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Abstract

Learning a measure of similarity between pairs of objectsfisndamental prob-
lem in machine learning. It stands in the core of classificathethods like kernel
machines, and is particularly useful for applications lgearching for images
that are similar to a given image or finding videos that arevasit to a given
video. In these tasks, users look for objects that are ngtwaatally similar but
also semantically related to a given object. Unfortunatalyrent approaches for
learning similarity do not scale to large datasets, esfigeiden imposing metric
constraints on the learned similarity. We describe OASISgethod for learning
pairwise similarity that is fast and scales linearly witle thumber of objects and
the number of non-zero features. Scalability is achievealuih online learning
of a bilinear model over sparse representations using e faaygin criterion and
an efficient hinge loss cost. OASIS is accurate at a wide rahgeales: on a stan-
dard benchmark with thousands of images, it is more prebae state-of-the-art
methods, and faster by orders of magnitude. On 2.7 millioages collected
from the web, OASIS can be trained within 3 days on a single CFi¢ non-
metric similarities learned by OASIS can be transformed metric similarities,
achieving higher precisions than similarities that areried as metrics in the first
place. This suggests an approach for learning a metric frata tthat is larger by
orders of magnitude than was handled before.

1 Introduction

Learning a pairwise similarity measure from data is a funeiatal task in machine learning. Pair
distances underlie classification methods like neareghbeirs and kernel machines, and similarity
learning has important applications for “query-by-exa@iph information retrieval. For instance,
a user may wish to find images that are similar to (but not idahtopies of) an image she has;
a user watching an online video may wish to find additionakei about the same subject. In all
these cases, we are interested in finding a semanticadlieckbample, based on the visual content
of an image, in an enormous search space. Learning a reteeéimction from examples could be
a useful tool for such tasks.

A large number of previous studies of learning similarities’e focused on metric learning, like
in the case of a positive semidefinite matrix that defines adifatobis distance [19]. However,
similarity learning algorithms are often evaluated in ateahof ranking [16, 5]. When the amount



of training data available is very small, adding positivdgnstraints for enforcing metric properties
is useful for reducing overfitting and improving generdiiaa. However, when sufficient data is
available, as in many modern applications, adding pos#emi-definitiveness constraints is very
costly, and its benefit in terms of generalization may betéohi With this view, we take here an
approach that avoids imposing positivity or symmetry caists on the learned similarity measure.

Some similarity learning algorithms assume that the agllraining data contains real-valued pair-
wise similarities or distances. Here we focus on a weakegrsigion signal: theelative similarity

of different pairs [4]. This signal is also easier to obt&iaere we extract similarity information from
pairs of images that share a common label or are retrievegspponse to a common text query in an
image search engine.

The current paper presents an approach for learning semsamiiarity that scales up to two orders
of magnitude larger than current published approacheseeTbomponents are combined to make
this approach fast and scalable: First, our approach usesamstrained bilinear similarity. Given
two imagesp; andp2 we measure similarity through a bilinear fogm Wp2, where the matrix
W is not required to be positive, or even symmetric. Second sesausparse representation of
the images, which allows to compute similarities very faBtnally, the training algorithm that
we developed, OASISOnline Algorithm for Scalable Image Smilarity learning, is an online dual
approach based on the passive-aggressive algorithm fR]nitmizes a large margin target function
based on the hinge loss, and converges to high quality sityilfaeasures after being presented with
a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide rangeatéscfor a standard benchmark with
thousands of images, it achieves better or comparabletise¢bah existing state-of-the-art methods,
with computation times that are shorter by an order of mageit For web-scale datasets, OASIS
can be trained on more than two million images within thregsdan a single CPU. On this large

scale dataset, human evaluations of OASIS learned sityilshiow that 35% of the ten nearest
neighbors of a given image are semantically relevant toithage.

2 Learning Relative Similarity

We consider the problem of learning a pairwise similaritydtion.S, given supervision on thela-
tive similarity between two pairs of images. The algorithm is designed te soall with the number
of samples and the number of features, by using fast onlidatep and a sparse representation.

