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Abstract

We propose a novel information theoretic approach for semi-supervised learning
of conditional random fields that defines a training objective to combine the con-
ditional likelihood on labeled data and the mutual information on unlabeled data.
In contrast to previous minimum conditional entropy semi-supervised discrimi-
native learning methods, our approach is grounded on a more solid foundation,
the rate distortion theory in information theory. We analyze the tractability of the
framework for structured prediction and present a convergent variational train-
ing algorithm to defy the combinatorial explosion of terms in the sum over label
configurations. Our experimental results show the rate distortion approach outper-
forms standardl2 regularization, minimum conditional entropy regularization as
well as maximum conditional entropy regularization on bothmulti-class classifi-
cation and sequence labeling problems.

1 Introduction

In most real-world machine learning problems (e.g., for text, image, audio, biological sequence
data), unannotated data is abundant and can be collected at almost no cost. However, supervised
machine learning techniques require large quantities of data be manually labeled so that automatic
learning algorithms can build sophisticated models. Unfortunately, manual annotation of a large
quantity of data is both expensive and time-consuming. The challenge is to find ways to exploit the
large quantity of unlabeled data and turn it into a resource that can improve the performance of su-
pervised machine learning algorithms. Meeting this challenge requires research at the cutting edge
of automatic learning techniques, useful in many fields suchas language and speech technology, im-
age processing and computer vision, robot control and bioinformatics. A surge of semi-supervised
learning research activities has occurred in recent years to devise various effective semi-supervised
training schemes. Most of these semi-supervised learning algorithms are applicable only to multi-
class classification problems [1, 10, 32], with very few exceptions that develop discriminative mod-
els suitable for structured prediction [2, 9, 16, 20, 21, 22].

In this paper, we propose an information theoretic approachfor semi-supervised learning of condi-
tional random fields (CRFs) [19], where we use the mutual information between the empirical distri-
bution of unlabeled data and the discriminative model as a data-dependent regularized prior. Grand-
valet and Bengio [15] and Jiao et al. [16] have proposed a similar information theoretic approach that
used the conditional entropy of their discriminative models on unlabeled data as a data-dependent
regularization term to obtain very encouraging results. Minimum entropy approach can be explained
from data-smoothness assumption and is motivated from semi-supervised classification, using unla-
beled data to enhance classification; however, its degeneracy is even more problematic and arguable
by noting minimum entropy 0 can be achieved by putting all mass on one label and zeros for the
rest of labels. As far as we know, there is no formal principled explanation for the validity of this
minimum conditional entropy approach. Instead, our approach can be naturally cast into the rate

∗These authors contributed equally to this work.

