
Parallel Inference for Latent Dirichlet Allocation on
Graphics Processing Units

Feng Yan
Department of CS
Purdue University

West Lafayette, IN 47907

Ningyi Xu
Microsoft Research Asia

No. 49 Zhichun Road
Beijing, P.R. China

Yuan (Alan) Qi
Departments of CS and Statistics

Purdue University
West Lafayette, IN 47907

Abstract

The recent emergence of Graphics Processing Units (GPUs) as general-purpose
parallel computing devices provides us with new opportunities to develop scal-
able learning methods for massive data. In this work, we consider the prob-
lem of parallelizing two inference methods on GPUs for latent Dirichlet Allo-
cation (LDA) models, collapsed Gibbs sampling (CGS) and collapsed variational
Bayesian (CVB). To address limited memory constraints on GPUs, we propose
a novel data partitioning scheme that effectively reduces the memory cost. This
partitioning scheme also balances the computational cost on each multiprocessor
and enables us to easily avoid memory access conflicts. We use data streaming to
handle extremely large datasets. Extensive experiments showed that our parallel
inference methods consistently produced LDA models with the same predictive
power as sequential training methods did but with 26x speedup for CGS and 196x
speedup for CVB on a GPU with 30 multiprocessors. The proposed partitioning
scheme and data streaming make our approach scalable with more multiproces-
sors. Furthermore, they can be used as general techniques to parallelize other
machine learning models.

1 Introduction

Learning from massive datasets, such as text, images, and high throughput biological data, has
applications in various scientific and engineering disciplines. The scale of these datasets, however,
often demands high, sometimes prohibitive, computational cost. To address this issue, an obvious
approach is to parallelize learning methods with multiple processors. While large CPU clusters
are commonly used for parallel computing, Graphics Processing Units (GPUs) provide us with a
powerful alternative platform for developing parallel machine learning methods.

A GPU has massively built-in parallel thread processors and high-speed memory, therefore provid-
ing potentially one or two magnitudes of peak flops and memory throughput greater than its CPU
counterpart. Although GPU is not good at complex logical computation, it can significantly reduce
running time of numerical computation-centric applications. Also, GPUs are more cost effective
and energy efficient. The current high-end GPU has over 50x more peak flops than CPUs at the
same price. Given a similar power consumption, GPUs perform more flops per watt than CPUs. For
large-scale industrial applications, such as web search engines, efficient learning methods on GPUs
can make a big difference in energy consumption and equipment cost. However, parallel computing

1

on GPUs can be a challenging task because of several limitations, such as relatively small memory
size.

In this paper, we demonstrate how to overcome these limitations to parallel computing on GPUs with
an exemplary data-intensive application, training Latent Dirichlet Allocation (LDA) models. LDA
models have been successfully applied to text analysis. For large corpora, however, it takes days,
even months, to train them. Our parallel approaches take the advantage of parallel computing power
of GPUs and explore the algorithmic structures of LDA learning methods, therefore significantly
reducing the computational cost. Furthermore, our parallel inference approaches, based on a new
data partition scheme and data streaming, can be applied to not only GPUs but also any shared
memory machine. Specifically, the main contributions of this paper include:

• We introduce parallel collapsed Gibbs sampling (CGS) and parallel collapsed variational
Bayesian (CVB) for LDA models on GPUs. We also analyze the convergence property
of the parallel variational inference and show that, with mild convexity assumptions, the
parallel inference monotonically increases the variational lower bound until convergence.
• We propose a fast data partition scheme that efficiently balances the workloads across pro-

cessors, fully utilizing the massive parallel mechanisms of GPUs.
• Based on this partitioning scheme, our method is also independent of specific memory

consistency models: with partitioned data and parameters in exclusive memory sections,
we avoid access conflict and do not sacrifice speedup caused by extra cost from a memory
consistency mechanism
• We propose a data streaming scheme, which allows our methods to handle very large cor-

pora that cannot be stored in a single GPU.
• Extensive experiments show both parallel inference algorithms on GPUs achieve the same

predictive power as their sequential inference counterparts on CPUs, but significantly faster.
The speedup is near linear in terms of the number of multiprocessors in the GPU card.