Formally, we are given a set of imag®s where each image is represented as a vgctoiR?. We
assume that we have access to an oracle that, giveers image p; € P, can locate two other
images;p;r € P andp; € P, such tha['p;r € P is more relevant tp; € P thanp; € P. Formally,
we could write thatelevance(p;, pj") > relevance(p;, p; ). However, unlike methods that assume
that a numerical value of the similarity is availablelevance(p;,p;) € R, we use this weaker
form of supervision, and only assume that some pairs of image be ranked by their relevance
to a query image;. The relevance measure could reflect that the relevant ipadgelongs to the
same class of images as the query image, or reflect any othensie property of the images.

Our goal is to learn a similarity functiofiy (p;, p;) parameterized byV that assigns higher simi-
larity scores to the pairs of more relevant images (with atgahargin),

S(pipi) > S(pip; )+ 1, Vpi,pip; €P . @)
In this paper, we consider a parametric similarity functioat has a bi-linear form,
Sw (pi;p;) =p; W p; )

with W ¢ R%?, Importantly, if the image vectors; € R? are sparse, namely, the number of
non-zero entrieg; = ||p;||o is small,k; < d, then the value of the score defined in Eq. (2) can be
computed very efficiently even whehis large. SpecificallySw can be computed with complexity
of O(k;k;) regardless of the dimensionaliy To learn a scoring function that obeys the constraints
in Eg. (1), we define a global lodsw that accumulates hinge losses over all possible triplets in
the training set:Lw = Z(pi,p,*,p:)eps Iw (pi, i, p; ), with the loss for a single triplet being

lw (pi,pi,p; ) = max (0,1 — Sw(pi, pi) + Sw(pi, p; ).



To minimize the global loséy, we propose an algorithm that is based on the Passive-Agjgees
family of algorithms [2]. First,W is initialized to the identity matrisW° = I;.4. Then, the
algorithm iteratively draws a random tripl@t;, p;", p; ), and solves the following convex problem
with a soft margin:

. 1 .
W' = arguin §HW7WZ*1H%M+C§ st Iw(pi,p,p;) <€ and £€>0 (3)

where||-|| ., is the Frobenius norm (point-wisk, norm). At theit” iteration,Wi is updated to
optimize a trade-off between staying close to the previamsupeterSW —! and minimizing the
loss on the current tripléty (pi,pj_,pi_). Theaggressiveness parameter”’ controls this trade-off.

To solve the problem in Eq. (3) we follow the derivation in.[¥Yheniw (p;, p;, p; ) = 0, itis clear
that Wi = Wi~! satisfies Eq. (3) directly. Otherwise, we define the Lagramgi

1 )
E(W,T,f, )‘) = §||W - WZ_I”%‘TO + Cg + T(]- - 5 - p?W(pj _pf)) - )‘5 (4)

wherer > 0 and\ > 0 are the Lagrange multipliers. The optimal solution is aledi when the
gradient vanishe§“W..¢A) — W — Wi~1 — 7V, = 0, whereV; is the gradient matrix at the
current steV; = 25 = [pl(p; — p;),...,pd(p; — p;)]T. When image vectors are sparse, the

gradientV; is also sparse, hence the update step costs@(iy|o x (I|p; [lo + ||lp; o)), where the
Lo norm||z||o is the number of nonzero values:in Differentiating the Lagrangian with respect to

£ we obtain%’g’“) = C' — 7 — A = 0 which, knowing that\ > 0, means that < C. Plugging
back into the Lagrangian in Eq. (4), we obtaltr) = — 72 V,||2 + 7(1 — pf Wit (p] — p;)).
Finally, taking the derivative of this second Lagrangiathwespect to- and usingr < C, we obtain

W = W47V, (5)

. lW'il(piap-“rap‘_)}
min < C, Lot .
{ Vil

T

The optimal update for the neW therefore has a form of a gradient descent step with a step siz
that can be computed exactly. Applying this algorithm fassification tasks was shown to yield a
small cumulative online loss, and selecting the B&5tduring training using a hold-out validation

set was shown to achieve good generalization [2].

It should be emphasized that OASIS is not guaranteed to Beaarameter matrix that is positive,
or even symmetric. We study variants of OASIS that enforeeregtry or positivity in Sec. 4.3.2.