1



distortion theory framework which is well-known in information theory [14]. The closest work to
ours is the one by Corduneanu et al. [11, 12, 13, 28]. Both works are discriminative models and
do indeed use mutual information concepts. There are two major distinctions between our work
and theirs. First, their approach is essentially motivatedfrom semi-supervised classification point
of view and formulated as a communication game, while our approach is based on a completely
different motivation, semi-supervised clustering that uses labeled data to enhance clustering and is
formulated as a data compression scheme, thus leads to a formulation distinctive from Corduneanu
et al. Second, their model is non-parametric, whereas ours is parametric. As a result, their model can
be trained by optimizing a convex objective function through a variant of Blahut-Arimoto alternating
minimization algorithm, whereas our model is more complex and the objective function becomes
non-convex. In particular, training a simple chain structured CRF model [19] in our framework turns
out to be intractable even if using Blahut-Arimoto’s type ofalternating minimization algorithm. We
develop a convergent variational approach to approximately solve this problem. Another relevant
work is the information bottleneck (IB) method introduced by Tishby et al [30]. IB method is an
information-theoretic framework for extracting relevantcomponents of an input random variable
X, with respect to an output random variableY . Instead of directly compressingX to its repre-
sentationY subject to an expected distortion through a parametric probabilistic mapping like our
proposed approach, IB method is performed by finding a third,compressed, non-parametric and
model-independent representationT of X that is most informative aboutY . Formally speaking, the
notion of compression is quantified by the mutual information betweenT andX while the informa-
tiveness is quantified by the mutual information betweenT andY . The solutions are characterized
by the bottleneck equations and can be found by a convergent re-estimation method that general-
izes the Blahut-Arimoto algorithm. Finally in contrast to our approach which minimizes both the
negative conditional likelihood on labeled data and the mutual information between the hidden vari-
ables and the observations on unlabeled data for adiscriminativemodel, Oliver and Garg [24] have
proposed maximum mutual information hidden Markov models (MMIHMM) of semi-supervised
training for chain structured graph. The objective is to maximize both the joint likelihood on labeled
data and the mutual information between the hidden variables and the observations on unlabeled data
for agenerativemodel. It is equivalent to minimizing conditional entropy of a generative HMM for
the part of unlabeled data. The maximum mutual information of a generative HMM was originally
proposed by Bahl et al. [4] and popularized in speech recognition community [23], but it is differ-
ent from Oliver and Garg’s approach in that an individual HMMis learned for each possible class
(e.g., one HMM for each word string), and the point-wise mutual information between the choice
of HMM and the observation sequence is maximized. It is equivalent to maximizing the conditional
likelihood of a word string given observation sequence to improve the discrimination across differ-
ent models [18]. Thus in essence, Bahl et al. [4] proposed a discriminative learning algorithm for
generative HMMs of training utterances in speech recognition.

In the following, we first motivate our rate distortion approach for semi-supervised CRFs as a data
compression scheme and formulate the semi-supervised learning paradigm as a classic rate distortion
problem. We then analyze the tractability of the framework for structured prediction and present a
convergent variational learning algorithm to defy the combinatorial explosion of terms in the sum
over label configurations. Finally we demonstrate encouraging results with two real-world problems
to show the effectiveness of the proposed approach: text categorization as a multi-class classification
problem and hand-written character recognition as a sequence labeling problem. Similar ideas have
been successfully applied to semi-supervised boosting [31].

2 Rate distortion formulation

Let X be a random variable over data sequences to be labeled, andY be a random variable
over corresponding label sequences. All components,Yi, of Y are assumed to range over a fi-

nite label alphabetY. Given a set of labeled examples,Dl =
{

(x(1),y(1)), · · · , (x(N),y(N))
}

,

and unlabeled examples,Du =
{

x
(N+1), · · · ,x(M)

}

, we would like to build a CRF model

pθ(y|x) = 1
Zθ(x) exp

(

〈θ, f(x,y)〉
)

over sequential input datax, whereθ = (θ1, · · · , θK)⊤,

f(x,y) = (f1(x,y), · · · , fK(x,y))⊤, andZθ(x) =
∑

y
exp

(

〈θ, f(x,y)〉
)

. Our goal is to learn

such a model from the combined set of labeled and unlabeled examples,Dl ∪ Du. For notational
convenience, we assume that there are no identical examplesin Dl andDu.
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The standard supervised training procedure for CRFs is based on minimizing the negative log con-
ditional likelihood of the labeled examples inDl

CL(θ) = −
N
X

i=1

log pθ(y
(i)|x(i)) + λU(θ) (1)

whereU(θ) can be any standard regularizer onθ, e.g. U(θ) = ‖θ‖2/2 andλ is a parameter that
controls the influence ofU(θ). Regularization can alleviate over-fitting on rare features and avoid
degeneracy in the case of correlated features.

