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Abstract

Regularized risk minimization often involves non-smooth optimization, either be-
cause of the loss function (e.g., hinge loss) or the regularizer (e.g.,ℓ1-regularizer).
Gradient methods, though highly scalable and easy to implement, are known to
converge slowly. In this paper, we develop a novel accelerated gradient method
for stochastic optimization while still preserving their computational simplicity
and scalability. The proposed algorithm, called SAGE (Stochastic Accelerated
GradiEnt), exhibits fast convergence rates on stochastic composite optimization
with convex or strongly convex objectives. Experimental results show that SAGE
is faster than recent (sub)gradient methods including FOLOS, SMIDAS and SCD.
Moreover, SAGE can also be extended for online learning, resulting in a simple
algorithm but with the best regret bounds currently known for these problems.

1 Introduction

Risk minimization is at the heart of many machine learning algorithms. Given a class of models
parameterized byw and a loss functionℓ(·, ·), the goal is to minimizeEXY [ℓ(w;X,Y )] w.r.t. w,
where the expectation is over the joint distribution of inputX and outputY . However, since the joint
distribution is typically unknown in practice, a surrogateproblem is to replace the expectation by
its empirical average on a training sample{(x1, y1), . . . , (xm, ym)}. Moreover, a regularizerΩ(·)
is often added for well-posedness. This leads to the minimization of the regularized risk

min
w

1

m

m
∑

i=1

ℓ(w;xi, yi) + λΩ(w), (1)

whereλ is a regularization parameter. In optimization terminology, the deterministic optimization
problem in (1) can be considered as a sample average approximation (SAA) of the corresponding
stochastic optimization problem:

min
w

EXY [ℓ(w;X,Y )] + λΩ(w). (2)

Since bothℓ(·, ·) andΩ(·) are typically convex, (1) is a convex optimization problem which can be
conveniently solved even with standard off-the-shelf optimization packages.

However, with the proliferation of data-intensive applications in the text and web domains, data sets
with millions or trillions of samples are nowadays not uncommon. Hence, off-the-shelf optimization
solvers are too slow to be used. Indeed, even tailor-made softwares for specific models, such as the
sequential minimization optimization (SMO) method for theSVM, have superlinear computational
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complexities and thus are not feasible for large data sets. In light of this, the use of stochastic meth-
ods have recently drawn a lot of interest and many of these arehighly successful. Most are based
on (variants of) the stochastic gradient descent (SGD). Examples include Pegasos [1], SGD-QN [2],
FOLOS [3], and stochastic coordinate descent (SCD) [4]. Themain advantages of these methods
are that they are simple to implement, have low per-iteration complexity, and can scale up to large
data sets. Their runtime is independent of, or even decreasewith, the number of training samples
[5, 6]. On the other hand, because of their simplicity, thesemethods have a slow convergence rate,
and thus may require a large number of iterations.

While standard gradient schemes have a slow convergence rate, they can often be “accelerated”.
This stems from the pioneering work of Nesterov in 1983 [7], which is a deterministic algorithm
for smooth optimization. Recently, it is also extended for composite optimization, where the objec-
tive has a smooth component and a non-smooth component [8, 9]. This is particularly relevant to
machine learning since the lossℓ and regularizerΩ in (2) may be non-smooth. Examples include
loss functions such as the commonly-used hinge loss used in the SVM, and regularizers such as the
popularℓ1 penalty in Lasso [10], and basis pursuit. These acceleratedgradient methods have also
been successfully applied in the optimization problems of multiple kernel learning [11] and trace
norm minimization [12]. Very recently, Lan [13] made an initial attempt to further extend this for
stochastic composite optimization, and obtained the convergence rate of

O
(

L/N2 + (M + σ)/
√
N

)

. (3)

Here,N is the number of iterations performed by the algorithm,L is the Lipschitz parameter of
the gradient of the smooth term in the objective,M is the Lipschitz parameter of the nonsmooth
term, andσ is the variance of the stochastic subgradient. Moreover, note that the first term of (3)
is related to the smooth component in the objective while thesecond term is related to the non-
smooth component. Complexity results [14, 13] show that (3)is the optimal convergence rate for
any iterative algorithm solving stochastic (general) convex composite optimization.

