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Abstract

Learning a measure of similarity between pairs of objects isa fundamental prob-
lem in machine learning. It stands in the core of classification methods like kernel
machines, and is particularly useful for applications likesearching for images
that are similar to a given image or finding videos that are relevant to a given
video. In these tasks, users look for objects that are not only visually similar but
also semantically related to a given object. Unfortunately, current approaches for
learning similarity do not scale to large datasets, especially when imposing metric
constraints on the learned similarity. We describe OASIS, amethod for learning
pairwise similarity that is fast and scales linearly with the number of objects and
the number of non-zero features. Scalability is achieved through online learning
of a bilinear model over sparse representations using a large margin criterion and
an efficient hinge loss cost. OASIS is accurate at a wide rangeof scales: on a stan-
dard benchmark with thousands of images, it is more precise than state-of-the-art
methods, and faster by orders of magnitude. On 2.7 million images collected
from the web, OASIS can be trained within 3 days on a single CPU. The non-
metric similarities learned by OASIS can be transformed into metric similarities,
achieving higher precisions than similarities that are learned as metrics in the first
place. This suggests an approach for learning a metric from data that is larger by
orders of magnitude than was handled before.

1 Introduction

Learning a pairwise similarity measure from data is a fundamental task in machine learning. Pair
distances underlie classification methods like nearest neighbors and kernel machines, and similarity
learning has important applications for “query-by-example” in information retrieval. For instance,
a user may wish to find images that are similar to (but not identical copies of) an image she has;
a user watching an online video may wish to find additional videos about the same subject. In all
these cases, we are interested in finding a semantically-related sample, based on the visual content
of an image, in an enormous search space. Learning a relatedness function from examples could be
a useful tool for such tasks.

A large number of previous studies of learning similaritieshave focused on metric learning, like
in the case of a positive semidefinite matrix that defines a Mahalanobis distance [19]. However,
similarity learning algorithms are often evaluated in a context of ranking [16, 5]. When the amount
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of training data available is very small, adding positivityconstraints for enforcing metric properties
is useful for reducing overfitting and improving generalization. However, when sufficient data is
available, as in many modern applications, adding positivesemi-definitiveness constraints is very
costly, and its benefit in terms of generalization may be limited. With this view, we take here an
approach that avoids imposing positivity or symmetry constraints on the learned similarity measure.

Some similarity learning algorithms assume that the available training data contains real-valued pair-
wise similarities or distances. Here we focus on a weaker supervision signal: therelative similarity
of different pairs [4]. This signal is also easier to obtain,here we extract similarity information from
pairs of images that share a common label or are retrieved in response to a common text query in an
image search engine.

The current paper presents an approach for learning semantic similarity that scales up to two orders
of magnitude larger than current published approaches. Three components are combined to make
this approach fast and scalable: First, our approach uses anunconstrained bilinear similarity. Given
two imagesp1 andp2 we measure similarity through a bilinear formp1Wp2, where the matrix
W is not required to be positive, or even symmetric. Second we use a sparse representation of
the images, which allows to compute similarities very fast.Finally, the training algorithm that
we developed, OASIS,Online Algorithm for Scalable Image Similarity learning, is an online dual
approach based on the passive-aggressive algorithm [2]. Itminimizes a large margin target function
based on the hinge loss, and converges to high quality similarity measures after being presented with
a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scales: for a standard benchmark with
thousands of images, it achieves better or comparable results than existing state-of-the-art methods,
with computation times that are shorter by an order of magnitude. For web-scale datasets, OASIS
can be trained on more than two million images within three days on a single CPU. On this large
scale dataset, human evaluations of OASIS learned similarity show that 35% of the ten nearest
neighbors of a given image are semantically relevant to thatimage.

2 Learning Relative Similarity

We consider the problem of learning a pairwise similarity functionS, given supervision on therela-
tive similarity between two pairs of images. The algorithm is designed to scale well with the number
of samples and the number of features, by using fast online updates and a sparse representation.