2 Latent Dirichlet Allocation

We briefly review the LDA model and two inference algorithms for LDA. 1LDA models each of D
documents as a mixture over K latent topics, and each topic k is a multinomial distribution over
a word vocabulary having W distinct words denoted by φk = {φkw}, where φk is drawn from a
symmetric Dirichlet prior with parameter β. In order to generate a document j, the document’s
mixture over topics, θj = {θjk}, is drawn from a symmetric Dirichlet prior with parameter α
first. For the ith token in the document, a topic assignment zij is drawn with topic k chosen with
probability θjk. Then word xij is drawn from the zij th topic, with xij taking on value w with
probability φzijw. Given the training data with N words x = {xij}, we need to compute the
posterior distribution over the latent variables.

Collapsed Gibbs sampling [4] is an efficient procedure to sample the posterior distribution of topic
assignment z = {zij} by integrating out all θjk and φkw. Given the current state of all but one
variable zij , the conditional distribution of zij is

P (zij = k|z¬ij ,x, α, β) ∝
n¬ij

xijk + β

n¬ij
k + Wβ

(n¬ij
jk + α) (1)

where nwk denotes the number of tokens with word w assigned to topic k, njk denotes the number
of tokens in document j assigned to topic k and n¬ij

k =
∑
w

n¬ij
wk . Superscript ¬ij denotes that the

variable is calculated as if token xij is removed from the training data.

CGS is very efficient because the variance is greatly reduced by sampling in a collapsed state
space. Teh et al. [9] applied the same state space to variational Bayesian and proposed the col-
lapsed variational Bayesian inference algorithm. It has been shown that CVB has a theoretically
tighter variational bound than standard VB. In CVB, the posterior of z is approximated by a fac-
torized posterior q(z) =

∏
ij q(zij |γij) where q(zij |γij) is multinomial with variational parameter

1We use indices to represent topics, documents and vocabulary words.

2

γij = {γijk}. The inference task is to find variational parameters maximizing the variational lower

bound L(q) =
∑
z

q(z) log
p(z,x|α, β)

q(z)
. The authors used a computationally efficient Gaussian

approximation. The updating formula for γij is similar to the CGS updates

γijk ∝ (Eq[n
¬ij
xijk] + β)(Eq[n

¬ij
jk] + α)(Eq[n

¬ij
k] + Wβ)−1

exp(−
Varq [n¬ij

xijk]

2(Eq [n¬ij
xijk]+β)2

− Varq [n¬ij
jk]

2(Eq [n¬ij
jk]+α)2)

+ Varq [n¬ij
k]

2(Eq [n¬ij
k]+Wβ)2

) (2)

3 Parallel Algorithms for LDA Training

3.1 Parallel Collapsed Gibbs Sampling

A natural way to parallelize LDA training is to distribute documents across P processors. Based on
this idea, Newman et al. [8] introduced a parallel implementation of CGS on distributed machines,
called AD-LDA. In AD-LDA, D documents and document-specific counts njk are distributed over
P processors, with D

P documents on each processor. In each iteration, every processor p inde-
pendently runs local Gibbs sampling with its own copy of topic-word count np

kw and topic counts
np

k =
∑

w np
kw in parallel. Then a global synchronization aggregates local counts np

kw to produce
global counts nkw and nk. AD-LDA achieved substantial speedup compared with single-processor
CGS training without sacrificing prediction accuracy. However, it needs to store P copies of topic-
word counts nkw for all processors, which is unrealistic for GPUs with large P and large datasets
due to device memory space limitation. For example, a dataset having 100, 000 vocabulary words
needs at least 1.4 GBytes to store 256-topic nwk for 60 processors, exceeding the device memory ca-
pacity of current high-end GPUs. In order to address this issue, we develop parallel CGS algorithm
that only requires one copy of nkw.

Algorithm 1: Parallel Collapsed Gibbs Sampling
Input: Word tokens x, document partition

J1, . . . , JP and vocabulary partition
V1, . . . , VP

Output: njk, nwk, zij

Initialize topic assignment to each word token, set1

np
k ← nk

repeat2
for l = 0 to P − 1 do3

/* Sampling step */
for each processor p in parallel do4

Sample zij for j ∈ Jp and xij ∈ Vp⊕l5
(Equation (1)) with global counts nwk,
global counts njk and local counts np

k
end6
/* Synchronization step */
Update np

k according to Equation (3)7

end8

until convergence9

Our parallel CGS algorithm is motivated
by the following observation: for word
token w1 in document j1 and word to-
ken w2 in document j2, if w1 6= w2 and
j1 6= j2, simultaneous updates of topic
assignment by (1) have no memory
read/write conflicts on document-topic
counts njk and topic-word counts nwk.
The algorithmic flow is summarized in
Algorithm 1. In addition to dividing
all documents J = {1, . . . , D} to P
(disjoint) sets of documents J1, . . . , JP