Obviously, Eq. (1) ignores the unlabeled examples inDu. To make full use of the available training
data, Grandvalet and Bengio [15] and Jiao et al. [16] proposed a semi-supervised learning algo-
rithm that exploits a form ofminimum conditional entropy regularizationon the unlabeled data.
Specifically, they proposed to minimize the following objective

RLminCE(θ) = −
N
X

i=1

log pθ(y
(i)|x(i)) + λU(θ) − γ

M
X

j=N+1

X

y

pθ(y|x
(j)) log pθ(y|x

(j)) (2)

where the first term is the negative log conditional likelihood of the labeled data, and the third term
is the conditional entropy of the CRF model on the unlabeled data. The tradeoff parametersλ andγ
control the influences ofU(θ) and the unlabeled data, respectively.

This is equivalent to minimizing the following objective (with different values ofλ andγ)

RLminCE(θ) = D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ) + γ
X

x∈Du

p̃u(x)H
“

pθ(y|x)
”

(3)

where D
(

p̃l(x,y), p̃l(x)pθ(y|x)
)

=
∑

(x,y)∈Dl p̃l(x,y) log p̃l(x,y)
p̃l(x)pθ(y|x) , H

(

pθ(y|x)
)

=
∑

y
pθ(y|x) log pθ(y|x). Here we usẽpl(x,y) to denote the empirical distribution of bothX and

Y on labeled dataDl, p̃l(x) to denote the empirical distribution ofX on labeled dataDl, andp̃u(x)
to denote the empirical distribution ofX on unlabeled dataDu.

In this paper, we propose an alternative approach for semi-supervised CRFs. Rather than using
minimum conditional entropy as a regularization term on unlabeled data, we useminimum mutual
informationon unlabeled data. This approach has a nice and strong information theoretic interpre-
tation by rate distortion theory.

We define the marginal distributionpθ(y) of our discriminative model on unlabeled dataDu to be
pθ(y) =

∑

x∈Du p̃u(x)pθ(y|x) over the input datax. Then the mutual information between the
empirical distributioñp(x) and the discriminative model is

I
“

p̃u(x), pθ(y|x)
”

=
X

x∈Du

X

y

p̃u(x)pθ(y|x) log
“ p̃u(x)pθ(y|x)

p̃u(x)pθ(y)

”

= H
“

pθ(y)
”

−
X

x∈Du

p̃u(x)H
“

pθ(y|x)
”

whereH
(

pθ(y)
)

= −
∑

y

∑

x∈Du p̃u(x)pθ(y|x) log
(

∑

x∈Du p̃u(x)pθ(y|x)
)

is the entropy of

the labelY on unlabeled data. Thus in rate distortion terminology, theempirical distribution of
unlabeled datãpu(x) corresponds to input distribution, the modelpθ(y|x) corresponds to the prob-
abilistic mapping fromX to Y , andpθ(y) corresponds to the output distribution ofY .

Our proposed rate distortion approach for semi-supervisedCRFs optimizes the following con-
strained optimization problem,

min
θ

I
“

p̃u(x), pθ(y|x)
”

s.t. D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ) ≤ d (4)

The rationale for this formulation can be seen from an information-theoretic perspective using the
rate distortion theory [14]. Assume we have a sourceX with a source distributionp(x) and its com-
pressed representationY through a probabilistic mappingpθ(y|x). If there is a large set of features
(infinite in the extreme case), this probabilistic mapping might be too redundant. We’d better look
for its minimum description. What determines the quality of the compression is the information
rate, i.e. the average number of bits per message needed to specify an element in the representation
without confusion. According to the standard asymptotic arguments [14], this quantity is bounded

below by the mutual informationI
(

p(x), pθ(y|x)
)

since the average cardinality of the partition-

ing of X is given by the ratio of the volume ofX to the average volume of the elements ofX
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that are mapped to the same representationY throughpθ(y|x), 2H(X)/2H(X|Y ) = 2I(X,Y ). Thus
mutual information is the minimum information rate and is used as a good metric for clustering
[26, 27]. True distribution ofX should be used to compute the mutual information. Since it is
unknown, we use its empirical distribution on unlabeled data setDu and the mutual information