However, as pointed out in [15], a very useful property that can improve the convergence rates in ma-
chine learning optimization problems is strong convexity.For example, (2) can be strongly convex
either because of the strong convexity ofℓ (e.g., log loss, square loss) orΩ (e.g.,ℓ2 regularization).
On the other hand, [13] is more interested in general convex optimization problems and so strong
convexity is not utilized. Moreover, though theoreticallyinteresting, [13] may be of limited practi-
cal use as (1) the stepsize in its update rule depends on the often unknownσ; and (2) the number of
iterations performed by the algorithm has to be fixed in advance.

Inspired by the successes of Nesterov’s method, we develop in this paper a novel accelerated sub-
gradient scheme for stochastic composite optimization. Itachieves the optimal convergence rate

of O
(

L/N2 + σ/
√
N

)

for general convex objectives, andO
(

(L+ µ)/N2 + σµ−1/N
)

for µ-

strongly convex objectives. Moreover, its per-iteration complexity is almost as low as that for stan-
dard (sub)gradient methods. Finally, we also extend the accelerated gradient scheme to online learn-
ing. We obtainO(

√
N) regret for general convex problems andO(logN) regret for strongly convex

problems, which are the best regret bounds currently known for these problems.

2 Setting and Mathematical Background

First, we recapitulate a few notions in convex analysis.

(Lipschitz continuity) A functionf(x) isL-Lipschitz if ‖f(x) − f(y)‖ ≤ L‖x− y‖.
Lemma 1. [14] The gradient of a differentiable function f(x) is Lipschitz continuous with Lipschitz
parameter L if, for any x and y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
‖x− y‖2. (4)

(Strong convexity)A functionφ(x) isµ-strongly convex ifφ(y) ≥ φ(x)+〈g(x), y−x〉+ µ
2 ‖y−x‖2

for anyx, y and subgradientg(x) ∈ ∂φ(x).
Lemma 2. [14] Let φ(x) be µ-strongly convex and x∗ = arg minx φ(x). Then, for any x,

φ(x) ≥ φ(x∗) +
µ

2
‖x− x∗‖2. (5)
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We consider the following stochastic convex stochastic optimization problem, with a composite
objective function

min
x

{φ(x) ≡ E[F (x, ξ)] + ψ(x)}, (6)

whereξ is a random vector,f(x) ≡ E[F (x, ξ)] is convex and differentiable, andψ(x) is convex
but non-smooth. Clearly, this includes the optimization problem (2). Moreover, we assume that the
gradient off(x) isL-Lipschitz andφ(x) is µ-strongly convex (withµ ≥ 0). Note that whenφ(x) is
smooth (ψ(x) = 0), µ lower bounds the smallest eigenvalue of its Hessian.

Recall that in smooth optimization, the gradient updatext+1 = xt − λ∇f(xt) on a functionf(x)
can be seen as proximal regularization of the linearizedf at the current iteratext [16]. In other
words,xt+1 = arg minx(〈∇f(xt), x − xt〉 + 1

2λ
‖x − xt‖2). With the presence of a non-smooth

component, we have the following more general notion.

(Gradient mapping) [8] In minimizing f(x) +ψ(x), wheref is convex and differentiable andψ is
convex and non-smooth,

xt+1 = arg min
x

(

〈∇f(x), x− xt〉 +
1

2λ
‖x− xt‖2 + ψ(x)

)

(7)

is called the generalized gradient update, andδ = 1
λ
(xt − xt+1) is the (generalized) gradient map-

ping. Note that the quadratic approximation is made to the smooth component only. It can be shown
that the gradient mapping is analogous to the gradient in smooth convex optimization [14, 8]. This
is also a common construct used in recent stochastic subgradient methods [3, 17].