and distribute them to P processors,
we further divide the vocabulary words
V = {1, . . . ,W} into P disjoint subsets
V1, . . . , VP , and each processor p (p =
0, . . . , P−1) stores a local copy of topic
counts np

k. Every parallel CGS training
iteration consists of P epochs, and each
epoch consists of a sampling step and
a synchronization step. In the sampling
step of the lth epoch (l = 0, . . . , P − 1),
processor p samples topic assignments

zij whose document index is j ∈ Jp and word index is xij ∈ Vp⊕l. The ⊕ is the modulus P
addition operation defined by

a⊕ b = (a + b) mod P,
and all processors run the sampling simultaneously without memory read/write conflicts on the
global counts njk and nwk. Then the synchronization step uses (3) to aggregate np

k to global counts
nk, which are used as local counts in the next epoch.

nk ← nk +
∑

p

(np
k − nk), np

k ← nk (3)

3

Our parallel CGS can be regarded as an extension to AD-LDA by using the data partition in local
sampling and inserting P−1 more synchronization steps within an iteration. Since our data partition
guarantees that any two processors access neither the same document nor the same word in an epoch,
the synchronization of nwk in AD-LDA is equivalent to keeping nwk unchanged after the sampling
step of the epoch. Becasue P processors concurrently sample new topic assignments in parallel
CGS, we don’t necessarily sample from the correct posterior distribution. However, we can view it
as a stochastic optimization method that maximizes p(z|x, α, β). A justification of this viewpoint
can be found in [8].

3.2 Parallel Collapsed Variational Bayesian

The collapsed Gibbs sampling and the collapsed variational Bayesian inference [9] are similar in
their algorithmic structures. As pointed out by Asuncion et al. [2], there are striking similarities
between CGS and CVB. A single iteration of our parallel CVB also consists of P epochs, and each
epoch has an updating step and a synchronization step. The updating step updates variational pa-
rameters in a similar manner as the sampling step of parallel CGS. Counts in CGS are replaced
by expectations and variances, and new variational parameters are computed by (2). The synchro-
nization step involves an affine combination of the variational parameters in the natural parameter
space.

Since multinomial distribution belongs to the exponential family, we can represent the multinomial
distribution over K topics defined by mean parameter γij in natural parameter λij = (λijk) by
λijk = log(γijk

1−
P

k′ 6=K γijk′
) for k = 1, 2, . . . ,K − 1, and the domain of λij is unconstrained. Thus

maximizing L(q(λ)) becomes an unconstrained optimization problem. Denote λm = (λij)j∈Jm
,

λ = (λ0, . . . ,λP−1), λnew and λold to be the variational parameters immediately after and before
the updating step respectively. Let λ(p) = (λold

0 , . . . ,λnew
p , . . . ,λold

P−1). We pick a λsync as the
updated λ from a one-parameter class of variational parameters λ(µ) that combines the contribution
from all processors

λ(µ) = λold + µ
P−1∑
i=0

(λ(i) − λold), µ ≥ 0.

Two special cases are of interest: 1) λsync = λ(1
P) is a convex combination of {λ(p)}; and 2)

λsync = λ(1) = λnew. If (quasi)concavity [3] holds in sufficient large neighborhoods of the
sequence of λ(µ), say near a local maximum having negatively defined Hessian, then L(q(λ(µ))) ≥
minp L(q(λ(p))) ≥ L(q(λold)) and L(q) converge locally. For the second case, we keep γnew and
only update Eq[nk] and Varq[nk] similarly as (3) in the synchronization step. The formulas are

E[nk]← E[nk] +
∑

p(E[np
k]− E[nk]), E[np

k]← E[nk]

Var[nk]← Var[nk] +
∑

p(Var[np
k]− Var[nk]), Var[np

k]← Var[nk] (4)

Also, λ(1) assigns a larger step size to the direction
∑P−1

i=0 (λ(i) − λold). Thus we can achieve a
faster convergence rate if it is an ascending direction. It should be noted that our choice of λsync

doesn’t guarantee global convergence, but we shall see that λ(1) can produce models that have
almost the same predictive power and variational lower bounds as the single-processor CVB.