I
(

p̃u(x), pθ(y|x)
)

instead. However, information rate alone is not enough to characterize good

representation since the rate can always be reduced by throwing away many features in the prob-
abilistic mapping. This makes the mapping likely too simpleand leads to distortion. Therefore
we need an additional constraint provided through a distortion function which is presumed to be
small for good representations. Apparently there is a tradeoff between minimum representation
and maximum distortion. Since joint distribution gives thedistribution for the pair ofX and its
representationY , we choose the log likelihood ratio,log p(x,y)

p(x)pθ(y|x) , plus a regularized complexity
term ofθ, λU(θ), as the distortion function. Thus the expected distortion is the non-negative term

D
(

p(x,y), p(x)pθ(y|x)
)

+ λU(θ). Again true distributionsp(x,y) andp(x) should be used here,

but they are unknown. In semi-supervised setting, we have labeled data available which provides
valuable information to measure the distortion: we use the empirical distributions on labeled data set

Dl and the expected distortionD
(

p̃l(x,y), p̃l(x)pθ(y|x)
)

+ λU(θ) instead to encode the informa-

tion provided by labeled data, and add a distortion constraint we should respect for data compression
to help the clustering. There is a monotonic tradeoff between the rate of the compression and the
expected distortion: the larger the rate, the smaller is theachievable distortion. Given a distortion
measure betweenX andY on the labeled data setDl, what is the minimum rate description re-
quired to achieve a particular distortion on the unlabeled data setDu? The answer can be obtained
by solving (4).

Following standard procedure, we convert the constrained optimization problem (4) into an uncon-
strained optimization problem which minimizes the following objective:

RLMI(θ) = I
“

p̃u(x), pθ(y|x)
”

+ κ
“

D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ)
”

(5)

whereκ > 0, which again is equivalent to minimizing the following objective (withγ = 1
κ

)1:

RLMI(θ) = D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ) + γI
“

p̃u(x), pθ(y|x)
”

(6)

If (4) is a convex optimization problem, then for every solution θ to Eq. (4) found using some
particular value ofd, there is some corresponding value ofγ in the optimization problem (6) that
will give the sameθ. Thus, these are two equivalent re-parameterizations of the same problem. The
equivalence between the two problems can be verified using convex analysis [8] by noting that the
Lagrangian for the constrained optimization (4) is exactlythe objective in the optimization (5) (plus
a constant that does not depend onθ), whereκ is the Lagrange multiplier. Thus, (4) can be solved
by solving either (5) or (6) for an appropriateκ or γ. Unfortunately (4) is not a convex optimization

problem, because its objectiveI
(

p̃u(x), pθ(y|x)
)

is not convex. This can be verified using the same

argument as in the minimum conditional entropy regularization case [15, 16]. There may be some
minima of (4) that do not minimize (5) or (6) whatever the value ofκ or γ may be. This is however
not essential to motivate the optimization criterion. Moreover there are generally local minima in
(5) or (6) due to the non-convexity of its mutual informationregularization term.

Another training method for semi-supervised CRFs is themaximum entropyapproach, maximizing
conditional entropy (minimizing negative conditional entropy) over unlabeled dataDu subject to the
constraint on labeled dataDl,

min
θ

“

−
X

x∈Du

p̃u(x)H
“

pθ(y|x)
””

s.t. D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ) ≤ d (7)

again following standard procedure, we convert the constrained optimization problem (7) into an
unconstrained optimization problem which minimizes the following objective:

RLmaxCE(θ) = D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ) − γ
X

x∈Du

p̃u(x)H
“

pθ(y|x)
”

(8)

1For the part of unlabeled data, the MMIHMM algorithm [24] maximizes mutual information,
I(p̃u(x), pθ(x|y)), of a generative modelpθ(x|y) instead, which is equivalent to minimizing conditional en-
tropy of a generative modelpθ(x|y), sinceI(p̃u(x), pθ(x|y)) = H(p̃u(x)) − H(pθ(x|y)) andH(p̃u(x)) is
a constant.
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Again minimizing (8) is not exactly equivalent to (7); however, it is not essential to motivate the
optimization criterion. When comparing maximum entropy approach with minimum conditional
entropy approach, there is only a sign change on conditionalentropy term.