3 Reated Work

Learning similarity using relative relevance has beennisiteely studied, and a few recent ap-
proaches aim to address learning at large scale. For spadl-data, there are two main groups of
similarity learning approaches. The first approach, legymflahalanobis distances, can be viewed
as learning a linear projection of the data into anotherafaiten of lower dimensionality), where a
Euclidean distance is defined among pairs of objects. Suymtoaphes include Fisher’s Linear Dis-
criminant Analysis (LDA), relevant component analysis (&€1], supervised global metric learn-
ing [18], large margin nearest neighbor (LMNN) [16], and rieslearning by collapsing classes [5]
(MLCC). Other constraints like sparseness are sometinteged over the learned metric [14]. See
also a review in [19] for more details.

The second family of approaches, learning kernels, is usedgrove performance of kernel based
classifiers. Learning a full kernel matrix in a non parangeway is prohibitive except for very
small data sets. As an alternative, several studies sugkstrning a weighted sum of pre-defined
kernels [11] where the weights are learned from data. In sappdications this was shown to be
inferior to uniform weighting of the kernels [12]. The wonk 4] further learns a weighting over
local distance functions for every image in the training Bktn linear image similarity learning was
also studied in the context of dimensionality reductionngs].

Finally, Jain et al [9] (based on Davis et al [3]) aim to learetrits in an online setting. This work
is one of the closest work with respect to OASIS: it learnsrmana linear model of a [dis-]similarity



Query image Top 5 relevant images retrieved by OASIS
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funny stuff, dog cartoon puppies
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swiss alps wedge, nighthawk china road silk winter landscape dogfight
bodyboarding

Table 1: OASIS: Successful cases from the web dataset. Ténang text queries for each image
are shown beneath the image (not used in training).

function between documents (images); the main differeadhadt Jain et al [9] try to learn a true
distance, imposing positive definiteness constraintsghvhiakes the algorithm more complex and
more constrained. We argue in this paper that in the large segime, imposing these constraints
throughout could be detrimental.

Learning a semantic similarity function between images alas studied in [13]. There, semantic
similarity is learned by representing each image by the guvmst probability distribution over a
predefined set of semantic tags, and then computing thendesteetween two images as the distance
between the two underlying posterior distributions. Thaesentation size of each image therefore
grows with the number of semantic classes.

4 Experiments

We tested OASIS on two datasets spanning a wide regime afsdairst, we tested its scalability on
2.7 million images collected from the web. Then, to quatitiedy compare the precision of OASIS
with other, small-scale metric-learning methods, we ®€ASIS usingCaltech-256, a standard
machine vision benchmark.

Image representation. We use a sparse representation baselags of visual words [6]. These
features were systematically tested and found to outpertiher features in related tasks, but the
details of the visual representation is outside the focubkisfpaper. Broadly speaking, features are
extracted by dividing each image into overlapping squaoehd, representing each block by edge
and color histograms, and finding the nearest block in a firexteset (dictionary) off = 10, 000
vectors of such features. An image is thus represented asithber of times each dictionary visual
word was present in it, yielding vectorsIRf’ with an average of0 non-zero values.

Evaluation protocol. We evaluated the performance of all algorithms using prectat-topk, a
standard ranking precision measure based on nearest nesglflor each query image in the test set,
all other test images were ranked according to their simyjlés the query image, and the number of
same-class images among the kdmages (thé: nearest neighbors) is computed, and then averaged
across test images. We also calculatedntban average precision (mAP), a measure that is widely
used in the information retrieval community.

4.1 Web-Scale Experiment

We first tested OASIS on a set of 2.7 million images scraped titte Google image search engine.
We collected a set 0£ 150K anonymized text queries, and for each of these queviebad access
to a set of relevant images. To compute an image-image relevaeasure, we first obtained mea-
sures of relevance between images and text queries. Thiaehésved by collecting anonymized
clicks over images collected from the set of text queries. W&kd this query-image click counts
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C(query,image) to compute the (unnormalized) probabiligt two images are co-queried as Rel-
evance(image,image) €7'C. The relevance matrix was then thresholded to keep onlyapel t
percent values. We trained OASIS on a training set of 2.3anillmages, and tested performance on
0.4 million images. The number of training iterations (eaolresponding to sampling one triplet)
was selected using a second validation set of around 2008@§€isy over which the performance
saturated after 160 million iterations. Overall, traintogk a total of~4000 minutes on a single
CPU of a standard modern machine.