3.3 Data Partition

In order to achieve maximal speedup, we need the partitions producing balanced workloads across
processors, and we also hope that generating the data partition consumes a small fraction of time in
the whole training process.

In order to present in a unified way, we define the co-occurrence matrix R = (rjw) as: For parallel
CGS, rjw is the number of occurrences of word w in document j; for parallel CVB, rjw = 1 if w
occurs at least once in j, otherwise rjw = 0. We define the submatrix Rmn = (rjw) ∀j ∈ Jm, w ∈
Vn. The optimal data partition is equivalent to minimizing the following cost function

C =
P−1∑
l=0

max
(m,n):
m⊕l=n

{Cmn}, Cmn =
∑

rjw∈Rmn

rjw (5)

4

The basic operation in the proposed algorithms is either sampling topic assignments (in CGS) or
updating variational parameters (in CVB). Each value of l in the first summation term in (5) is
associated with one epoch. All Rmn satisfying m⊕ l = n are the P submatrices of R whose entries
are used to perform basic operations in epoch l. The number of these two types of basic operations
on each unique document/word pair (j, w) are all rjw. So the total number of basic operations in
Rm,n is Cmn for a single processor. Since all processors have to wait for the slowest processor to
complete its job before a synchronization step, the maximal Cmn is the number of basic operations
for the slowest processor. Thus the total number of basic operations is C. We define data partition
efficiency, η, for a given row and column partitions by

η =
Copt

C
, Copt =

∑
j∈J,w∈V

rjw/P (6)

where Copt is the theoretically minimal number of basic operations. η is defined to be less than or
equal to 1. The higher the η, the better the partitions. Exact optimization of (5) can be achieved
through solving an equivalent integer programming problem. Since integer programming is NP-
hard in general, and the large number of free variables for real-world datasets makes it intractable
to solve, we use a simple approximate algorithm to perform data partitioning. In our observation, it
works well empirically.

Here we use the convention of initial value j0 = w0 = 0. Our data partition algorithm divides row
index J into disjoint subsets Jm = {j(m−1), . . . , jm}, where jm = arg min

j′
|mCopt −

∑
j≤j′

rjw|.

Similarly, we divide column index V into disjoint subsets Vn = {w(n−1) + 1, . . . , wn} by wn =
arg min

w′
|mCopt−

∑
w≤w′

rjw|. This algorithm is fast, since it needs only one full sweep over all word

tokens or unique document/word pairs to calculate jm and wn. In practice, we can run this algorithm
for several random permutations of J or V , and take the partitions with the highest η.

We empirically obtained high η on large datasets with the approximate algorithm. For a word token x
in the corpus, the probability that x is the word w is P (x = w), the probability that x is in document
j is P (x in j). If we assume these two distributions are independent and x is i.i.d., then for a fixed P ,
the law of large numbers asserts P (x in Jm) ≈ jm−j(m−1)

D ≈ 1
P and P (x ∈ Vn) ≈ wn−w(n−1)

W ≈ 1
P .

Independence gives E[Cmn] ≈ Copt

P where Cmn =
∑

x 1{x inJm,x∈Vn}. Furthermore, the law of
large numbers and the central limit theorem also give Cmn ≈ Copt

P and the distribution of Cmn is
approximately a normal distribution. Although independence and i.i.d. assumptions are not true for
real data, the above analysis holds in an approximate way. Actually, when P = 10, the Cmn of
NIPS and NY Times datasets (see Section 4) accepted the null hypothesis of Lilliefors’ normality
test with a 0.05 significance level.

3.4 GPU Implementation and Data Streaming

We used a Leatek Geforce 280 GTX GPU (G280) in this experiment. The G280 has 30 on-chip
multiprocessors running at 1296 MHz, and each multiprocessor has 8 thread processors that are
responsible for executing all threads deployed on the multiprocessor in parallel. The G280 has
1 GBytes on-board device memory, the memory bandwidth is 141.7 GB/s. We adopted NVidia’s
Compute Unified Device Architecture (CUDA) as our GPU programming environment. CUDA
programs run in a Single Program Multiple Threads (SPMT) fashion. All threads are divided into
equal-sized thread blocks. Threads in the same thread block are executed on a multiprocessor, and
a multiprocessor can execute a number of thread blocks. We map a “processor” in the previous
algorithmic description to a thread block. For a word token, fine parallel calculations, such as (1)
and (2), are realized by parallel threads inside a thread block.