For non-parametric models, using the analysis developed in[5, 6, 7, 25], it can be shown that maxi-
mum conditional entropy approach is equivalent to rate distortion approach when we compress code
vectors in a mass constrained scheme [25]. But for parametric models such as CRFs, these three
approaches are completely distinct.

The difference between our rate distortion approach for semi-supervised CRFs (6) and the minimum
conditional entropy regularized semi-supervised CRFs (2)is not only on the different sign of condi-
tional entropy on unlabeled data but also the additional term – entropy ofpθ(y) on unlabeled data.
It is this term that makes direct computation of the derivative of the objective for the rate distortion
approach for semi-supervised CRFs intractable. To see why,we take derivative of this term with
respect toθ, we have:

∂

∂θ

“

− H(pθ(y))
”

=
X

x∈Du

p̃u(x)
X

y

pθ(y|x)f(x,y) log
“

X

x∈Du

p̃u(x)pθ(y|x)
”

−
X

x∈Du

p̃u(x)
X

y

pθ(y|x) log
“

X

x∈Du

p̃u(x)pθ(y|x)
”

X

y′

pθ(y
′|x)f(x,y

′)

In the case of structured prediction, the number of sums overY is exponential, and there is a sum
inside thelog. These make the computation of the derivative intractable even for a simple chain
structured CRF.

An alternative way to solve (6) is to use the famous algorithmfor the computation of the rate distor-
tion function established by Blahut [6] and Arimoto [3]. Corduneanu and Jaakkola [12, 13] proposed
a distributed propagation algorithm, a variant of Blahut-Arimoto algorithm, to solve their problem.
However as illustrated in the following, this approach is still intractable for structured prediction in
our case.

By extending a lemma for computing rate distortion in [14] toparametric models, we can rewrite
the minimization problem (5) of mutual information regularized semi-supervised CRFs as a double
minimization,

min
θ

min
r(y)

g(θ, r(y)) where

g(θ, r(y)) =
X

x∈Du

X

y

p̃u(x)pθ(y|x) log
pθ(y|x)

r(y)
+ κ

“

D
“

p̃l(x,y), p̃l(x)pθ(y|x)
”

+ λU(θ)
”

We can use an alternating minimization algorithm to find a local minimum ofRLMI(θ). First, we
assign the initial CRF model to be the optimal solution of thesupervised CRF on labeled data and
denote it aspθ(0)(y|x). Then we definer(0)(y) and in generalr(t)(y) for t ≥ 1 by

r
(t)(y) =

X

x∈Du

p̃u(x)pθ(t)(y|x) (9)

In order to definepθ(1)(y|x) and in generalpθ(t)(y|x), we need to find thepθ(y|x) which minimizes
g for a givenr(y). The gradient ofg(θ, r(y)) with respect toθ is

∂

∂θ
g(θ, r(y)) =

M
X

i=N+1

p̃u(x(i))
“

covpθ(y|x(i))

h

f(x(i)
,y)
i

θ −
X

y

pθ(y|x
(i))f(x(i)

,y) log r(y) (10)

+
X

y

pθ(y|x
(i)) log r(y)

X

y′

pθ(y
′|x(i))f(x(i)

,y
′)
”

(11)

−κ

N
X

i=1

p̃l(x
(i))

 

f(x(i)
,y

(i)) −
X

y

pθ(y|x
(i))f(x(i)

,y)

!