Table 1 shows the top five images as ranked by OASIS on two deampqguery-images in the test
set. In these examples, OASIS captures similarity that pegend visual appearance: most top
ranked images are about the same concept as the query imageheugh that concept was never
provided in a textual form, and is inferred in the viewers dh{tdog”, “snow”). This shows that
learning similarity across co-queried images can indeetlica the semantics of queries even if the
gueries are not explicitly used during training.

To obtain a quantitative evaluation of the ranking obtaibgdOASIS we created an evaluation
benchmark, by asking human evaluators to mark if a set ofidatelimages wereemantically
relevant to a set of 25 popular image queries. For each query imagkiadues were presented with
the top-10 images ranked by OASIS, mixed with 10 random irma@ven the relevance ranking
from 30 evaluators, we computed the precision of each OA&HR as the fraction of people that
marked each image as relevant to the query image. On avecangsall queries and evaluators,
OASIS rankings yielded precision ef 40% at the top 10 ranked images.

As an estimate of an “upper bound” on the difficulty of the task also computed the precision
obtained by human evaluators: For every evaluator, we Usedankings of all other evaluators
as ground truth, to compute his precision. As with the rarf®ASIS, we computed the fraction
of evaluators that marked an image as relevant, and reptatedeparately for every query and
human evaluator, providing a measure of “coherence” peryq&y. 1(a) shows the mean precision
obtained by OASIS and human evaluators for every query indatg. For some queries OASIS
achieves precision that is very close to that of the mean hugmaluator. In many cases OASIS
achieves precision that is as good or better than some ¢vedua
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Figure 1:(a) Precision of OASIS and human evaluators, per query, usimigrigs of all (remaining)
human evaluators as a ground tru@in) Comparison of the runtime of OASIS and fast-LMNN[17],
over a wide range of scales. LMNN results (on MNIST data) agefr than OASIS results on
subsets of the web data. However LMNN scales quadraticattytive number of samples, hence is
three times slower on 60K images, and may be infeasible fadliveg 2.3 million images.

We further studied how the runtime of OASIS scales with tlze sif the training set. Figure 1(b)
shows that the runtime of OASIS, as found by early stopping @eparate validation set, grows
linearly with the train set size. We compare this to the ftstesult we found in the literature, based
on afastimplementation of LMNN [17]. The LMNN algorithm $ea quadratically with the number
of objects, although their experiments with MNIST data slioat the active set of constraints grows
linearly. This could be because MNIST has 10 classes only.



(@ 10classes (b) 20 classes (c) 50 classes
0.5

0.3
0.4] GJ
. . 8.
o ‘"‘F - 0.2
. R A
503 & Sl So02f FRUIo;
@ fig I3 k] - E- &
S Eog. TR 5 g, L ET3FA 0.
g B R T "Oaog, JFoge 1T "o,
- { T3
502 T 0rgny O Bronald L °-:.°-° .
OASIS 0.1} —OAsIsS 2020 20.¢
0.1 == -MeML Random - --MCML
. LEGO LEGO Random______, oasis
v LMNN LMNN 7oy Rangom_
0 -@-Euclidean o -0 -Euclidean <O~ Euclidean
0 10 50 0 10 50 o 0 o =

20 30 20 30
number of neighbors number of neighbors

Figure 2: Comparison of the performance of OASIS, LMNN, MCMIEGO and the Euclidean
metric in feature space. Each curve shows the precisiorpdt &s a function of neighbors. The
results are averaged across 5 train/test partitions (#irtgeimages, 25 test images per class), error
bars are standard error of the means (s.e.m.), black dasieedEinotes chance performance.

4.2 Caltech256 Dataset

To compare OASIS with small-scale methods we usedJdi#ech256 dataset [7], containing im-
ages collected from Google image search and fRyoSearch.com. Images were assigned to 257
categories and evaluated by humans in order to ensure imediéycand relevance. After we have
pre-processed the images, and filtered images that wererntalh sve were left with 29461 images
in 256 categories. To allow comparisons with methods thaewet optimized for sparse represen-
tation, we also reduced the block vocabulary siZeom 10000 to 1000.