Given the limited amount of device memory on GPUs, we cannot load all training data and model
parameters into the device memory for large-scale datasets. However, the sequential nature of Gibbs
sampling and variational Bayesian inferences allow us to implement a data streaming [5] scheme
which effectively reduces GPU device memory space requirements. Temporal data and variables,
xij , zij and γij , are sent to a working space on GPU device memory on-the-fly. Computation and
data transfer are carried out simultaneously, i.e. data transfer latency is hidden by computation.

5

dataset KOS NIPS NYT
Number of documents, D 3, 430 1, 500 300, 000

Number of words, W 6, 906 12, 419 102, 660
Number of word tokens, N 467, 714 1, 932, 365 99, 542, 125

Number of unique document/word pairs, M 353, 160 746, 316 69, 679, 427

Table 1: datasets used in the experiments.

P = 1 P = 1 0 P = 3 0 P = 6 0
1 3 5 0

1 4 0 0

1 4 5 0

1 5 0 0

1 5 5 0

C V B , K = 6 4
C V B , K = 1 2 8
C G S , K = 6 4
C G S , K = 1 2 8

Pe
rpl

ex
ity

P = 1 P = 1 0 P = 3 0 P = 6 0
1 0 0 0

1 0 5 0

1 1 0 0

1 1 5 0

1 2 0 0

1 2 5 0

1 3 0 0

1 3 5 0

1 4 0 0

C V B , K = 6 4
C V B , K = 1 2 8
C V B , K = 2 5 6
C G S , K = 6 4
C G S , K = 1 2 8
C G S , K = 2 5 6Pe

rpl
ex

ity
Figure 1: Test set perplexity versus number of processors P for KOS (left) and NIPS (right).

4 Experiments

We used three text datasets retrieved from the UCI Machine Learning Repository2 for evaluation.
Statistical information about these datasets is shown in Table 4. For each dataset, we randomly
extracted 90% of all word tokens as the training set, and the remaining 10% of word tokens are the
test set. We set α = 50/K and β = 0.1 in all experiments [4]. We use λsync = λ(1) in the parallel
CVB, and this setting works well in all of our experiments.

4.1 Perplexity

We measure the performance of the parallel algorithms using test set perplexity. Test set perplexity
is defined as exp(− 1

N test log p(xtest)). For CVB, test set likelihood p(xtest) is computed as

p(xtest) =
∏
ij

log
∑

k

θ̄jkφ̄xijk θ̄jk =
α + E[njk]

Kα +
∑

k E[njk]
φ̄wk =

β + E[nwk]
Wβ + E[nk]

(7)

We report the average perplexity and the standard deviation of 10 randomly initialized runs for the
parallel CVB. The typical burn-in period of CGS is about 200 iterations. We compute the likelihood
p(xtest) for CGS by averaging S = 10 samples at the end of 1000 iterations from different chains.

p(xtest) =
∏
ij

log
1
S

∑
s

∑
k

θ̂s
jkφ̂s

xijk θ̂s
jk =

α + ns
jk

Kα +
∑

k ns
jk

φ̂s
wk =

β + ns
wk

Wβ + ns
k

(8)

Two small datasets, KOS and NIPS, are used in the perplexity experiment. We computed test per-
plexity for different values of K and P . Figure 1 shows the test set perplexity on KOS (left) and NIPS
(right). We used the CPU to compute perplexity for P = 1 and the GPU for P = 10, 30, 60. For a
fixed number of K, there is no significant difference between the parallel and the single-processor
algorithms. It suggests our parallel algorithms converge to models having the same predictive power
in terms of perplexity as single-processor LDA algorithms.

Perplexity as a function of iteration number for parallel CGS and parallel CVB on NIPS are shown
in Figure 2 (a) and (b) respectively. Since CVB actually maxmizes the variational lower bound L(q)
on the training set, so we also investigated the convergence rate of the variational lower bound. The
variational lower bound is computed using an exact method suggested in [9]. Figure 2 (c) shows the
per word token variational lower bound as a function of iteration for P = 1, 10, 30 on a sampled

2http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

6

subset of KOS (K = 64). Both parallel algorithms converge as rapidly as the single-processor
LDA algorithms. Therefore, when P gets larger, convergence rate does not curtail the speedup. We
surmise that these results in Figure 2 may be due to frequent synchronization and relative big step
sizes in our algorithms. In fact, as we decreased the number of synchronizations in the parallel CVB,
the result became significantly worse. The curve “µ=1/P, P=10” in Figure 2 (right) was obtained by
setting λsync = λ(1