+ κλ
∂

∂θ
U(θ) (12)

Even though the first term in Eq. (10) and (12) can be efficiently computed via recursive formu-
las [16], we run into the same intractable problem to computethe second term Eq. (10) and Eq. 11)
since the number of sums overY is exponential and implicitly there is a sum inside thelog due
to r(y). This makes the computation of the derivative in the alternating minimization algorithm
intractable.
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3 A variational training procedure

In this section, we derive a convergent variational algorithm to train rate distortion based semi-
supervised CRFs for sequence labeling. The basic idea of convexity-based variational inference is
to make use of Jensen’s inequality to obtain an adjustable upper bound on the objective function
[17]. Essentially, one considers a family of upper bounds indexed by a set of variational parameters.
The variational parameters are chosen by an optimization procedure that attempts to find the tightest
possible upper bound.

Following Jordan et al. [17], we begin by introducing a variational distributionq(x) to bound
H(pθ(y)) using Jensen’s inequality as the following,

H(pθ(y)) = −
X

y

X

x∈Du

p̃u(x)pθ(y|x) log

 

X

x∈Du

p̃u(x)pθ(y|x)

q(x)
q(x)

!

≤ −
X

y

M
X

j=N+1

p̃u(x(j))pθ(y|x
(j))

"

M
X

l=N+1

q(x(l)) log

„

p̃u(x(l))pθ(y|x
(l))

q(x(l))

«

#

Thus the desideratum of finding a tight upper bound ofRLMI(θ) in Eq. (6) translates directly into
the following alternative optimization problem:

(θ∗
, q

∗) = min
θ,q

U(θ, q) where

U(θ, q) =

−

N
X

i=1

p̃l(x
(i)) log pθ(y

(i)|x(i)) + λU(θ) − γ

M
X

j=N+1

M
X

l=N+1

p̃u(x(j))q(x(l))
X

y

pθ(y|x
(j)) log pθ(y|x

(l)) (13)

−γ

M
X

j=N+1

p̃u(x(j))

M
X

l=N+1

q(x(l)) log
p̃u(x(l))

q(x(l))
+ γ

M
X

j=N+1

X

y

p̃u(x(j))pθ(y|x
(j)) log pθ(y|x

(j)) (14)

Minimizing U with respect toq has a closed form solution,

q(x(l)) =
p̃u(x(l)) exp

“

PM

j=N+1

P

y
p̃u(x(j))pθ(y|x

(j)) log pθ(y|x
(l))
”

PM

k=1 p̃u(x(k)) exp
“

PM

j=N+1

P

y
p̃u(x(j))pθ(y|x(j)) log pθ(y|x(k))

” ∀ x
(l) ∈ Du (15)

It can be shown that

U(θ, q) ≥ RLMI(θ) +
X

y

X

x∈Du

p̃u(x)pθ(y|x)
X

x∈Du

D
“

q(x), qθ(x|y)
”

≥ 0 (16)

whereqθ(x|y) = p̃u(x)pθ(y|x)
P

x∈Du p̃u(x)pθ(y|x) ∀ x ∈ Du. ThusU is bounded below, the alternative mini-

mization algorithm monotonically decreasesU and converges.

In order to calculate the derivative ofU with respect toθ, we just need to notice that the first term
in Eq. (13) is the log-likelihood in CRF, and the first term in Eq. (14) is a constant and second term
in Eq. (14) is the conditional entropy in [16]. They all can beefficiently computed [16, 21]. In the
following, we show how to compute the derivative of the last term in Eq.(13) using an idea similar
to that proposed in [21]. Without loss of generality, we assume all the unlabeled data are of equal
lengths in the sequence labeling case. We will describe how to handle the case of unequal lengths in
Sec. 4.