3 Accelerated Gradient Method for Stochastic Learning

Let G(xt, ξt) ≡ ∇xF (x, ξt)|x=xt
be the stochastic gradient ofF (x, ξt). We assume that it is an

unbiased estimator of the gradient∇f(x), i.e.,Eξ[G(x, ξ)] = ∇f(x). Algorithm 1 shows the pro-
posed algorithm, which will be called SAGE (Stochastic Accelerated GradiEnt). It involves the
updating of three sequences{xt}, {yt} and{zt}. Note thatyt is the generalized gradient update,
andxt+1 is a convex combination ofyt andzt. The algorithm also maintains two parameter se-
quences{αt} and{Lt}. We will see in Section 3.1 that different settings of these parameters lead
to different convergence rates. Note that the only expensive step of Algorithm 1 is the computation
of the generalized gradient updateyt, which is analogous to the subgradient computation in other
subgradient-based methods. In general, its computationalcomplexity depends on the structure of
ψ(x). As will be seen in Section 3.3, this can often be efficiently obtained in many regularized risk
minimization problems.

Algorithm 1 SAGE (Stochastic Accelerated GradiEnt).
Input: Sequences{Lt} and{αt}.
Initialize: y−1 = z−1 = 0, α0 = λ0 = 1. L0 = L+ µ.
for t = 0 toN do
xt = (1 − αt)yt−1 + αtzt−1.
yt = arg minx

{

〈G(xt, ξt), x− xt〉 + Lt

2 ‖x− xt‖2 + ψ(x)
}

.
zt = zt−1 − (Ltαt + µ)−1[Lt(xt − yt) + µ(zt−1 − xt)].

end for
OutputyN .

3.1 Convergence Analysis

Define∆t ≡ G(xt, ξt) − ∇f(xt). Because of the unbiasedness ofG(xt, ξt), Eξt
[∆t] = 0. In the

following, we will show that the value ofφ(yt) − φ(x) can be related to that ofφ(yt−1) − φ(x) for
anyx. Let δt ≡ Lt(xt − yt) be the gradient mapping involved in updatingyt. First, we introduce
the following lemma.

Lemma 3. For t ≥ 0, φ(x) is quadratically bounded from below as

φ(x) ≥ φ(yt) + 〈δt, x− xt〉 +
µ

2
‖x− xt‖2 + 〈∆t, yt − x〉 +

2Lt − L

2L2
t

‖δt‖2.
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Proposition 1. Assume that for each t ≥ 0, ‖∆t‖∗ ≤ σ and Lt > L, then

φ(yt) − φ(x) +
Ltα

2
t + µαt

2
‖x− zt‖2

≤ (1 − αt)[φ(yt−1) − φ(x)] +
Ltα

2
t

2
‖x− zt−1‖2 +

σ2

2(Lt − L)
+ αt〈∆t, x− zt−1〉.

(8)

Proof. DefineVt(x) = 〈δt, x − xt〉 + µ
2 ‖x − xt‖2 + Ltαt

2 ‖x − zt−1‖2. It is easy to see that
zt = arg minx∈Rd Vt(x). Moreover, notice thatVt(x) is (Ltαt + µ)-strongly convex. Hence on
applying Lemmas 2 and 3, we obtain that for anyx,

Vt(zt) ≤ Vt(x) −
Ltαt + µ

2
‖x− zt‖2

= 〈δt, x− xt〉 +
µ

2
‖x− xt‖2 +

Ltαt

2
‖x− zt−1‖2 − Ltαt + µ

2
‖x− zt‖2

≤ φ(x)−φ(yt)−
2Lt−L

2L2
t

‖δt‖2+
Ltαt

2
‖x−zt−1‖2−Ltαt+µ

2
‖x−zt‖2+〈∆t, x−yt〉.