P). It converged considerably slower than the other curves because of its small
step size.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0
2 4 0 0
2 6 0 0

Pe
rpl

ex
ity

I t e r a t i o n

 C G S
 P a r a l l e l C G S , P = 1 0
 P a r a l l e l C G S , P = 3 0

(a)

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0
2 4 0 0
2 6 0 0

Pe
rpl

ex
ity

I t e r a t i o n

 µ=1/P , P = 1 0
 C V B
 P a r a l l e l C V B , P = 1 0
 P a r a l l e l C V B , P = 3 0

(b)

0 5 0 1 0 0 1 5 0
- 6 . 8 2
- 6 . 8 0
- 6 . 7 8
- 6 . 7 6
- 6 . 7 4
- 6 . 7 2
- 6 . 7 0
- 6 . 6 8
- 6 . 6 6

Va
ria

tio
na

l lo
we

r b
ou

nd

I t e r a t i o n

 C V B , P = 1
 P a r a l l e l C V B , P = 1 0
 P a r a l l e l C V B , P = 3 0

(c)

Figure 2: (a) Test set perplexity as a function of iteration number for the parallel CGS on NIPS,
K = 256. (b) Test set perplexity as a function of iteration number for the parallel CVB on NIPS,
K = 128. (c) Variational lower bound on a dataset sampled from KOS, K = 64.

4.2 Speedup

The speedup is compared with a PC equipped with an Intel quad-core 2.4GHz CPU and 4 GBytes
memory. Only one core of the CPU is used. All CPU implementations are compiled by Microsoft
C++ compiler 8.0 with -O2 optimization. We did our best to optimize the code through experiments,
such as using better data layout and reducing redundant computation. The final CPU code is almost
twice as fast as the initial code.

Our speedup experiments are conducted on the NIPS dataset for both parallel algorithms and the
large NYT dataset for only the parallel CGS, because γij of the NYT dataset requires too much
memory space to fit into our PC’s host memory. We measure the speedup on a range of P with or
without data streaming. As the baseline, average running times on the CPU are: 4.24 seconds on
NIPS (K = 256) and 22.1 seconds on NYT (K = 128) for the parallel CGS, and 11.1 seconds
(K = 128) on NIPS for the parallel CVB. Figure 3 shows the speedup of the parallel CGS (left)
and the speedup of the parallel CVB (right) with the data partition efficiency η under the speedup.
We note that when P > 30, more threads are deployed on a multiprocessor. Therefore data transfer
between the device memory and the multiprocessor is better hidden by computation on the threads.
As a result, we have extra speedup when the number of “processors” (thread blocks) is larger than
the number of multiprocessors on the GPU.

P = 1 0 P = 3 0 P = 6 0

8

1 2

1 6

2 0

2 4

2 8

P = 1 0 P = 3 0 P = 6 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Sp
ee

du
p

 N Y T , S t r e a m i n g
 N I P S , S t r e a m i n g
 N I P S , N o S t r e a m i n g

 N Y T
 N I P Sη

P = 1 0 P = 3 0 P = 6 0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0
2 4 0

P = 1 0 P = 3 0 P = 6 0

0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Sp
ee

du
p

 S t r e a m i n g
 N o S t r e a m i n g

η

Figure 3: Speedup of parallel CGS (left) on NIPS and NYT, and speedup of parallel CVB (right)
on NIPS. Average running times on the CPU are 4.24 seconds on NIPS and 22.1 seconds on NYT
for the parallel CGS, and 11.1 seconds on NIPS for the parallel CVB, respectively. Although using
data streaming reduces the speedup of parallel CVB due to the low bandwidth between the PC host
memory and the GPU device memory, it enables us to use a GPU card to process large-volume data.

7

P = 1 0 P = 3 0 P = 6 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

η

 c u r r e n t e v e n r a n d o m

Figure 4: data partition efficiency η of
various data partition algorithms for P =
10, 30, 60. Due to the negligible overheads
for the synchronization steps, the speedup
is proportional to η in practice.