We compared OASIS with the following metric learning metbod

(1) Euclidean - The standard Euclidean distance in feature space (equivd using the identity
matrix W = I;x4). (2) MCML [5] - Learning a Mahalanobis distance such that same-ctass s
ples are mapped to the same point, formulated as a conveleprof8) LMNN [16] - learning a
Mahalanobis distance for aiming to have th@earest neighbors of a given sample belong to the
same class while separating different-class samples bryge taargin. As a preprocessing phase,
images were projected to a basis of the principal compon@&g#\) of the data, with no dimen-
sionality reduction.(4) LEGO [9] - Online learning of a Mahalanobis distance using a Lag-D
regularization per instance loss, that is guaranteed td gipositive semidefinite matrix. We used a
variant of LEGO that, like OASIS, learns from relative distas!

We tested all methods on subsets of classes taken from thecB2b6 repository. For OASIS,
images from the same class were treated as similar. Eacletswhs built such that it included
semantically diverse categories, controlled for classiifoa difficulty. We tested sets containing 10,
20 and 50 classes, each spanning the range of difficulties.

We used two levels of 5-fold cross validation, one to traie thodel, and a second to select
hyper parameters of each method (early stopping time for ISABie w parameter for LMNN
(w € {0.125,0.25,0.5}), and the regularization parametgfor LEGO (7 € {0.02,0.08,0.32}).
Results reported below were obtained by selecting the ladgé\of the hyper parameter and then
training again on the full training set (40 images per class)

Figure 2 compares the precision obtained with OASIS, wighfttur competing approaches. OASIS
achieved consistently superior results throughout thHednge ofk (number of neighbors) tested,
and on all four sets studied. LMNN performance ontttaning set was often high, suggesting that
it overfits the training set, as was also observed sometim&sa).

Table 2 shows the total CPU time in minutes for training afjosithms compared, and for four
subsets of classes at sizes 10, 20, 50 and 249. Data is nat\ghen runtime was longer than 5
days or performance was worse than the Euclidean baselime¢h& purpose of a fair comparison,
we tested two implementations of OASIS: The first was fullplemented Matlab. The second had
the core loop of the algorithm implemented in C and callednfidatlab. All other methods used

We have also experimented with the methods of [18], which we found todbslow, and with RCA [1],
whose precision was lower than other methods. These results are lndeidén the evaluations below.



Table 2: Runtime (minutes) on a standard CPU of all compareithods

num OASIS OASIS MCML LEGO LMNN fastLMNN
classes| Matlab Matlab+C  Matlab+C Matlab Matlab+C  Matlab+C
10 42+15 0.124+.03 18354210 143+44 3374169 247 £ 209
20 45+ 8 0.154+.02 7425+106 533+£49 631 +£40 365 £ 62
50 25+ 2 1.60 £+ .04 711£28 960£80 2109 67
249 485+ 113 1.134.15

code supplied by the authors implemented in Matlab, witte quarts implemented in C. Due to
compatibility issues, fast-LMNN was run on a different maeh and the given times are rescaled to
the same time scale as all other algorithms. LEGO is fullylengented in Matlab. All other code
was compiled (mex) to C. The C implementation of OASIS is gigantly faster, since Matlab does
not use the potential speedup gained by sparse images.

OASIS is significantly faster, with a runtime that is shoitgrorders of magnitudes than MCML
even on small sets, and about one order of magnitude faster tiINN. The run time of OASIS
and LEGO was measured until the point of early stopping. GASkmory requirements grow
guadratically with the size of the dictionary. For a largetidinary of 10K, the parameters matrix
takes100M floats, or0.4 Giga bytes of memory.
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Figure 3:(a) Comparing symmetric variants of OASIS on the 20-class dubsuilar results ob-
tained with other setgb) mAP along training for three PSD projection schemes.

4.3 Symmetry and positivity

The similarity matrixW learned by OASIS is not guaranteed to be positive or even strien
Some applications, like ranking images by semantic relevam a given image query are known to
be non-symmetric when based on human judgement [15]. Haniev@dme applications symmetry
or positivity constraints reflects a prior knowledge thatyrhelp in avoiding overfitting. We now
discuss variants of OASIS that learn a symmetric or positiagrices.