Formally, we are given a set of imagesP, where each image is represented as a vectorp ∈ R
d. We

assume that we have access to an oracle that, given aquery image pi ∈ P, can locate two other
images,p+

i ∈ P andp−i ∈ P, such thatp+
i ∈ P is more relevant topi ∈ P thanp−i ∈ P. Formally,

we could write thatrelevance(pi, p
+
i ) > relevance(pi, p

−
i ). However, unlike methods that assume

that a numerical value of the similarity is available,relevance(pi, pj) ∈ R, we use this weaker
form of supervision, and only assume that some pairs of images can be ranked by their relevance
to a query imagepi. The relevance measure could reflect that the relevant imagep+

i belongs to the
same class of images as the query image, or reflect any other semantic property of the images.

Our goal is to learn a similarity functionSW (pi, pj) parameterized byW that assigns higher simi-
larity scores to the pairs of more relevant images (with a safety margin),

S(pi, p
+
i ) > S(pi, p

−
i ) + 1 , ∀pi, p

+
i , p−i ∈ P . (1)

In this paper, we consider a parametric similarity functionthat has a bi-linear form,

SW(pi, pj) ≡ pT
i W pj (2)

with W ∈ R
d×d. Importantly, if the image vectorspi ∈ R

d are sparse, namely, the number of
non-zero entrieski ≡ ‖pi‖0 is small,ki ≪ d, then the value of the score defined in Eq. (2) can be
computed very efficiently even whend is large. Specifically,SW can be computed with complexity
of O(kikj) regardless of the dimensionalityd. To learn a scoring function that obeys the constraints
in Eq. (1), we define a global lossLW that accumulates hinge losses over all possible triplets in
the training set:LW ≡

∑

(pi,p
+

i
,p

−

i
)∈P3 lW(pi, p

+
i , p−i ), with the loss for a single triplet being

lW(pi, p
+
i , p−i ) ≡ max

(

0, 1 − SW(pi, p
+
i ) + SW(pi, p

−
i )

)

.
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To minimize the global lossLW, we propose an algorithm that is based on the Passive-Aggressive
family of algorithms [2]. First,W is initialized to the identity matrixW0 = Id×d. Then, the
algorithm iteratively draws a random triplet(pi, p

+
i , p−i ), and solves the following convex problem

with a soft margin:

Wi = argmin
W

1

2
‖W − Wi−1‖2

Fro + Cξ s.t. lW(pi, p
+
i , p−i ) ≤ ξ and ξ ≥ 0 (3)

where‖·‖Fro is the Frobenius norm (point-wiseL2 norm). At theith iteration,Wi is updated to
optimize a trade-off between staying close to the previous parametersWi−1 and minimizing the
loss on the current tripletlW(pi, p

+
i , p−i ). Theaggressiveness parameterC controls this trade-off.

To solve the problem in Eq. (3) we follow the derivation in [2]. WhenlW(pi, p
+
i , p−i ) = 0, it is clear

thatWi = Wi−1 satisfies Eq. (3) directly. Otherwise, we define the Lagrangian

L(W, τ, ξ, λ) =
1

2
‖W − Wi−1‖2

Fro + Cξ + τ(1 − ξ − pT
i W(p+

i − p−i )) − λξ (4)

whereτ ≥ 0 andλ ≥ 0 are the Lagrange multipliers. The optimal solution is obtained when the
gradient vanishes∂L(W,τ,ξ,λ)

∂W
= W − Wi−1 − τVi = 0, whereVi is the gradient matrix at the

current stepVi = ∂lW
∂W

= [p1
i (p

+
i − p−i ), . . . , pd

i (p
+
i − p−i )]T . When image vectors are sparse, the

gradientVi is also sparse, hence the update step costs onlyO(|pi|0 × (‖p+
i ‖0 + ‖p−i ‖0)), where the

L0 norm‖x‖0 is the number of nonzero values inx. Differentiating the Lagrangian with respect to
ξ we obtain∂L(W,τ,ξ,λ)

∂ξ
= C − τ −λ = 0 which, knowing thatλ ≥ 0, means thatτ ≤ C. Plugging

back into the Lagrangian in Eq. (4), we obtainL(τ) = − 1
2τ2‖Vi‖

2 + τ(1 − pT
i Wi−1(p+

i − p−i )).
Finally, taking the derivative of this second Lagrangian with respect toτ and usingτ ≤ C, we obtain

W = Wi−1 + τVi (5)

τ = min

{

C,
lWi−1(pi, p

+
i , p−i )

‖Vi‖2

}

.