Then,φ(yt) can be bounded from above, as:

φ(yt) ≤φ(x) + 〈δt, xt − zt〉 −
2Lt − L

2L2
t

‖δt‖2 − Ltαt

2
‖zt − zt−1‖2

+
Ltαt

2
‖x− zt−1‖2 − Ltαt + µ

2
‖x− zt‖2 + 〈∆t, x− yt〉,

(9)

where the non-positive term−µ
2 ‖zt − xt‖2 has been dropped from its right-hand-side. On the other

hand, by applying Lemma 3 withx = yt−1, we get

φ(yt) − φ(yt−1) ≤ 〈δt, xt − yt−1〉 + 〈∆t, yt−1 − yt〉 −
2Lt − L

2L2
t

‖δt‖2, (10)

where the non-positive term−µ
2 ‖yt−1 − xt‖2 has also been dropped from the right-hand-side. On

multiplying (9) byαt and (10) by1 − αt, and then adding them together, we obtain

φ(yt)−φ(x) ≤ (1−αt)[φ(yt−1)−φ(x)]− 2Lt − L

2L2
t

‖δt‖2 +A+B+C− Ltα
2
t

2
‖zt−zt−1‖2, (11)

whereA = 〈δt, αt(xt − zt)+ (1−αt)(xt − yt−1)〉,B = αt〈∆t, x− yt〉+(1−αt)〈∆t, yt−1 − yt〉,
andC =

Ltα
2
t

2 ‖x− zt−1‖2 − Ltα
2
t
+µαt

2 ‖x− zt‖2. In the following, we consider to upper boundA
andB. First, by using the update rule ofxt in Algorithm 1 and the Young’s inequality1, we have

A = 〈δt, αt(xt − zt−1) + (1 − αt)(xt − yt−1)〉 + αt〈δt, zt−1 − zt〉

= αt〈δt, zt−1 − zt〉 ≤
Ltα

2
t

2
‖zt − zt−1‖2 +

‖δt‖2

2Lt

. (12)

On the other hand,B can be bounded as

B = 〈∆t, αtx+ (1 − αt)yt−1 − xt〉 + 〈∆t, xt − yt〉 = αt〈∆t, x− zt−1〉 +
〈∆t, δt〉
Lt

≤ αt〈∆t, x− zt−1〉 +
σ‖δt‖
Lt

, (13)

where the second equality is due to the update rule ofxt, and the last step is from the Cauchy-
Schwartz inequality and the boundedness of∆t. Hence, plugging (12) and (13) into (11),

φ(yt) − φ(x) ≤ (1−αt)[φ(yt−1)−φ(x)]− (Lt−L)‖δt‖2

2L2
t

+
σ‖δt‖
Lt

+ αt〈∆t, x−zt−1〉 + C

≤ (1 − αt)[φ(yt−1) − φ(x)] +
σ2

2(Lt − L)
+ αt〈∆t, x− zt−1〉 + C,

where the last step is due to the fact that−ax2 + bx ≤ b2

4a
with a, b > 0. On re-arranging terms, we

obtain (8).

1The Young’s inequality states that〈x, y〉 ≤ ‖x‖2

2a
+

a‖y‖2

2
for anya > 0.
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Let the optimal solution in problem (6) bex∗. From the update rules in Algorithm 1, we observe
that the triplet(xt, yt−1, zt−1) depends on the random processξ[t−1] ≡ {ξ0, . . . , ξt−1} and hence is
also random. Clearly,zt−1 andx∗ are independent ofξt. Thus,

Eξ[t]
〈∆t, x

∗ − zt−1〉 = Eξ[t−1]
Eξ[t]

[〈∆t, x
∗ − zt−1〉|ξ[t−1]] = Eξ[t−1]

Eξt
[〈∆t, x

∗ − zt−1〉]
= Eξ[t−1]

〈x∗ − zt−1,Eξt
[∆t]〉 = 0,

where the first equality usesEx[h(x)] = EyEx[h(x)|y], and the last equality is from our assumption
that the stochastic gradientG(x, ξ) is unbiased. Taking expectations on both sides of (8) withx =
x∗, we obtain the following corollary, which will be useful in proving the subsequent theorems.

Corollary 1.

E[φ(yt)] − φ(x∗) +
Ltα

2
t + µαt

2
E[‖x∗ − zt‖2]

≤ (1 − αt)(E[φ(yt−1)] − φ(x∗)) +
Ltα

2
t

2
E[‖x∗ − zt−1‖2] +

σ2

2(Lt − L)
.

So far, the choice ofLt andαt in Algorithm 1 has been left unspecified. In the following, wewill
show that with a good choice ofLt andαt, (the expectation of)φ(yt) converges rapidly toφ(x∗).