431 Symmetric similarities

A simple approach to enforce symmetry is to project the OABtElelW onto the set of symmetric
matricesW’ = sym(W) = 3 (W’ + W). Projection can be done after each update (denoted
Online-Proj-Oasis) or after learning is completedP(oj-Oasis). Alternatively, the asymmetric score
function Sw (p;, p;) in Iy can be replaced with a symmetric score

S (pirpi) = —(pi —p;))" W (i — ;) - (6)
and used to derive an OASIS-like algorithm (which we ndiesim-Oasis). The optimal update for
this loss has a symmetric gradiévit’ = (p; — p;" ) (p; — p;)T — (i — p; )(pi — p; )T Therefore,
if WO is initialized with a symmetric matrix (e.g., the identitsgl W* are guaranteed to remain



symmetric. Dissim-Oasis is closely related to LMNN [16]. This can be seen be castirgltatch
objective of LMNN, into an online setup, which has the foem (W) = —w - Sty (i, p;7) + (1 —
w) - L (pi, 0, p; ). This online version of LMNN becomes equivalenasim-Oasis fow = 0.

Figure 3a) compares the precision of the different symmetric variamth the original OA-
SIS. All symmetric variants performed slightly worse, owalj to the original asymmetric OA-
SIS. The precision oProj-Oasis was equivalent to that of OASIS, most likely since asymmet-
ric OASIS actually converged to an almost-symmetric modsl fheasured by a symmetry index

S, W)||2
p(W) = Leslle — .94).

4.3.2 Positivesimilarity

Most similarity learning approaches focus on learning rogtin the context of OASIS, WheW is
positive semi definite (PSD), it defines a Mahalanobis dis#aver the images. The matrix square-
root of W, AT A = W can then be used to project the data into a new space in whidaublidean
distance is equivalent to tit¥ distance in the original space.

We experimented with positive variants of OASIS, where weeetedly projected the learned model
onto the set of PSD matrices, once eveitgrations. Projection is done by taking the eigen decom-
positionW = V - D - VT whereV is the eigenvector matrix arld is a the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 3(b) trapescision on the test set throughout learning
for various values of.

The effect of positive projections is complex. First, cantusly projecting at every step helps
to reduce overfitting, as can be observed by the slower dedlirthe blue curve (upper smooth
curve) compared to the orange curve (lowest curve). Howeween projection is performed after

many steps, (instead of continuously), performance of tiogepted model actually outperforms
the continuous-projection model (upper jittery curve). eTieason for this effect is likely to be

that estimating the positive sub-space is very noisy whdwy lbased on a few samples. Indeed,
accurate estimation of the negative subspace is known toha@daproblem, in that the estimated
eigenvalues of eigenvectors “near zero”, is relativelgéaie found that this effect was so strong,
that the optimal projection strategy is to avoid projectibroughout learning completely. Instead,
projecting into PSD after learning (namely, after a moded wlaosen using early stopping) provided
the best performance in our experiments.

An interesting alternative to obtain a PSD matrix was exgddoy [10, 9]. Using a LogDet diver-
gence between two matricé®;(X,Y) = tr(XY 1) — log(det(XY 1)) ensures that, given an
initial PSD matrix, all subsequent matrices will be PSD adl.wi will be interesting to test the
effect of using LogDet regularization in the OASIS setup.

5 Discussion

We have presented OASIS, a scalable algorithm for learnmimggée similarity that captures both
semantic and visual aspects of image similarity. Three keyofs contribute to the scalability of
OASIS. First, using a large margin online approach allowafing to converge even after seeing
a small fraction of potential pairs. Second, the objectivecfion of OASIS does not require the
similarity measure to be a metric during training, althoiigippears to converge to a near-symmetric
solution, whose positive projection is a good metric. Hinale use a sparse representation of low
level features which allows to compute scores very effityent

OASIS learns a class-independent model: it is not aware affwdueries or categories were shared
by two similar images. As such, it is more limited in its degtive power and it is likely that class-
dependent similarity models could improve precision. Gndther hand, class-independent models
could generalize to handle classes that were not observétgduaining, as in transfer learning.
Large scale similarity learning, applied to images fromrgdavariety of classes, could therefore be
a useful tool to address real-world problems with a large bemof classes.

This paper focused on the training part of metric learnirgu3e the learned metric for ranking, an
efficient procedure for scoring a large set of images is neeefiechniques based on locality-sensitive
hashing could be used to speed up evaluation, but this igleutse scope of this paper.
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