − 1/poly(n), which proves the first part of Theorem
1.

For the total computation bound in Theorem 1, note that each iteration of LOC-ALGO involves
dynamic programming over a local neighborhood of radius at most K = K(ε, ρ) around a node.

5



This involves, due to the polynomial growth condition, at most CK ρ nodes. Each variable can takes
at most |Σ| different values. Therefore, dynamic programming (or exhaustive search) can take at
most |Σ|CKρ

operations as claimed.

Proof of Lemma 1. First observe that by the standard argument in the classical coupon collector
problem with n coupons (e.g. see [4]), it follows that after 2n lnn iterations, with probability at
least 1− 1/n, all the vertices of V will be chosen as ‘ball centers’ at least once.

Error bound. Now we prove that if all the vertices of V are chosen as ‘ball centers’ at least once, the
answer x̂ generated by LOC-ALGO after 2n lnn iterations, is indeed an ε-approximation on average.
To this end, we construct an imaginarily set of edges as follows. Imagine that the procedure (2) of
LOC-ALGO is done with an iteration parameter t ∈ Z+. Then for each vertex v ∈ V, we assign the
largest iteration number t such that the chosen ballR at the iteration t contains w. That is,

T (v) = max{t ∈ Z+| LOC-ALGO chooses v as a member ofR at iteration t}.
Clearly, this is well defined algorithm is run till each node is chosen as the ‘ball center’ at least once.
Now define an imaginary boundary set of LOC-ALGO as

B = {(u,w) ∈ E|T (u) 
= T (w)}.
Now consider graph G′ = (V,E\B) obtained by removing edges B from G. In this graph, nodes
of the same connected component have same T (·) value. Next, we state two Lemmas that will be
crucial to the proof of the Theorem. Proof of Lemmas 2 and 3 are omitted.

Lemma 2. Given two MRFs X1 and X2 on the same graph G = (V , E) with identical edge po-
tentials {ψij(·, ·)}, (i, j) ∈ E but distinct node potentials {φ1

i (·)}, {φ2
i (·)}, i ∈ V respectively. For

each i ∈ V , define φD
i = maxσ∈Σ

∣∣φ1
i (σ)− φ2

i (σ)
∣∣ . Finally, for 
 ∈ {1, 2} and any x ∈ Σn,

define H�(x) =
∑

i∈V φ
�
i(xi) +

∑
(i,j)∈E ψij(xi, xj), with x∗,� being a MAP assignment of MRF

x�. Then, we have |H1(x∗,1)−H1(x2,∗)| ≤ 2
(∑

i∈V φ
D
i

)
.

Lemma 3. Given MRF X defined on G (as in (1)), the algorithm LOC-ALGO produces output x̂
such that

|H(x∗)−H(x̂)| ≤ 5

⎛
⎝ ∑

(i,j)∈B

(
ψU

ij − ψL
ij

)⎞⎠ ,

where B is the (random) imaginary boundary set of LOC-ALGO, ψU
ij � maxσ,σ′∈Σ ψij(σ, σ′), and

ψL
ij � minσ,σ′∈Σ ψij(σ, σ′).

Now we obtain the following lemma that utilizes the fact that the distribution Q follows a geometric
distribution with rate (1− ϕ) – its proof is omitted.

Lemma 4. For any edge e ∈ E of G,

Pr[e ∈ B] ≤ ϕ.
From Lemma 4, we obtain that∑

(i,j)∈B

(
ψU

ij − ψL
ij

) ≤ ϕ ∑
(i,j)∈E

(
ψU

ij − ψL
ij

)
. (3)

Finally, we establish the following lemma that bounds
∑

(i,j)∈E

(
ψU

ij − ψL
ij

)
– its proof is omitted.

Lemma 5. If G has maximum vertex degree d∗, then∑
(i,j)∈E

(
ψU

ij − ψL
ij

) ≤ (d∗ + 1)H(x∗). (4)

Now recall that the maximum vertex degree d∗ of G is less than 2ρC by the definition of poly-
nomially growing graph. Therefore, by Lemma 3, (3), and Lemma 5, the output produced by the
LOC-ALGO algorithm is such that

|H(x∗)−H(x̂)| ≤ 5(d∗ + 1)ϕH(x∗) ≤ εH(x∗),

where recall that ϕ = ε
5C2ρ . This completes the proof of Lemma 1.
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5 Experiments

Our algorithm provides a provable approximation for any MRF on a polynomially growing graph.
In this section, we present experimental evaluations of our algorithm for two popular models: (a)
synthetic Ising model, and (b) hardcore (independent set) model. As a reader will notice, the ex-
perimental results not only conform the qualitatively behavior proved by our theoretical result, but
it also suggest that much tighter approximation guarantees should be expected in practice compared
to what is guaranteed by theoretical results.