The optimal update for the newW therefore has a form of a gradient descent step with a step sizeτ
that can be computed exactly. Applying this algorithm for classification tasks was shown to yield a
small cumulative online loss, and selecting the bestWi during training using a hold-out validation
set was shown to achieve good generalization [2].

It should be emphasized that OASIS is not guaranteed to learna parameter matrix that is positive,
or even symmetric. We study variants of OASIS that enforce symmetry or positivity in Sec. 4.3.2.

3 Related Work
Learning similarity using relative relevance has been intensively studied, and a few recent ap-
proaches aim to address learning at large scale. For small-scale data, there are two main groups of
similarity learning approaches. The first approach, learning Mahalanobis distances, can be viewed
as learning a linear projection of the data into another space (often of lower dimensionality), where a
Euclidean distance is defined among pairs of objects. Such approaches include Fisher’s Linear Dis-
criminant Analysis (LDA), relevant component analysis (RCA) [1], supervised global metric learn-
ing [18], large margin nearest neighbor (LMNN) [16], and metric learning by collapsing classes [5]
(MLCC). Other constraints like sparseness are sometimes induced over the learned metric [14]. See
also a review in [19] for more details.

The second family of approaches, learning kernels, is used to improve performance of kernel based
classifiers. Learning a full kernel matrix in a non parametric way is prohibitive except for very
small data sets. As an alternative, several studies suggested learning a weighted sum of pre-defined
kernels [11] where the weights are learned from data. In someapplications this was shown to be
inferior to uniform weighting of the kernels [12]. The work in [4] further learns a weighting over
local distance functions for every image in the training set. Non linear image similarity learning was
also studied in the context of dimensionality reduction, asin [8].

Finally, Jain et al [9] (based on Davis et al [3]) aim to learn metrics in an online setting. This work
is one of the closest work with respect to OASIS: it learns online a linear model of a [dis-]similarity
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Query image Top 5 relevant images retrieved by OASIS

Table 1: OASIS: Successful cases from the web dataset. The relevant text queries for each image
are shown beneath the image (not used in training).

function between documents (images); the main difference is that Jain et al [9] try to learn a true
distance, imposing positive definiteness constraints, which makes the algorithm more complex and
more constrained. We argue in this paper that in the large scale regime, imposing these constraints
throughout could be detrimental.

Learning a semantic similarity function between images wasalso studied in [13]. There, semantic
similarity is learned by representing each image by the posterior probability distribution over a
predefined set of semantic tags, and then computing the distance between two images as the distance
between the two underlying posterior distributions. The representation size of each image therefore
grows with the number of semantic classes.

4 Experiments

We tested OASIS on two datasets spanning a wide regime of scales. First, we tested its scalability on
2.7 million images collected from the web. Then, to quantitatively compare the precision of OASIS
with other, small-scale metric-learning methods, we tested OASIS usingCaltech-256, a standard
machine vision benchmark.

Image representation. We use a sparse representation based onbags of visual words [6]. These
features were systematically tested and found to outperform other features in related tasks, but the
details of the visual representation is outside the focus ofthis paper. Broadly speaking, features are
extracted by dividing each image into overlapping square blocks, representing each block by edge
and color histograms, and finding the nearest block in a predefined set (dictionary) ofd = 10, 000
vectors of such features. An image is thus represented as thenumber of times each dictionary visual
word was present in it, yielding vectors inRd with an average of70 non-zero values.

Evaluation protocol. We evaluated the performance of all algorithms using precision-at-top-k, a
standard ranking precision measure based on nearest neighbors. For each query image in the test set,
all other test images were ranked according to their similarity to the query image, and the number of
same-class images among the topk images (thek nearest neighbors) is computed, and then averaged
across test images. We also calculated themean average precision (mAP), a measure that is widely
used in the information retrieval community.