If we define A(y,x(j),x(l)) =
∑

y
pθ(y|x

(j)) log pθ(y|x
(l)) in (13) for a fixed (j, l) pair,

where we assumex(j) and x
(l) form two linear-chain graphs of equal lengths, we can calcu-

late the derivative ofA(y,x(j),x(l)) with respect to thek-th parameterθk, where all the terms
can be computed through standard dynamic programming techniques in CRFs except one term
∑

y
pθ(y|x

(j)) log pθ(y|x
(l))fk(x(j),y). Nevertheless similar to [21], we compute this term as

follows [21]: we first definepairwise subsequence constrained entropyon (x(j),x(l)) (as suppose
to thesubsequence constrained entropydefined in [21]) as:

H
σ
jl(y−(a..b)|ya..b,x

(j)
,x

(l)) =
X

y−(a..b)

pθ(y−(a..b)|ya..b, x
(j)) log pθ(y−(a..b)|ya..b, x

(l))

6



wherey−(a..b) is the label sequence with its subsequenceya..b fixed. If we haveHσ
jl for all (a, b),

then the term
∑

y
pθ(y|x

(j)) log pθ(y|x
(l))fk(x(j),y) can be easily computed. Using the indepen-

dence property of linear-chain CRF, we have the following:
X

y−(a..b)

pθ(y−(a..b), ya..b|x
(j)) log pθ(y−(a..b), ya..b|x

(l))

= pθ(ya..b|x
(j)) log pθ(ya..b|x

(l)) + pθ(ya..b|x
(j))Hα

jl(y1..(a−1)|ya,x
(j)

,x
(l))

+pθ(ya..b|x
(j))Hβ

jl(y(b+1)..n|yb,x
(j)

,x
(l))

GivenHα
jl(·) andHβ

jl(·), any sequence entropy can be computed in constant time [21].Computing
Hα

jl(·) can be done using the following dynamic programming [21]:

H
α
jl(y1..i|yi+1,x

(j)
,x

(l)) =
X

yi

pθ(yi|yi+1,x
(j)) log pθ(yi|yi+1,x

(l))

+
X

yi

pθ(yi|yi+1,x
(j))Hα

jl(y1..(i−1)|yi,x
(j)

,x
(l))

The base case for the dynamic programming isHα
jl(∅|y1,x

(j),x(l)) = 0. All the probabilities (i.e.,

pθ(yi|yi+1,x
j)) needed in the above formula can be obtained using belief propagation.Hβ

jl(·) can
be similarly computed using dynamic programming.

4 Experiments

We compare our rate distortion approach for semi-supervised learning with one of the state-of-the-art
semi-supervised learning algorithms, minimum conditional entropy approach and maximum condi-
tional entropy approach on two real-world problems: text categorization and hand-written character
recognition. The purpose of the first task is to show the effectiveness of rate distortion approach
over minimum and maximum conditional entropy approaches when no approximation is needed in
training. In the second task, a variational method has to be used to train semi-supervised chain
structured CRFs. We demonstrate the effectiveness of the rate distortion approach over minimum
and maximum conditional entropy approaches even when an approximation is used during training.

4.1 Text categorization

We select different class pairs from the 20 newsgroup dataset 2 to construct our binary classification
problems. The chosen classes are similar to each other and thus hard for classification algorithms.
We use Porter stemmer to reduce the morphological word forms. For each label, we rank words
based on their mutual information with that label (whether it predicts label 1 or 0). Then we choose
the top 100 words as our features. For each problem, we select15% of the training data, almost 150
instances, as the labeled training data and select the unlabeled data from the remaining data. The
validation set (for setting the free parameters, e.g.λ andγ) contains 100 instances. The test set
contains about 700 instances. We vary the ratio between the amount of unlabeled and labeled data,
repeat the experiments ten times with different randomly selected labeled and unlabeled training
data, and report the mean and standard deviation over different trials. For each run, we initialize the
model parameter for mutual information (MI) regularization and maximum/minimum conditional
entropy (CE) regularization using the parameter learned from a l2-regularized logistic regression
classifier. Figure 1 shows the classification accuracies of these four regularization methods versus
the ratio between the amount of unlabeled and labeled data ondifferent classification problems. We
can see that mutual information regularization outperforms the other three regularization schemes.
In most cases, maximum CE regularization outperforms minimum CE regularization and the base-
line (logistic regression withl2 regularization) which uses only the labeled data. Althoughthe
randomly selected labeled instances are different for different experiments, we should not see a sig-
nificant difference in the performance of the learned modelsbased on the baseline; since for each
particular ratio of labeled and unlabeled data, the performance is averaged over ten runs. We suspect
the reason for the performance differences of the baselinesmodels in Figure 1 is due to our feature
selection phase.