Theorem 1. Assume that E[‖x∗ − zt‖2] ≤ D2 for some D. Set

Lt = b(t+ 1)
3
2 + L, αt =

2

t+ 2
, (14)

where b > 0 is a constant. Then the expected error of Algorithm 1 can be bounded as

E[φ(yN )] − φ(x∗) ≤ 3D2L

N2
+

(

3D2b+
5σ2

3b

)

1√
N
. (15)

If σ were known, we can setb to the optimal choice of
√

5σ
3D

, and the bound in (15) becomes3D2L
N2 +

2
√

5σD√
N

.

Note that so farφ(x) is only assumed to be convex. As is shown in the following theorem, the
convergence rate can be further improved by assuming strongconvexity. This also requires another
setting ofαt andLt which is different from that in (14).

Theorem 2. Assume the same conditions as in Theorem 1, except that φ(x) is µ-strongly convex.
Set

Lt = L+ µλ−1
t−1, for t ≥ 1; αt =

√

λt−1 +
λ2

t−1

4
− λt−1

2
, for t ≥ 1, (16)

where λt ≡ Πt
k=1(1 − αt) for t ≥ 1 and λ0 = 1. Then, the expected error of Algorithm 1 can be

bounded as

E[φ(yN )] − φ(x∗) ≤ 2(L+ µ)D2

N2
+

6σ2

Nµ
. (17)

In comparison, FOLOS only converges asO(log(N)/N ) for strongly convex objectives.

3.2 Remarks

As in recent studies on stochastic composite optimization [13], the error bounds in (15) and (17) con-
sist of two terms: a faster term which is related to the smoothcomponent and a slower term related to
the non-smooth component. SAGE benefits from using the structure of the problem and accelerates
the convergence of the smooth component. On the other hand, many stochastic (sub)gradient-based
algorithms like FOLOS do not separate the smooth from the non-smooth part, but simply treat the
whole objective as non-smooth. Consequently, convergenceof the smooth component is also slowed
down toO(1/

√
N ).

As can be seen from (15) and (17), the convergence of SAGE is essentially encumbered by the
variance of the stochastic subgradient. Recall that the variance of the average ofp i.i.d. random
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variables is equal to1/p of the original variance. Hence, as in Pegasos [1],σ can be reduced by
estimating the subgradient from a data subset.

Unlike the AC-SA algorithm in [13], the settings ofLt andαt in (14) do not require knowledge of
σ and the number of iterations, both of which can be difficult toestimate in practice. Moreover,
with the use of a sparsity-promotingψ(x), SAGE can produce a sparse solution (as will be exper-
imentally demonstrated in Section 5) while AC-SA cannot. This is because in SAGE, the output
yt is obtained from a generalized gradient update. With a sparsity-promotingψ(x), this reduces to
a (soft) thresholding step, and thus ensures a sparse solution. On the other hand, in each iteration
of AC-SA, its output is a convex combination of two other variables. Unfortunately, adding two
vectors is unlikely to produce a sparse vector.

3.3 Efficient Computation of yt

The computational efficiency of Algorithm 1 hinges on the efficient computation ofyt. Recall that
yt is just the generalized gradient update, and so is not significantly more expensive than the gradient
update in traditional algorithms. Indeed, the generalizedgradient update is often a central compo-
nent in various optimization and machine learning algorithms. In particular, Duchi and Singer [3]
showed how this can be efficiently computed with the various smooth and non-smooth regulariz-
ers, including theℓ1, ℓ2, ℓ22, ℓ∞, Berhu and matrix norms. Interested readers are referred to[3] for
details.

4 Accelerated Gradient Method for Online Learning

In this section, we extend the proposed accelerated gradient scheme for online learning of (2). The
algorithm, shown in Algorithm 2, is similar to the stochastic version in Algorithm 1.

Algorithm 2 SAGE-based Online Learning Algorithm.