4.1 Web-Scale Experiment

We first tested OASIS on a set of 2.7 million images scraped from the Google image search engine.
We collected a set of∼150K anonymized text queries, and for each of these queries,we had access
to a set of relevant images. To compute an image-image relevance measure, we first obtained mea-
sures of relevance between images and text queries. This wasachieved by collecting anonymized
clicks over images collected from the set of text queries. Weused this query-image click counts
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C(query,image) to compute the (unnormalized) probability that two images are co-queried as Rel-
evance(image,image) =CT C. The relevance matrix was then thresholded to keep only the top 1
percent values. We trained OASIS on a training set of 2.3 million images, and tested performance on
0.4 million images. The number of training iterations (eachcorresponding to sampling one triplet)
was selected using a second validation set of around 20000 images, over which the performance
saturated after 160 million iterations. Overall, trainingtook a total of∼4000 minutes on a single
CPU of a standard modern machine.

Table 1 shows the top five images as ranked by OASIS on two examples of query-images in the test
set. In these examples, OASIS captures similarity that goesbeyond visual appearance: most top
ranked images are about the same concept as the query image, even though that concept was never
provided in a textual form, and is inferred in the viewers mind (“dog”, “snow”). This shows that
learning similarity across co-queried images can indeed capture the semantics of queries even if the
queries are not explicitly used during training.

To obtain a quantitative evaluation of the ranking obtainedby OASIS we created an evaluation
benchmark, by asking human evaluators to mark if a set of candidate images weresemantically
relevant to a set of 25 popular image queries. For each query image, evaluators were presented with
the top-10 images ranked by OASIS, mixed with 10 random images. Given the relevance ranking
from 30 evaluators, we computed the precision of each OASIS rank as the fraction of people that
marked each image as relevant to the query image. On average across all queries and evaluators,
OASIS rankings yielded precision of∼ 40% at the top 10 ranked images.

As an estimate of an “upper bound” on the difficulty of the task, we also computed the precision
obtained by human evaluators: For every evaluator, we used the rankings of all other evaluators
as ground truth, to compute his precision. As with the ranks of OASIS, we computed the fraction
of evaluators that marked an image as relevant, and repeatedthis separately for every query and
human evaluator, providing a measure of “coherence” per query. Fig. 1(a) shows the mean precision
obtained by OASIS and human evaluators for every query in ourdata. For some queries OASIS
achieves precision that is very close to that of the mean human evaluator. In many cases OASIS
achieves precision that is as good or better than some evaluators.
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Figure 1:(a) Precision of OASIS and human evaluators, per query, using rankings of all (remaining)
human evaluators as a ground truth.(b) Comparison of the runtime of OASIS and fast-LMNN[17],
over a wide range of scales. LMNN results (on MNIST data) are faster than OASIS results on
subsets of the web data. However LMNN scales quadratically with the number of samples, hence is
three times slower on 60K images, and may be infeasible for handling 2.3 million images.

We further studied how the runtime of OASIS scales with the size of the training set. Figure 1(b)
shows that the runtime of OASIS, as found by early stopping ona separate validation set, grows
linearly with the train set size. We compare this to the fastest result we found in the literature, based
on a fast implementation of LMNN [17]. The LMNN algorithm scales quadratically with the number
of objects, although their experiments with MNIST data showthat the active set of constraints grows
linearly. This could be because MNIST has 10 classes only.
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Figure 2: Comparison of the performance of OASIS, LMNN, MCML, LEGO and the Euclidean
metric in feature space. Each curve shows the precision at top k as a function ofk neighbors. The
results are averaged across 5 train/test partitions (40 training images, 25 test images per class), error
bars are standard error of the means (s.e.m.), black dashed line denotes chance performance.

4.2 Caltech256 Dataset

To compare OASIS with small-scale methods we used theCaltech256 dataset [7], containing im-
ages collected from Google image search and fromPicSearch.com. Images were assigned to 257
categories and evaluated by humans in order to ensure image quality and relevance. After we have
pre-processed the images, and filtered images that were too small, we were left with 29461 images
in 256 categories. To allow comparisons with methods that were not optimized for sparse represen-
tation, we also reduced the block vocabulary sized from 10000 to 1000.

We compared OASIS with the following metric learning methods.