2http://people.csail.mit.edu/jrennie/20Newsgroups.

7



0 1 2 3 4 5 6
0.862

0.864

0.866

0.868

0.87

0.872

0.874

0.876

0.878

0.88

0.882

ratio unlabel/label

ac
cu

ra
cy

 

 

MI

minCE

maxCE

L2

0 1 2 3 4 5 6
0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

ratio unlabel/label

ac
cu

ra
cy

 

 

MI

minCE

maxCE

L2

0 1 2 3 4 5 6
0.815

0.82

0.825

0.83

0.835

0.84

0.845

ratio unlabel/label

ac
cu

ra
cy

 

 

MI

minCE

maxCE

L2

0 1 2 3 4 5 6
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

ratio unlabel/label
ac

cu
ra

cy

 

 

MI

minCE

maxCE

L2

0 1 2 3 4 5 6
0.765

0.77

0.775

0.78

0.785

0.79

0.795

0.8

ratio unlabel/label

ac
cu

ra
cy

 

 

MI

minCE

maxCE

L2

Figure 1: Results on five different binary classification problems in text categorization (left to right):
comp.os.ms-windows.misc vs comp.sys.mac.hardware; rec.autos vs rec.motorcycles; rec.sport.baseball vs
rec.sport.hockey; talk.politics.guns vs talk.politics.misc; sci.electronics vs sci.med.
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Figure 2:Results on hand-written character recognition: (left) sequence labeling; (right) multi-class classifi-
cation.

4.2 Hand-written character recognition

Our dataset for hand-written character recognition contains∼6000 handwritten words with average
length of∼8 characters. Each word was divided into characters, each character is resized to a16×8
binary image. We choose∼600 words as labeled data,∼600 words as validation data,∼2000 words
as test data. Similar to text categorization, we vary the ratio between the amount of unlabeled and
labeled data, and report the mean and standard deviation of classification accuracies over several
trials.

We use a chain structured graph to model hand-written character recognition as a sequence labeling
problem, similar to [29]. Since the unlabeled data may have different lengths, we modify the mu-
tual information asI =

∑

ℓ Iℓ, whereIℓ is the mutual information computed on all the unlabeled
data with lengthℓ. We compare our approach (MI) with other regularizations (maximum/minimum
conditional entropy,l2). The results are shown in Fig. 2 (left). As a sanity check, wehave also
tried solving hand-written character recognition as a multi-class classification problem, i.e. without
considering the correlation between adjacent characters in a word. The results are shown in Fig. 2
(right). We can see that MI regularization outperforms maxCE, minCE andl2 regularizations in
both multi-class and sequence labeling cases. There are significant gains in the structured learning
compared with the standard multi-class classification setting.

5 Conclusion and future work

We have presented a new semi-supervised discriminative learning algorithm to train CRFs. The
proposed approach is motivated by the rate distortion framework in information theory and utilizes
the mutual information on the unlabeled data as a regularization term, to be more precise a data
dependent prior. Even though a variational approximation has to be used during training process for
even a simple chain structured graph, our experimental results show that our proposed rate distortion
approach outperforms supervised CRFs withl2 regularization and a state-of-the-art semi-supervised
minimum conditional entropy approach as well as semi-supervised maximum conditional entropy
approach in both multi-class classification and sequence labeling problems. As future work, we
would like to apply this approach to other graph structures,develop more efficient learning algo-
rithms and illuminate how reducing the information rate helps generalization.
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