Inputs: Sequences{Lt} and{αt}, whereLt > L and0 < αt < 1.
Initialize: z1 = y1.
loop
xt = (1 − αt)yt−1 + αtzt−1.
Outputyt = arg minx

{

〈∇ft−1(xt), x− xt〉 + Lt

2 ‖x− xt‖2 + ψ(x)
}

.
zt = zt−1 − αt(Lt + µαt)

−1[Lt(xt − yt) + µ(zt−1 − xt)].
end loop

First, we introduce the following lemma, which plays a similar role as its stochastic counterpart of
Lemma 3. Moreover, letδt ≡ Lt(xt − yt) be the gradient mapping related to the updating ofyt.

Lemma 4. For t > 1, φt(x) can be quadratically bounded from below as

φt−1(x) ≥ φt−1(yt) + 〈δt, x− xt〉 +
µ

2
‖x− xt‖2 +

2Lt − L

2L2
t

‖δt‖2.

Proposition 2. For any x and t ≥ 1, assume that there exists a subgradient ĝ(x) ∈ ∂ψ(x) such that
‖∇ft(x) + ĝ(x)‖∗ ≤ Q. Then for Algorithm 2,

φt−1(yt−1) − φt−1(x) ≤
Q2

2(1 − αt)(Lt − L)
+

Lt

2αt

‖x− zt−1‖2 − Lt + µαt

2αt

‖x− zt‖2

+
(1 − α2

t )Lt − αt(1 − αt)L

2
‖yt−1 − zt−1‖2 − Lt

2
‖zt − yt‖2.

(18)

Proof Sketch. Defineτt = Ltα
−1
t . From the update rule ofzt, one can check that

zt = arg min
x
Vt(x) ≡ 〈δt, x− xt〉 +

µ

2
‖x− xt‖2 +

τt
2
‖x− zt−1‖2.

Similar to the analysis in obtaining (9), we can obtain

φt−1(yt)−φt−1(x)≤〈δt, xt−zt〉−
2Lt−L

2L2
t

‖δt‖2−τt
2
‖zt−zt−1‖2+

τt
2
‖x−zt−1‖2−τt+µ

2
‖x−zt‖2. (19)
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On the other hand,

〈δt, xt − zt〉 −
‖δt‖2

2Lt

=
Lt

2
(‖zt − xt‖2 − ‖zt − yt‖2)

≤ Lt

2αt

‖zt − zt−1‖2 +
Lt(1 − αt)

2
‖zt−1 − yt−1‖2 − Lt

2
‖zt − yt‖2, (20)

on using the convexity of‖ · ‖2. Using (20), the inequality (19) becomes

φt−1(yt) − φt−1(x) ≤
Lt(1 − αt)

2
‖zt−1 − yt−1‖2 − Lt

2
‖zt − yt‖2

− Lt − L

2L2
t

‖δt‖2 +
τt
2
‖x− zt−1‖2 − τt + µ

2
‖x− zt‖2.

(21)

On the other hand, by the convexity ofφt−1(x) and the Young’s inequality, we have

φt−1(yt−1) − φt−1(yt) ≤ 〈∇ft−1(yt−1) + ĝt−1(yt−1), yt−1 − yt〉

≤ Q2

2(1 − αt)(Lt − L)
+

(1 − αt)(Lt − L)

2
‖yt−1 − yt‖2. (22)

Moreover, by using the update rule ofxt and the convexity of‖ · ‖2, we have

‖yt−1 − yt‖2 = ‖(yt−1 − xt) + (xt − yt)‖2 = ‖αt(yt−1 − zt−1) + (xt − yt)‖2

≤ αt‖yt−1 − zt−1‖2 + (1 − αt)
−1‖xt − yt‖2 = αt‖yt−1 − zt−1‖2 +

‖δt‖2

(1 − αt)L2
t

. (23)

On using (23), it follows from (22) that

φt−1(yt−1) − φt−1(yt) ≤
Q2

2(1−αt)(Lt−L)
+
αt(1−αt)(Lt−L)

2
‖yt−1−zt−1‖2 +

Lt−L
2L2

t

‖δt‖2.

Inequality (18) then follows immediately by adding this to (21).