The synchronization overhead is very small since P �
N and the speedup is largely determined by the maxi-
mal number of nonzero elements in all partitioned sub-
matrices. As a result, the speedup (when not using data
streaming) is proportional to ηP . The bandwidth be-
tween the PC host memory and the GPU device mem-
ory is ∼ 1.0 GB/s, which is higher than the computa-
tion bandwidth (size of data processed by the GPU per
second) of the parallel CGS. Therefore, the speedup
with or without data streaming is almost the same for
the parallel CGS. But the speedup with or without data
streaming differs dramatically for the parallel CVB,
because its computation bandwidth is roughly ∼ 7.2
GB/s for K = 128 due to large memory usage of γij ,
higher than the maximal bandwidth that data stream-
ing can provide. The high speedup of the parallel CVB
without data streaming is due to a hardware supported
exponential function and a high performance implementation of parallel reduction that is used to
normalize γij calculated from (2). Figure 3 (right) shows that the larger the P , the smaller the
speedup for the parallel CVB with data streaming. The reason is when P becomes large, the data
streaming management becomes more complicated and introduces more latencies on data transfer.

Figure 4 shows data partition efficiency η of various data partition algorithms for P = 10, 30, 60 on
NIPS. “current” is the data partition algorithm proposed in section 3.3, “even” partitions documents
and word vocabulary into roughly equal-sized subsets by setting jm = bmD

P c and wn = bnW
P c.

“random” is a data partition obtained by randomly partitioning documents and words. We see that
the proposed data partition algorithm outperforms the other algorithms.

More than 20x speedup is achieved for both parallel algorithms with data streaming. The speedup
of the parallel CGS enables us to run 1000 iterations (K=128) Gibbs sampling on the large NYT
dataset within 1.5 hours, and it yields the same perplexity 3639 (S = 5) as the result obtained from
30-hour training on a CPU.

5 Related Works and Discussion

Our work is closely related to several previous works, including the distributed LDA by Newman
et al. [8], asynchronous distributed LDA by Asuncion et al. [1] and the parallelized variational
EM algorithm for LDA by Nallapati et al. [7]. For these works LDA training was parallelized on
distributed CPU clusters and achieved impressive speedup. Unlike their works, ours shows how
to use GPUs to achieve significant, scalable speedup for LDA training while maintaining correct,
accurate predictions.

Masada et al. recently proposed a GPU implementation of CVB [6]. Masada et al. keep one copy
of nwk while simply maintaining the same algorithmic structure for their GPU implementation as
Newman et al. did on a CPU cluster. However, with the limited memory size of a GPU, compared
to that of a CPU cluster, this can lead to memory access conflicts. This issue becomes severe when
one performs many parallel jobs (threadblocks) and leads to wrong inference results and operation
failure, as reported by Masada et al. Therefore, their method is not easily scalable due to memory
access conflicts. Different from their approach, ours are scalable with more multiprocessors with the
the proposed partitioning scheme and data streaming. They can also be used as general techniques
to parallelize other machine learning models that involve sequential operations on matrix, such as
online training of matrix factorization.

Acknowledgements

We thank Max Welling and David Newman for providing us with the link to the experimental data.
We also thank the anonymous reviewers, Dong Zhang and Xianxing Zhang for their invaluable
inputs. F. Yan conducted this research at Microsoft Research Asia. F. Yan and Y. Qi were supported
by NSF IIS-0916443 and Microsoft Research.

8

References

[1] A. Asuncion, P. Smyth, and M. Welling. Asynchronous distributed learning of topic models. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, NIPS, pages 81–88. MIT Press,
2008.

[2] A. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. On smoothing and inference for topic
models. In Proceedings of the International Conference on Uncertainty in Artificial Intelligence,
2009.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004.
[4] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy

Science, 101 (suppl. 1):5228–5235, April 2004.
[5] F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis, and M. Horowitz. The stream vir-

tual machine. In PACT ’04: Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, pages 267–277, Washington, DC, USA, 2004. IEEE
Computer Society.

[6] T. Masada, T. Hamada, Y. Shibata, and K. Oguri. Accelerating collapsed variational bayesian
inference for latent Dirichlet allocation with Nvidia CUDA compatible devices. In IEA-AIE,
2009.

[7] R. Nallapati, W. Cohen, and J. Lafferty. Parallelized variational EM for latent Dirichlet alloca-
tion: An experimental evaluation of speed and scalability. 2007.

[8] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for latent Dirichlet
allocation. In NIPS, 2007.

[9] Y. W. Teh, D. Newman, and M. Welling. A collapsed variational Bayesian inference algorithm
for Latent Dirichlet allocation. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages
1353–1360. MIT Press, 2006.

9