Setup 12 Consider a binary (i.e. Σ = {0, 1}) MRF on an n1 × n2 grid G = (V,E):

Pr(x) ∝ exp

⎛
⎝∑

i∈V

θixi +
∑

(i,j)∈E

θijxixj

⎞
⎠ , for x ∈ {0, 1}n1n2 .

We consider the following scenario for choosing parameters (with the notation U [a, b] for the uni-
form distribution over the interval [a, b]):

1. For each i ∈ V , choose θi independently as per the distribution U [−1, 1].
2. For each (i, j) ∈ E, choose θij independently from U [−α, α]. Here the interaction param-

eter α is chose from {0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64}.

(A)

0.2

0.25

0 1

0.15 r=1

r=2

E

0.05

0.1 r 2

r=3

Error 0

0.125 0.25 0.5 1 2 4 8 16 32 64

(B)
0.25

0.3

0.15

0.2
r=1

r=2

0.05

0.1
r=2

r=3

Error 0

0.125 0.25 0.5 1 2 4 8 16 32 64

Figure 3: (A) plots the error of local update algorithm for a random Ising model in the grid graph of
size 10× 10, and (B) plots the error in the grid of size 100× 10.

To compare the effectiveness of our algorithm for each size of the local updates, in our simulation,
we fix the square size as a constant instead of choosing it from a distribution. We run the simulation
for the local square size r×r with r = 1, 2, 3, where r = 1 is the case when each square consists of a
single vertex. We computed an exact MAP assignment x∗ by dynamic programming, and computed
the output x̂ of our local update algorithm for each r, by doing 4n 1n2 log(n1n2) many local updates
for n1 × n2 grid graph. Then compare the error as follows:

Error =
H(x∗)−H(x̂∗)

H(x∗)
.

We run the simulation for 100 trials and compute the average error for each case. The Figure 3(A)
plots the error for the grid of size 10 × 10, while Figure 3(B) plots the error for the grid of size
100× 10.

2Though this setup has φi, ψij taking negative values, they are equivalent to the setup considered in the
paper, since affine shift will make them non-negative without changing the distribution.
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Remind that the approximation guarantee of Theorem 1 is an error bound for the worst case. As the
simulation result suggests, for any graph and any range of α, the error of the local update algorithm
decreases dramatically as r increases. Moreover, when r is comparably small as r = 3, the output
of the local update algorithm achieves remarkably good approximation. Hence we observe that our
algorithm performs well not only theoretically, but also practically.

Setup 2. We consider the vertex weighted independent set model defined on a grid graph. To this
end, we start by description of a weighted independent set problem as the MRF model. Specifically,
consider a binary MRF on an n1 × n2 gridG = (V,E):

Pr(x) ∝ exp

⎛
⎝∑

i∈V

θixi +
∑

(i,j)∈E

Ψ(xixj)

⎞
⎠ , for x ∈ {0, 1}n1n2 .

Here, the parameters are chosen as follows.

1. For each i ∈ V , θi is chosen independently as per the distribution U [0, 1].
2. The function Ψ(·, ·) is defined as

Ψ(σ, σ′) =
{−M if (σ, σ′) = (1, 1)

0 otherwise
,

whereM is a large number.

For this model, we did simulations for grid graphs of size 10×10, 30×10, and 100×10 respectively.
For each graph, we computed the average error as in the Setup 1, over 100 trials. The result is shown
in the following table. As the result shows, our local update algorithm achieves remarkably good
approximation of the MAP or equivalently in this setup the maximum weight independent set, even
with very small r values !

10× 10 30× 10 100× 10
r=1 0.219734 0.205429 0.208446
r=2 0.016032 0.019145 0.019305
r=3 0.001539 0.002616 0.002445

It is worth nothing that choosing θi from U [0, α] for any α > 0 will give the same approximation
result, since x∗ and x̂ are both linear on α.

6 Conclusion

We considered the question of designing simple, iterative algorithm with local updates for finding
MAP in any pair-wise MRF. As the main result of this paper, we presented such a randomized, local
iterative algorithm that can find ε-approximate solution of MAP in any pair-wise MRF based on
G within 2n lnn iterations and the computation per iteration is constant C(ε, ρ) dependent on the
accuracy parameter ε as well as the growth rate ρ of the polynomially growing graph G. That is,
ours is a local, iterative randomized PTAS for MAP problem in MRF with geometry. Our results are
somewhat surprising given that thus far the known theoretical justification for such local algorithms
strongly dependended on some form of convexity of the ‘energy’ function. In contrast, our results
do not require any such condition, but only the geometry of the underlying MRF. We believe that
our algorithm will be of great practical interest in near future as a large class of problems that utilize
MRF based modeling and inference in practice have the underlying graphical structure possessing
some form of geometry naturally.
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