Theorem 3. Assume that µ = 0, and ‖x∗−zt‖ ≤ D for t ≥ 1. Set αt = a and Lt = aL
√
t− 1+L,

where a ∈ (0, 1) is a constant. Then the regret of Algorithm 2 can be bounded as

N
∑

t=1

[φt(yt) − φt(x
∗)] ≤ LD2

2a
+

[

LD2

2
+

Q2

a(1 − a)L

]√
N.

Theorem 4. Assume that µ > 0, and ‖x∗ − zt‖ ≤ D for t ≥ 1. Set αt = a, and Lt = aµt+ L+
a−1(µ− L)+, where a ∈ (0, 1) is a constant. Then the regret of Algorithm 2 can be bounded as

N
∑

t=1

[φt(yt) − φt(x
∗)] ≤

[

(2a+ a−1)µ+ L

2a

]

D2 +
Q2

2a(1 − a)µ
log(N + 1).

In particular, witha = 1
2 , the regret bound reduces to

(

3µ
2 + L

)

D2 + 2Q2

µ
log(N + 1).

5 Experiments

In this section, we perform experiments on the stochastic optimization of (2). Two data sets are
used2 (Table 1). The first one is thepcmac data set, which is a subset of the 20-newsgroup data set
from [18], while the second one is theRCV1 data set, which is a filtered collection of the Reuters
RCV1 from [19]. We choose the square loss forℓ(·, ·) and theℓ1 regularizer forΩ(·) in (2). As
discussed in Section 3.3 and [3], the generalized gradient update can be efficiently computed by soft
thresholding in this case. Moreover, we do not use strong convexity and soµ = 0.

We compare the proposed SAGE algorithm (withLt andαt in (14)) with three recent algorithms: (1)
FOLOS [3]; (2) SMIDAS [4]; and (3) SCD [4]. For fair comparison, we compare their convergence

2Downloaded fromhttp://people.cs.uchicago.edu/∼vikass/svmlin.html andhttp://www.cs.ucsb.edu/∼wychen/sc.html.
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behavior w.r.t. both the number of iterations and the numberof data access operations, the latter
of which has been advocated in [4] as an implementation-independent measure of time. Moreover,
the efficiency tricks for sparse data described in [4] are also implemented. Following [4], we set the
regularization parameterλ in (2) to 10−6. Theη parameter in SMIDAS is searched over the range
of {10−6, 10−5, 10−4, 10−3, 10−2, 10−1}, and the one with the lowestℓ1-regularized loss is used.
As in Pegasos [1], the (sub)gradient is computed from small sample subsets. The subset sizep is set
to min(0.01m, 500), wherem is the data set size. This is used on all the algorithms exceptSCD,
since SCD is based on coordinate descent and is quite different from the other stochastic subgradient
algorithms.3 All the algorithms are trained with the same maximum amount of “time” (i.e., number
of data access operations).

Table 1: Summary of the data sets.

data set #features #instances sparsity
pcmac 7,511 1,946 0.73%
RCV1 47,236 193,844 0.12%

Results are shown in Figure 1. As can be seen, SAGE requires much fewer iterations for convergence
than the others (Figures 1(a) and 1(e)). Moreover, the additional costs on maintainingxt andzt are
small, and the most expensive step in each SAGE iteration is in computing the generalized gradient
update. Hence, its per-iteration complexity is comparablewith the other (sub)gradient schemes, and
its convergence in terms of the number of data access operations is still the fastest (Figures 1(b),
1(c), 1(f) and 1(g)). Moreover, the sparsity of the SAGE solution is comparable with those of the
other algorithms (Figures 1(d) and 1(h)).
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Figure 1: Performance of the various algorithms on thepcmac (upper) andRCV1 (below) data sets.

6 Conclusion

In this paper, we developed a novel accelerated gradient method (SAGE) for stochastic con-
vex composite optimization. It enjoys the computational simplicity and scalability of traditional
(sub)gradient methods but are much faster, both theoretically and empirically. Experimental results
show that SAGE outperforms recent (sub)gradient descent methods. Moreover, SAGE can also be
extended to online learning, obtaining the best regret bounds currently known.
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3For the same reason, an SCD iteration is also very different from an iteration in the other algorithms.
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