(1) Euclidean - The standard Euclidean distance in feature space (equivalent to using the identity
matrix W = Id×d). (2) MCML [5] - Learning a Mahalanobis distance such that same-class sam-
ples are mapped to the same point, formulated as a convex problem. (3) LMNN [16] - learning a
Mahalanobis distance for aiming to have thek-nearest neighbors of a given sample belong to the
same class while separating different-class samples by a large margin. As a preprocessing phase,
images were projected to a basis of the principal components(PCA) of the data, with no dimen-
sionality reduction.(4) LEGO [9] - Online learning of a Mahalanobis distance using a Log-Det
regularization per instance loss, that is guaranteed to yield a positive semidefinite matrix. We used a
variant of LEGO that, like OASIS, learns from relative distances.1

We tested all methods on subsets of classes taken from the Caltech256 repository. For OASIS,
images from the same class were treated as similar. Each subset was built such that it included
semantically diverse categories, controlled for classification difficulty. We tested sets containing 10,
20 and 50 classes, each spanning the range of difficulties.

We used two levels of 5-fold cross validation, one to train the model, and a second to select
hyper parameters of each method (early stopping time for OASIS; the ω parameter for LMNN
(ω ∈ {0.125, 0.25, 0.5}), and the regularization parameterη for LEGO (η ∈ {0.02, 0.08, 0.32}).
Results reported below were obtained by selecting the best value of the hyper parameter and then
training again on the full training set (40 images per class).

Figure 2 compares the precision obtained with OASIS, with the four competing approaches. OASIS
achieved consistently superior results throughout the full range ofk (number of neighbors) tested,
and on all four sets studied. LMNN performance on thetraining set was often high, suggesting that
it overfits the training set, as was also observed sometimes by [16].

Table 2 shows the total CPU time in minutes for training all algorithms compared, and for four
subsets of classes at sizes 10, 20, 50 and 249. Data is not given when runtime was longer than 5
days or performance was worse than the Euclidean baseline. For the purpose of a fair comparison,
we tested two implementations of OASIS: The first was fully implemented Matlab. The second had
the core loop of the algorithm implemented in C and called from Matlab. All other methods used

1We have also experimented with the methods of [18], which we found to be too slow, and with RCA [1],
whose precision was lower than other methods. These results are not included in the evaluations below.
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Table 2: Runtime (minutes) on a standard CPU of all compared methods

num OASIS OASIS MCML LEGO LMNN fastLMNN
classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C

10 42 ± 15 0.12 ± .03 1835 ± 210 143 ± 44 337 ± 169 247 ± 209
20 45 ± 8 0.15 ± .02 7425 ± 106 533 ± 49 631 ± 40 365 ± 62
50 25 ± 2 1.60 ± .04 711 ± 28 960 ± 80 2109 ± 67
249 485 ± 113 1.13 ± .15

code supplied by the authors implemented in Matlab, with core parts implemented in C. Due to
compatibility issues, fast-LMNN was run on a different machine, and the given times are rescaled to
the same time scale as all other algorithms. LEGO is fully implemented in Matlab. All other code
was compiled (mex) to C. The C implementation of OASIS is significantly faster, since Matlab does
not use the potential speedup gained by sparse images.

OASIS is significantly faster, with a runtime that is shorterby orders of magnitudes than MCML
even on small sets, and about one order of magnitude faster than LMNN. The run time of OASIS
and LEGO was measured until the point of early stopping. OASIS memory requirements grow
quadratically with the size of the dictionary. For a large dictionary of10K, the parameters matrix
takes100M floats, or0.4 Giga bytes of memory.
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Figure 3: (a) Comparing symmetric variants of OASIS on the 20-class subset, similar results ob-
tained with other sets.(b) mAP along training for three PSD projection schemes.

4.3 Symmetry and positivity

The similarity matrixW learned by OASIS is not guaranteed to be positive or even symmetric.
Some applications, like ranking images by semantic relevance to a given image query are known to
be non-symmetric when based on human judgement [15]. However, in some applications symmetry
or positivity constraints reflects a prior knowledge that may help in avoiding overfitting. We now
discuss variants of OASIS that learn a symmetric or positivematrices.

4.3.1 Symmetric similarities
A simple approach to enforce symmetry is to project the OASISmodelW onto the set of symmetric
matricesW′ = sym(W) = 1

2

(

WT + W
)

. Projection can be done after each update (denoted
Online-Proj-Oasis) or after learning is completed (Proj-Oasis). Alternatively, the asymmetric score
functionSW(pi, pj) in lW can be replaced with a symmetric score

S′
W

(pi, pj) ≡ −(pi − pj)
T W (pi − pj) . (6)

and used to derive an OASIS-like algorithm (which we nameDissim-Oasis). The optimal update for
this loss has a symmetric gradientV′i = (pi − p+

i )(pi − p+
i )T − (pi − p−i )(pi − p−i )T . Therefore,

if W0 is initialized with a symmetric matrix (e.g., the identity)all Wi are guaranteed to remain
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symmetric.Dissim-Oasis is closely related to LMNN [16]. This can be seen be casting the batch
objective of LMNN, into an online setup, which has the formerr(W ) = −ω · S′

W
(pi, p

+
i ) + (1 −

ω) · l′
W

(pi, p
+
i , p−i ). This online version of LMNN becomes equivalent toDissim-Oasis forω = 0.

Figure 3(a) compares the precision of the different symmetric variantswith the original OA-
SIS. All symmetric variants performed slightly worse, or equal, to the original asymmetric OA-
SIS. The precision ofProj-Oasis was equivalent to that of OASIS, most likely since asymmet-
ric OASIS actually converged to an almost-symmetric model (as measured by a symmetry index
ρ(W) = ‖sym(W)‖2

‖W‖2
= 0.94).

4.3.2 Positive similarity
Most similarity learning approaches focus on learning metrics. In the context of OASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over the images. The matrix square-
root ofW, AT A = W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to theW distance in the original space.

We experimented with positive variants of OASIS, where we repeatedly projected the learned model
onto the set of PSD matrices, once everyt iterations. Projection is done by taking the eigen decom-
positionW = V · D · VT whereV is the eigenvector matrix andD is a the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 3(b) tracesprecision on the test set throughout learning
for various values oft.

The effect of positive projections is complex. First, continuously projecting at every step helps
to reduce overfitting, as can be observed by the slower decline of the blue curve (upper smooth
curve) compared to the orange curve (lowest curve). However, when projection is performed after
many steps, (instead of continuously), performance of the projected model actually outperforms
the continuous-projection model (upper jittery curve). The reason for this effect is likely to be
that estimating the positive sub-space is very noisy when only based on a few samples. Indeed,
accurate estimation of the negative subspace is known to be ahard problem, in that the estimated
eigenvalues of eigenvectors “near zero”, is relatively large. We found that this effect was so strong,
that the optimal projection strategy is to avoid projectionthroughout learning completely. Instead,
projecting into PSD after learning (namely, after a model was chosen using early stopping) provided
the best performance in our experiments.

An interesting alternative to obtain a PSD matrix was explored by [10, 9]. Using a LogDet diver-
gence between two matricesDld(X,Y ) = tr(XY −1) − log(det(XY −1)) ensures that, given an
initial PSD matrix, all subsequent matrices will be PSD as well. It will be interesting to test the
effect of using LogDet regularization in the OASIS setup.

5 Discussion

We have presented OASIS, a scalable algorithm for learning image similarity that captures both
semantic and visual aspects of image similarity. Three key factors contribute to the scalability of
OASIS. First, using a large margin online approach allows training to converge even after seeing
a small fraction of potential pairs. Second, the objective function of OASIS does not require the
similarity measure to be a metric during training, althoughit appears to converge to a near-symmetric
solution, whose positive projection is a good metric. Finally, we use a sparse representation of low
level features which allows to compute scores very efficiently.

OASIS learns a class-independent model: it is not aware of which queries or categories were shared
by two similar images. As such, it is more limited in its descriptive power and it is likely that class-
dependent similarity models could improve precision. On the other hand, class-independent models
could generalize to handle classes that were not observed during training, as in transfer learning.
Large scale similarity learning, applied to images from a large variety of classes, could therefore be
a useful tool to address real-world problems with a large number of classes.

This paper focused on the training part of metric learning. To use the learned metric for ranking, an
efficient procedure for scoring a large set of images is needed. Techniques based on locality-sensitive
hashing could be used to speed up evaluation, but this is outside the scope of this paper.
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